# Multiresidue Method for Determination of 74 Pesticides under Organic and

## Conventional Olive Farm Soil by QuEChERS and GC-MS/MSTQD

#### 3 Abstract

1

2

8

9

12

13

14

15

16

17

18

21

23

24

25

26

27

The analytical multiresidue method, has been developed and validated for quantification of trace levels of 74 pesticideresidues belong to different chemical groups of pesticides in organic and conventional Olive farm soil samples (Old, medial and new olive farms which is 25, 15 and 5 years respectively). Soil samples

collected from Al-Jouf Province, Saudi Arabia, and extracted by Quick, Easy,

Cheap, Effective, Rugged, and Safe(QuEChERS) and analyzed by Gas Chromatography Mass Spectrometry Triple Quadrupole (GC-MS/MSTQD). The

10 Chromatography Mass Spectrometry Triple Quadrupole (GC-MS/MSTQD). The 11 method reveals that experimental results were highly satisfactory in respect of

various analytical parameters such as linearity, recovery and precision especially with the tested soil samples which <u>isare</u> complex matrixes, preparation is a critical

step, and one that is usually expensive, time-consuming, and labor intensive. The

limit of detection (LOD) and limit of quantification (LOQ) for the analyzed

pesticides were in the range of 1.01-13.91 µg kg<sup>-1</sup> and 3.02 - 29.15 µg kg<sup>-1</sup>,

respectively. Pesticide recoveries form spiked soil samples with different pesticides ranged from 65.5 to 111.7 %. The proposed method featured good sensitivity,

19 pesticide quantification limits were low enough, and the precision, expressed as

relative standard deviation, ranged from 0.29 to 13.32%. Pesticide residues

was being detected by applying the modified QuEChERS and GCMSMSTQD

method, the levels www.aswere ranged from 43.00 to 2.00 µg kg<sup>-1</sup> for 18 different

pesticides, 1.99 to 1.00 µg/kg<sup>-1</sup> for 16 different pesticides, 0.99 to 0.50 µg/kg<sup>-1</sup> for

12 different pesticides and lower than 0.50 µg kg<sup>-1</sup> for 28 different pesticide

residues. The proposed QuEChERS and GC-MS/MSTQD method were applied

successfully for the residues extraction and determination the 74 pesticides.

# Keywords

28 Multiresidue, Pesticide residues, Organic farming, Conventional farming, olive

29 farm soil, QuEChERS and GC-MS/MSTQD.

Comment [chpc1]:

Formatted: Highlight

Formatted: Highlight

Formatted: Strikethrough

Formatted: Strikethrough, Highlight

Formatted: Strikethrough, Highlight

Formatted: Highlight

Formatted: Not Strikethrough

#### Introduction

Pesticides are widely used in agriculture to protect crops, control the insects, and improve efficiency of food production. Due to the wide range of pesticides used in agriculture, the development of fast and simple multi-residue methods that simultaneously determine a wide range of different pesticides is essential. One of the most widely used multi-residue methodologies is the Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) approach. This offers many advantages including speed, cost, ease of use, good performance characteristics and wide applicability range (Pszczolińska, and Michel, 2016). 

Due to the low concentration levels of soil pollutants such as pesticides and other pollutants substances, sample preparation step is needed to determine the type and quantity of different pollutantsuch compounds present (Caldas, et al., 2011; Wang, et al., 2012 and AOAC, 20117) and to avoid interferences and improve the sensitivity of the method. To extract remove contaminants from soil samples, a technique strong enough to extract bound pesticide residues in short time is necessary (Pinto et., al 2011 and Rashid et al., 2010).

The QuEChERS approach is based on a salting-out extraction with a solvent (mainly acetonitrile, ACN) followed by a dispersive solid phase extraction (d-SPE). QuEChERS method is very flexible, modifiable, and is growing in popularity due to all the benefits described by its effectiveness is dependent on the analytic properties, matrix composition, equipment, and analytical technique availability (Pinto, et al., 2010; Caldas, et al., 2011; Wang et al., 2012).

Soil samples are complex matrixes; therefore, soil sample preparation is a critical step, and one that is usually expensive, time-consuming, and labor intensive. The (QuEChERS) method, originally developed for the determination of pesticides in fruits and vegetables, recently modified and adopted for the analysis of pesticides in soil (Pszczolińska, and Michel, 2016, Brondi et al., 2011 and Fernandes, et al., 2013) was employed in this study. El-Saeid, et al., (2015) studied the levels of pesticide residues in two types of farmland soils, sandy and clay soils following different farming practices conventional and organic were taken from different depths of 10 and 20cm. Samples were prepared for extraction and were extracted

