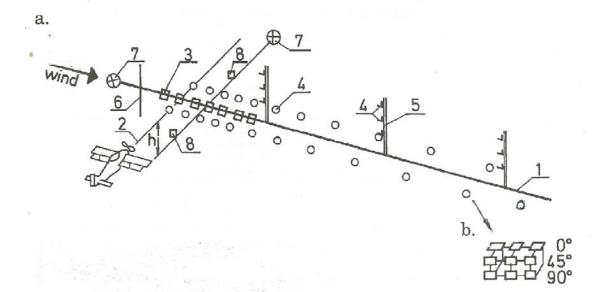
1		" <mark>Experymenta</mark>	ll Investigations Problems of Drift in Aerial Spraying"
2			
3			
4 5			
6			
7			Abstract
8			forestry requirements for agricultural aviation related to spread of
9			ion and protection against pests in forestry are presented. Some
10 11			cribing aerial spraying and the distribution of liquid droplets on a target nain problems presented on this paper are results of experimental
11		· · ·	<i>"the drift in aerial spraying"</i>
13	111 (05)		
14	Key w	ords: agricultural	aviation, aerial spraying, drift
15			
16			
17	<mark>1.</mark>	List of major syn	nbols:
18		2	
19	a	2 [ha/m ²]	- coefficient
20	d	[µm]	- droplet diameter (average, $d_{V,} d_{MV}$)
21	d _s		- trace droplet diameter
22	d v	/M [µm]	- volume meridian diameter
23	h	[m]	- aircraft altitude
24	g	[number/cm ²]	- spray density
25	1	[m]	- wingspan
26	n		- mass
27	m	$_{\rm s}$ [dcm ³ /s]	- sedimentation flow rate
28	p	[N/m ²]	- wing loading
29	A	[m ²]	- area
30	B	[m]	- working swath
31	D	p [dcm ³ /ha]	- field dose
32	D'	T [dcm ³ /ha]	- technical dose
33	F		- agent
34	I	2	- turbulence intensity
35	W	[dcm ³ /s]	- flow rate
36		[m/s]	- operating speed
37	V.	_s [m/s]	- sedimentation velocity
38	V,	w [m/s]	- average wind velocity
39	T	[K]	- temperature

40	- constructional design	
41	Z - drift	
42	α, β, φ - inclination, rolling, yawing	
43	ψ - relative humidity	
44	λ - aspect ratio	
45		
46		
47		
48	1.The Bio-aeronautics	
49 50	The name was given by Southwell (1975), and the definition is <i>"application of different type</i>	es of
51	aviation to the development of useful living organisms on the Earth". As the origin of this field	
52	aviation is considered a patent received by Alfred Zimmermann, a forester from Detershagen (D) on 2	
53	of March 1911. The patent belongs to the problem of Lymantria Monacha L control in Germany forest	
54		
55	1.1. The possibilities of the Bio-aeronautics.	
56	In spite of its small actual operating range on the World scale, the bio-aeronautics	can
57	play very important role to the improvement of the nutritional World situation especially	
58	countries of Asia, Africa, South and Central America.[3]. In those regions a feeble infrastruct	
59	a very poor agricultural mechanization and a shortage of specialists cause that in some fields	-
60	activities the only practical alternative is the bio-aeronautics.	
61		
62	1.2. The main fields of activity of bio-aeronautics are:	
63	• control of human and animal disease vectors (tsetse fly, onchocerciasis	
64	• control of mass infestations (Locust, Quelea)	
65	 plan protection treatment (cereals, cotton, rice, maize, root crops and others) 	
66	• application of fertilizers	
67	 reclaiming, erosion control, ground stabilisation 	
68	delivery of agricultural and others products	
69	health control	
70	Parallel with test of new apparatus, new aircrafts for use in agriculture and forestry, took p	lace
71	the analyse some most important problems of aerial treatment concern:	
72 73	1.3.Treatments.	
73 74	 The main problems of aerial treatment and wises by agricultural and forestry specialist are: 	
75	Treatments must do in time (agricultural time)	
76	 Minimalizing the risk of environmental pollution, problem of drift 	
77	The