Formatted: Highlight

Formatted: Strikethrough

Formatted: Strikethrough

Formatted: Strikethrough

Formatted: Strikethrough

Formatted: Strikethrough, Highlight

Formatted: Highlight

Formatted: Highlight

using acetone: hexane mixture (1:1) and cleanup was performed using florisil column. Clean extracts were subjected to pesticide residues determination of (a total of 86) pesticides belonging to different chemical and action groups using hyphenated GC-MS. Recovery, linearity and experimental limit of detection (LOD) experimental were performed. In case of sandy conventional farmland soil, the detected organochlorines (OCPs) pesticides were 7 or (seven), while the organophosphorus insecticides included four compoundspesticides. For herbicides two compounds were detected i.e. linuron and Amitraz. As for the frequency of the detected pesticide residues, it was found that the most frequent compounds were endosulfan I, chlorpyrifos-methyl, P.P-DDE, amitraz, fenthion, P.P-DDD, linuron, dimethoate, lindane, dieldrin, O,P-DDD, pirimiphos-methyl, alfa-BHC and aldrin. Also, it was observed that the detected pesticides residues were lindane, P,P-DDE, O,P-DDD,P,P-DDD, mirex, dieldrin and aldrin as a OCPs. It is clear that the highest amounts of OCPs groups residues distribution were especially at 20 cm followed by 10 cm (0.273 and 0.235 ppm.), while the numbers of detection pesticide residues at 20 cm depth more than 10cm were 23 and 15 numbers, respectively-.

In this study, modified QuEChERS techniques used for the extraction and clean-up procedure followed by GCMSTQD for the analysis of several pesticide residues in soil samples collected form Olive cultivated under conventional and organic farming.

#### **Material and Methods**

64

65

66

67

68

69

70

71

72

73

74 75

76

77

78

79

80

85

86

87

88

89

90

91

92

93

94 95

#### Standards and Reagents

Pesticides internal, calibration and injection standards with declared 99.9% purity, were purchased from Accu Standard, 153 Inc., New Haven, CT, USA as individual or mixture standards at a concentration of 100-200μg/mL. All internal standards are <sup>13</sup>C 12-labelled, the use of <sup>13</sup>C-labelled compound is preferable because the analysis can be quantified without clean-up. (Maestroni et al., 2000; Maestroni 2002). All solvents (Methanol, dichloromethane and acetonitrile) used for the extraction and analysis procedures of pesticides were residue-analysis grade 99.9 % purity and obtained from Fisher Scientific (Fair Lawn, NJ, USA). QuEChERS kits were purchased from Phenomenex, Madrid Avenue, Torrance, CA, USA.

Formatted: Highlight Formatted: Highlight Formatted: Highlight Formatted: Strikethrough, Highlight Formatted: Highlight Formatted: Highlight Formatted: Strikethrough, Highlight Formatted: Highlight Formatted: Highlight Formatted: Highlight Formatted: Strikethrough Formatted: Strikethrough, Highlight Formatted: Highlight Formatted: Strikethrough, Highlight Formatted: Highlight Formatted: Highlight Formatted: Highlight Formatted: Highlight Formatted: Strikethrough Formatted: Highlight

Formatted: Strikethrough, Highlight

Formatted: Highlight

98

## Samples preparation and Extraction

First, weigh 10 g soil sample (≥70% H<sub>2</sub>O content) into a 50 mL centrifuge tube. 99 Alternatively, weigh 3 g air-dried soil sample into a 50 mL tube and add 7 mL H<sub>2</sub>O, 100 vortex briefly, and allow to hydrate for 30 minutes. Then, add 10 mL of acetonitrile 101 to each sample. Shake (manually or mechanically) or vortex samples for 5 minutes 102 to extract pesticides. (In this study a SpexSamplePrep Geno/Grinder 2010 operated 103 at 1500 rpm was used). After that, add the contents of an ECOUEU750CT-MP 104 (citrate salts) Mylar pouch to each centrifuge tube. Immediately shake samples for 105 at least 2 minutes and centrifuge for 5 minutes at  $\geq$  3500 rcf. 106

## 107

108

## Sample Cleanup

- Transfer a 1 mL aliquot of supernatant to a 2 mL CUMPSC18CT (MgSO4, PSA, 109
- 110 C18) dSPE tube. Vortex samples for 0.5–1 min. Centrifuge for 2 min at high rcf
- (e.g.,  $\geq$  5000). Filter purified supernatant through a 0.2  $\mu$ m syringe filter directly into 111
- a sample vial. Finally, the samples were analyzed by GC-MS/MSTQD. 112

## 113

114

#### Analysis by GCMSMSTSQ 8000/SRM

- All measurements have been carried out using the latest Thermo Scientific<sup>TM</sup> TSQ 115
- 8000™ triple quadrupole GC-MS/MS system equipped with the Thermo 116
- Scientific<sup>TM</sup> TRACE<sup>TM</sup> 1310 GC with SSL Instant Connect<sup>TM</sup> SSL module and 117
- Thermo Scientific<sup>TM</sup> TriPlus<sup>TM</sup> RSH auto sampler. Injection mode was spilless, 118
- Splitless Time 1.0 min GC Column TR<sup>TM</sup> 5 MS, 30 m × 0.25 mm × 0.25 μm, 119
- carrier gas He (99.999 %, flow rate 1.2 mL/min, constant flow, temperature 120
- program 100 °C, 1 min; 10 °C/min to 160 °C, 4 min and 10 °C/min to 250 °C, 2
- 121 min, transfer line temperature 280 °C, total analysis time 22.4 min, TriPlus RSH
- 122
- Autosampler Injection volume 1 µL. Ionization mode EI, 70 eV, Ion source 123
- temperature 250 °C, scan mode SRM using timed SRM SRM transition setup 124
- automatically build-up by AutoSRM software. Transitions conditions are shown in 125
- (Table 1). 126

Table 1: GCMSMSTQD 8000 SRM Instrumental conditions

| GC Trace Ultra C | onditions                                  | TSQ Quantum MS/MS Conditions |                              |  |  |  |  |  |
|------------------|--------------------------------------------|------------------------------|------------------------------|--|--|--|--|--|
| Column           | TR-Pesticide 30 m ×                        | Operating mode               | Selected Reaction Monitoring |  |  |  |  |  |
|                  | $0.25 \text{ mm} \times 0.25  \mu\text{m}$ |                              | (SRM)                        |  |  |  |  |  |
| Injector         | Splitless                                  | Ionization mode              | EI                           |  |  |  |  |  |
| Injected volume  | 1 μL                                       | Electron energy              | 70 eV                        |  |  |  |  |  |
| Injector         |                                            |                              |                              |  |  |  |  |  |
| temperature      | 225 °C                                     | Emission current             | 50 μΑ                        |  |  |  |  |  |
| Carrier gas      | Helium, 1.2mL/min                          | Q1/Q3 resolution             | 0.7 u (FWHM)                 |  |  |  |  |  |
| Oven program     | 80 °C hold 1 min 15                        | Collision gas                | Argon                        |  |  |  |  |  |
|                  | °C/min to 160 °C hold                      |                              |                              |  |  |  |  |  |
|                  | 1 min 2.2 °C/min to                        |                              |                              |  |  |  |  |  |
|                  | 230 °C hold 1 min 5                        |                              |                              |  |  |  |  |  |
|                  | °C/min to 290 °C hold                      |                              |                              |  |  |  |  |  |
|                  | 5 min Run Time 57.15                       |                              |                              |  |  |  |  |  |
|                  | min                                        | 1                            |                              |  |  |  |  |  |
| Transfer line    | 280 °C                                     | Collision gas                | 1 mTorr                      |  |  |  |  |  |
| temperature      |                                            | pressure                     |                              |  |  |  |  |  |
|                  |                                            | Polarity                     | Positive                     |  |  |  |  |  |

#### **Method performance**

- Accuracy and precision of the method: 4 replicates of blank water sample spiked 132
- with the pesticide standards. Limit of detection: Instrument Detection Limit (IDL), 133
- Sample Detection Limit (SDL), Method Detection Limit, accuracy and precision 134

#### **QAQC Strategies**

135 136 137

138

139

140

141

142

131

Quality control samples was being prepared and analyzed duplicate sample, blank and spiked, and/or Certified Reference material CRM was prepared for this purpose and processed with each batch (5-10 samples) of sample. ASE and GCMS or GCMSMS TSO 8000 method limit of detection (LOD) and Limit of Quantification (LQD), repeatability, reproducibility, accuracy and precession also were determined for each compound in the groups of PAHs and Pesticides.

143 144

148

149

#### **Results and Discussion**

## QuEChERS and GC MS/MSTQD for analysis of 74 pesticides.

145

Simple and rapid method based on QuEChERS extraction and GCMSMSTQD for 146 147

determination of 74 of different groups of pesticides in soil samples. Retention time, LOD, LOQ, recovery % and target mass of SRM scanning mode was

determined as showmen in table (1). The results clearly reflect the developed

QuEChERS method offers an efficient, cost effective, and easy sample preparation 150

procedure for the determination of 74 substances or pesticides in soil samples. 151

Recovery % ranged from 65.5 to 111.7 %., the limit of detection (LOD) and limit of 152

quantification (LOQ) for the analyzed pesticides were in the range of 1.01-13.35 µg 153

kg<sup>-1</sup> and 3.02 - 29.15 µg kg<sup>-1</sup>, respectively. The proposed method featured good 154

sensitivity, pesticide quantification limits were low enough, and the precision, 155

expressed as relative standard deviation, ranged from 0.29 to 13.3%. 156

The calibration curves were linear over wide concentration ranges with correlation 157

coefficients (r2) 0.5092 to 0.9899 for all tested pesticides. In addition, the SRM 158

chromatograms demonstrated high selectivity with no significant interferences 159

observed and an excellent signal/noise ratio (> 5:1) for all tested pesticides as 160

showmen in (Figure 1). 161

Formatted: Highlight

Formatted: Strikethrough, Highlight

Formatted: Highlight

Formatted: Highlight

Formatted: Highlight

Formatted: Highlight

Formatted: Highlight

Table (2) Parameters of retention time, LOD, LOQ, recovery % and target mass of SRM scanning mode.

| Name               | RT    | Mass | Product<br>mass | Collision<br>Energy | LOQ   | LOD   | r <sup>2</sup> | Recovery % | SD    |
|--------------------|-------|------|-----------------|---------------------|-------|-------|----------------|------------|-------|
| Biphenyl           | 14.82 | 152  | 126             | 23                  | 20.12 | 6.71  | 0.7134         | 108.60     | 6.32  |
| Methacrifos        | 17.8  | 240  | 180             | 10                  | 15.20 | 5.07  | 0.8379         | 98,21      | 6.46  |
| Chloroneb          | 18.09 | 206  | 191             | 10                  | 19.67 | 6.56  | 0.9522         | 100.42     | 12.08 |
| Tecnazene          | 20.86 | 261  | 203             | 13                  | 11.57 | 3.86  | 0.9848         | 104.02     | 4.98  |
|                    |       |      |                 |                     |       |       |                |            | A     |
| Propachlor         | 20.97 | 120  | 77              | 19                  | 8.14  | 2.71  | 0.9899         | 104.94     | 4.77  |
| Cycloate           | 21.44 | 154  | 83              | 8                   | 8.00  | 2.67  | 0.9905         | 111.73     | 3.76  |
| Ethalfluralin      | 22.01 | 276  | 202             | 15                  | 10.35 | 3.45  | 0.9848         | 113.32     | 9.52  |
| Trifluralin        | 22.38 | 306  | 160             | 23                  | 13.92 | 4.64  | 0.9760         | 106.95     | 7.46  |
| Benfluralin        | 22.47 | 292  | 160             | 20                  | 11.62 | 3.87  | 0.9816         | 111.04     | 4.67  |
| Sulfotep           | 22.59 | 202  | 146             | 10                  | 10.94 | 3.65  | 0.9806         | 110.87     | 10.89 |
| Diallate           | 22.78 | 234  | 150             | 18                  | 8.82  | 2.94  | 0.9650         | 86.56      | 7.30  |
| Alph-BCH           | 23.04 | 181  | 145             | 13                  | 21.32 | 10.44 | 0.8433         | 104.37     | 7.45  |
| НСВ                | 23.33 | 249  | 214             | 14                  | 18.70 | 6.23  | 0.9382         | 103.88     | 0.35  |
| Atrazine           | 23.94 | 200  | 122             | 10                  | 11.84 | 3.95  | 0.9643         | 108.07     | 6.52  |
| Terbufos           | 24.42 | 231  | 129             | 23                  | 15.79 | 5.26  | 0.9570         | 96.64      | 8.69  |
| Profluraline       | 24.48 | 318  | 199             | 17                  | 13.67 | 4.56  | 0.9688         | 110.12     | 7.76  |
| Fenofos            | 24.56 | 137  | 109             | 6                   | 11.17 | 3.72  | 0.9813         | 110.32     | 4.49  |
| Diazinone          | 24.81 | 137  | 84              | 12                  | 21.73 | 13.91 | 0.9465         | 109.28     | 5.83  |
| Fluchloralin       | 24.94 | 264  | 160             | 15                  | 16.10 | 5.37  | 0.9535         | 106.12     | 5.52  |
| Disulfoton         | 24.99 | 153  | 97              | 12                  | 12.19 | 4.06  | 0.9729         | 87.14      | 6.75  |
| Tefluthrin         | 25.14 | 177  | 127             | 15                  | 4.33  | 1.44  | 0.9963         | 100.77     | 10.39 |
| Triallate          | 25.28 | 270  | 186             | 18                  | 18.68 | 6.23  | 0.9094         | 89.40      | 5.74  |
| Endosulfan ether   | 25.73 | 272  | 237             | 10                  | 24.04 | 13.35 | 0.9725         | 101.44     | 3.00  |
| Pentachloroaniline | 25.92 | 263  | 192             | 20                  | 17.41 | 5.80  | 0.9365         | 102.47     | 0.29  |
| Alachlor           | 26.31 | 146  | 118             | 8                   | 17.41 | 5.80  | 0.9284         | 104.52     | 8.23  |
| Vinclozolin        | 26.38 | 285  | 212             | 12                  | 15.78 | 5.26  | 0.9633         | 75.14      | 1.30  |
| Cypermethrin       | 26.45 | 163  | 91              | 11                  | 15.09 | 5.03  | 0.9574         | 103.94     | 9.13  |
| Heptachlor         | 26.62 | 100  | 65              | 12                  | 21.00 | 11.33 | 0.8841         | 102.38     | 2.75  |
| Acetochlor         | 26.72 | 174  | 146             | 12                  | 15.56 | 5.19  | 0.9497         | 105.31     | 7.41  |

| Fenchlorfos            | 26.84 | 285 | 240 | 23 | 9.91  | 3.30  | 0.9462 | 77.09   | 1.62  |
|------------------------|-------|-----|-----|----|-------|-------|--------|---------|-------|
| Primiphos methyl       | 27.22 | 290 | 125 | 20 | 17.45 | 10.82 | 0.5092 | 103.68  | 9.61  |
| Pentachlorothioanisole | 27.43 | 296 | 246 | 32 | 7.59  | 2.53  | 0.9922 | 93.27   | 1.54  |
| Dichlofluanid          | 27.48 | 123 | 77  | 16 | 16.27 | 5.42  | 0.9311 | 69.56   | 12.45 |
| Aldrin                 | 27.66 | 263 | 191 | 35 | 22.69 | 12.23 | 0.9175 | 109.07  | 3.96  |
| Chloropyrifos          | 27.81 | 314 | 258 | 12 | 25.88 | 11.96 | 0.9256 | 79.07   | 7.31  |
| Triadimefon            | 27.9  | 208 | 181 | 10 | 12.62 | 4.21  | 0.9673 | 99.28   | 4.66  |
| Primiphos - ethyl      | 28.35 | 318 | 166 | 12 | 5.35  | 1.78  | 0.9957 | 78.98   | 6.84  |
| Isopropalin            | 28.44 | 280 | 238 | 8  | 16.73 | 5.58  | 0.9363 | 87.18   | 5.81  |
| Isodrin                | 28.53 | 261 | 191 | 28 | 23.51 | 7.84  | 0.9895 | 74.27   | 3.63  |
| Pendimethalin          | 28.72 | 252 | 162 | 10 | 23.72 | 10.24 | 0.5688 | 108.86  | 2.438 |
| Heptachlor epoxide     | 28.81 | 353 | 263 | 13 | 21.48 | 8.49  | 0.7901 | 87.79   | 4.15  |
| Tolyfluanid            | 28.88 | 240 | 137 | 10 | 23.91 | 7.97  | 0.8218 | 84.75   | 4.82  |
| Quinalphos             | 29.04 | 298 | 156 | 8  | 8.32  | 2.77  | 0.9896 | 81.76   | 2.40  |
| Procymidone            | 29.22 | 283 | 67  | 28 | 10.94 | 3.65  | 0.9655 | 97.83   | 1.65  |
| Chlordane- cis         | 29.45 | 272 | 237 | 12 | 22.64 | 10.55 | 0.6677 | 95.03   | 1.24  |
| o, p DDE               | 29.54 | 246 | 176 | 32 | 8.96  | 2.99  | 0.9908 | 107.02  | 2.23  |
| Tetrachlorviphos       | 29.66 | 333 | 109 | 17 | 10.77 | 3.59  | 0.9805 | 82.67   | 8.85  |
| Endosulfan 1           | 29.79 | 195 | 125 | 19 | 23.87 | 10.29 | 0.9873 | 96.46   | 5.35  |
| Chlordane - trans      | 29.84 | 272 | 237 | 13 | 14.96 | 4.99  | 0.9394 | 103.58  | 2.93  |
| Nonachlor- trans       | 29.95 | 409 | 302 | 22 | 8.88  | 2.96  | 0.9077 | 108.47  | 7.16  |
| Pretilachlor           | 30.24 | 162 | 132 | 18 | 20.69 | 6.90  | 0.9806 | 82.81   | 7.75  |
| p, p DDE               | 30.33 | 318 | 248 | 22 | 12.72 | 4.24  | 0.9478 | 110.46  | 8.60  |
| Dieldrin               | 30.47 | 279 | 243 | 10 | 15.98 | 5.33  | 0.9486 | 105.50  | 7.11  |
| o, p DDD               | 30.57 | 235 | 165 | 22 | 16.98 | 5.66  | 0.9048 | 97.09   | 3.34  |
| Endrin                 | 31.04 | 279 | 243 | 8  | 21.84 | 10.61 | 0.9529 | 105.27  | 7.74  |
| Chlorobenzilate        | 31.09 | 139 | 111 | 12 | 15.03 | 5.01  | 0.8409 | 65.504  | 2.99  |
| Endosulfan 2           | 31.26 | 241 | 206 | 10 | 18.86 | 6.29  | 0.9163 | 89.98   | 3.90  |
| p, p DDD               | 31.38 | 235 | 165 | 24 | 8.43  | 2.81  | 0.9876 | 97.47   | 11.72 |
| o, p DDT               | 31.46 | 235 | 165 | 21 | 10.00 | 1.61  | 0.9952 | 99.12   | 2.89  |
| Nonachlor - cis        | 31.54 | 272 | 237 | 10 | 29.15 | 11.72 | 0.7072 | 111.22  | 5.03  |
|                        |       |     |     |    |       |       | 1      | ı       |       |
| Endrin - aldehyde      | 31.73 | 345 | 243 | 17 | 28.85 | 9.62  | 0.6997 | 104.519 | 7.11  |

| Methoxychlor olefin | 31.99 | 308 | 223 | 30 | 20.34 | 6.78  | 0.8750 | 103.19 | 12.33 |
|---------------------|-------|-----|-----|----|-------|-------|--------|--------|-------|
| Endosulfan sulfate  | 32.28 | 274 | 239 | 12 | 19.86 | 12.29 | 0.6006 | 92.73  | 8.71  |
| o, p Methoxychlor   | 32.49 | 227 | 121 | 12 | 19.95 | 6.65  | 0.7266 | 91.57  | 11.92 |
| Resmethrin 1        | 32.57 | 123 | 81  | 8  | 15.18 | 5.06  | 0.8423 | 106.47 | 10.01 |
| Resmethrin 2        | 32.67 | 123 | 81  | 8  | 21.08 | 7.03  | 0.7226 | 100.20 | 8.12  |
| Nitralin            | 32.9  | 274 | 216 | 6  | 21.50 | 8.50  | 0.7610 | 109.44 | 13.07 |
| Bifenthrin          | 33.31 | 181 | 166 | 10 | 12.43 | 4.14  | 0.9562 | 106.05 | 13.32 |
| Bromopropylate      | 33.39 | 183 | 155 | 12 | 25.79 | 8.60  | 0.7425 | 75.06  | 12.44 |
| Endrin ketone       | 33.44 | 215 | 279 | 8  | 19.64 | 10.55 | 0.6018 | 85.30  | 10.80 |
| Methoxychlor        | 33.55 | 227 | 115 | 50 | 23.68 | 12.56 | 0.6608 | 88.07  | 10.38 |
| Tetradifon          | 34.1  | 159 | 111 | 20 | 3.02  | 1.01  | 0.9861 | 102.30 | 10.86 |
| Leptofos            | 34.35 | 171 | 77  | 18 | 20.12 | 6.71  | 0.7134 | 108.60 | 2.48  |
| Mirex               | 34.7  | 272 | 237 | 15 | 15.20 | 5.07  | 0.8379 | 90.21  | 4.35  |



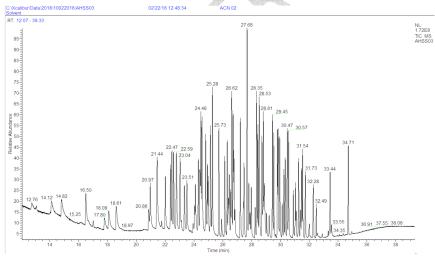



Fig. (1) GC-MSMS TQD Chromatogram obtained from 74 pesticides sample

Case Study: Pesticide residues in conventional and organic farming soil.

Pesticide residues waswere detected by applying the modified QuEChERS method: named, Chloroneb, Tecnazene, Propachlor, Cycloate, Ethalfluralin, Trifluralin, Beluralin, Sulfotep, Diallate, Alpha BCH, HCB, Atrazine, Terbufos, Profluralin, Fenofos, Diazinon and Fluchloralin and its residue levels ranged from 43.00 to 2.00 µg/kg<sup>-1</sup> in organic and conventional olive farm soil (Fig. 2) extracted by QuEChERS and analyzed by GCMSMSTQD.

Formatted: Strikethrough, Highlight

Formatted: Strikethrough, Highlight

Formatted: Highlight

Meanwhile, the detected pesticide residues levels (Fig. 3) of Endosulfan ether, Pentachloroaniline, Alachlor, Vinclozolin, Cypermethrin, Heptachlor, Acetochlor, Fenchlorfos, Pirimiphos methyl, Petachlorothioanisole, Dichlofluanid, Aldrin, Chlropyrifos, Triadimefon, Pirimiphos ethyl ranged from 1.99 to 1.00 μg/kg<sup>-1</sup> in organic and conventional olive farm soil extracted by QuEChERS and analyzed by GCMSMSTOD.

Formatted: Highlight

Formatted: Highlight

Also, Isopropalin, Isodrin, Pendimethalin, Heptachlor epoxide, Tolyfluanid, Quinalphos, Procymidone, cis-Chlorodane, o,p-DDE, Tetrachlorviphos, Endosulfan I, and chlordane-trans was detected in organic and conventional olive farm soil extracted by QuEChERS and analyzed by GCMSMSTQD and ranged from 0.99 to  $0.50 \,\mu g/kg^{-1}$  ( Fig. 4).

Formatted: Highlight

Formatted: Highlight

Pesticide residues of named, Chlordane-trans, Nonachlor-trans, Pretialchlor, p,p-DDE, Dieldrin, o,p-DDD, Endrin, Chlorobenzilate, Endosulfan II, p,p-DDD, o,p-DDT, Nonachlor-cis, Endrin aldehyde, Carfetrazone ethyl, Methoxychlor olefin, Endosulfan sulfate, o,pMethoxychlor, Resmethrin 1, Resmethrin 2, Nitralin, Bifenthrin, Bromopropylate, Endrin\_ketone, Methoxychlor, Tetradifon, Leptofos, and Mirex was ranged as low as 0.50 μg/kg<sup>-1</sup>.

Formatted: Strikethrough, Highlight

Formatted: Highlight

Formatted: Strikethrough, Highlight

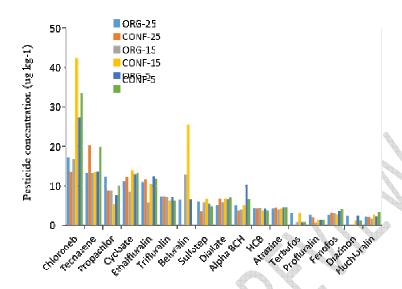



Fig. (2) Pesticide Residues levels ( $\mu g \ kg^{-1}$  ranged from 43 to 2 ppb in organic and conventional olive farm soil extracted by QuEChERS and analyzed by GCMSMSTQD.

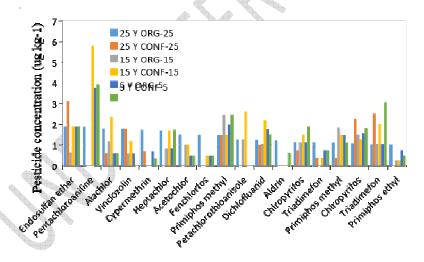



Fig. (3) Pesticide Residues levels ( $\mu g \ kg^{-1}$ ) ranged from 2 to 1 ppb in organic and conventional olive farm soil extracted by QuEChERS and analyzed by GCMSMSTQD.

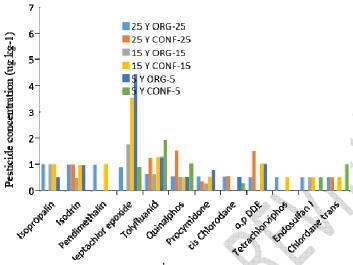



Fig. (4) Pesticide Residues levels ( $\mu g \ kg^{-1}$ ) ranged from 0.5 to 1 ppb in organic and conventional olive farm soil extracted by QuEChERS and analyzed by GCMSMSTQD.

#### **Conclusions**

The QuEChERS method is becoming increasingly more popular as a new and robust procedure. QuEChERS-GC/MS/MS multi-residue method described here is a simple, rapid and accurate approach suitable for the monitoring of 74 pesticide residues in old, medial and new olive farms which is 25, 15 and 5 years olive farm soil samples. The proposed methods have been validated lowing a reliable determination of the selected compounds with high recoveries. The limit of detection (LOD) and limit of quantification (LOQ) for the analyzed pesticides were in the range of 1.01-13.91 μg kg<sup>-1</sup> and 3.02 - 29.15 μg kg<sup>-1</sup>, respectively. Pesticide recoveries form soil samples spiked with pesticides ranged from 65.504 to 111.73 %. The proposed method featured good sensitivity, pesticide quantification limits were low enough, and the precision, expressed as relative standard deviation, ranged from 0.29 to 13.32%. Pesticide residues was detected by applying the modified QuEChERS and GCMSMSTQD method levels was ranged from 43.00 to 2.00 μg kg<sup>-1</sup> for 18 different pesticides, 1.99 to 1.00 μg kg<sup>-1</sup> for 16 different pesticides, 0.99 to 0.50 μg kg<sup>-1</sup> for 12 different pesticides and lower than 0.50 μg

kg<sup>-1</sup> for 28 different pesticide residues. QuEChERS provides high quality results with a high sample throughput. Additionally, there is low solvent and glassware consumption, with low work and cost of analysis per sample.

249

248

250 References

- AOAC Method. Official Methods of Analysis 2007.01, Pesticide Residues in Foods by
  Acetonitrile Extraction and Partitioning with Magnesium Sulfate. 2007, 18th: Available
  from: <a href="http://www.weber.hu/PDFs/QuEChERS/">http://www.weber.hu/PDFs/QuEChERS/</a> AOAC\_2007\_01.pdf, accessed December
  2012.
- Caldas S.S., Bolzan C.M., Cerqueira M.B., Tomasini D., Furlong E.B., Fagundes C., and Primel
   E.G., Evaluation of a Modified QuEChERS Extraction of Multiple Classes of Pesticides
   from a Rice Paddy Soil by LC-APCI-MS/MS. J. Agric. Food Chem., 2011, 59, 11918 11926.
- El-Saeid, Mohamed H., Mohamed T. Selim, Sherif B. Abdel Ghani. (2015) Monitoring of pesticide residues in organic and conventional farmland soils using GC-MS. *Wulfenia J*, *Vol* 22, *No.* 2; *Feb* 2015, 271-283.
- 262 Khan, S. U. 1982. Studies on bound <sup>14</sup>C-prometryn residues in soil and plants. Chemosphere, 11(8):771-795.
- Khan, S. U. 1995. Bound pesticides residues in food products. AgriScience. December 1994/.January 1995.
- Maestroni, B. 2002. Preparation of Samples and Estimation of Uncertainty of Sample
  Processing. In Lectures/Uncertainty of sample processing. Training Workshop on
  Introduction to QC/QA measures in Pesticide Analytical Laboratories, Training and
  Reference Center for Food and Pesticide Control, Seibersdorf, Vienna, Austria, June 17 July 26.
- Maestroni, B., A. Ghods, M. El-Bidaoui, N. Rathor, O. P. Jarju, T. Ton and A. Ambrus. 2000.
  Testing the efficiencyand uncertainty of sample processing using <sup>14</sup>C-labelled Chlorpyrifos, Part I. In:Fajgelj A, Ambrus A (eds) Principles of method validation. Royal Society of Chemistry, Cambridge, p 49-58.
- Pinto C.G., Laespada M.E.F., Martín S.H., Ferreira A.M.C., Pavón J.L.P., and Cordero B.M.,
   Simplified QuEChERS approach for the extraction of chlorinated compounds from soil
   samples. Talanta, 2010, 81, 385-391.
- Pinto C.G., Martín S.H., Pavón J.L.P., and Cordero B.M., A simplified Quick, Easy, Cheap, Effective, Rugged and Safe approach for the determination of trihalomethanes and

Powley, C. R. 2004. Extraction efficiency considerations for present and future agrochemical 282 residue methods. 5<sup>th</sup> European Pesticide Residues Workshop (EPRW), Pesticides in Food 283 and Drink. Book of Abstracts: 43. June 13-16 2004; Stockholm, Sweden. 284 Pszczolińska, K, and Michel, Monika (2016). The QuEChERS Approach for the Determination 285 286 of Pesticide Residues in Soil Samples: An Overview. Journal of AOAC International, 99, (6), 1403-1414(12). DOI: https://doi.org/10.5740/jaoacint.16-0274 287 Rashid A., Nawaz S., Barker H., Ahmad I., and Ashraf M., Development of a simple extraction 288 289 and clean-up procedure for determination of organochlorine pesticides in soil using gas chromatography-tandem mass spectrometry. J. Chromatogr. A, 2010, 1217, 2933-2939. 290 Wang Y.H., Du L.W., Zhou X.M., Tan H.H., Bai L.Y., Zeng D.Q., and Tian H., QuEChERS 291 extraction for high performance liquid chromatographic determination of pyrazosulfuron-292 ethyl in soils. J. Chem. Soc. Pak., 2012, 34, 28-32. 293 Brondi S.H.G., de Macedo A.N., Vicente G.H.L., and Nogueira A.R.A., Evaluation of the 294 QuEChERS method and gas chromatography-mass spectrometry for the analysis pesticide 295 296 residues in water and sediment. Bull. Environ. Contam. Toxicol., 2011, 86, 18-22.

Fernandes V.C., Domingues V.F., Mateus N., and Delerue-Matos C., Multiresidue pesticides

dispersive solid-phase extraction. J. Sep. Sci., 2013, 36, 376-382.

analysis in soils using modified QuEChERS with disposable pipette extraction and

with mass spectrometry detection. Anal. Chim. Acta, 2011, 689,129-136.

280

281

297

298

299

benzene, toluene, ethylbenzene and xylenes in soil matrices by fast gas chromatography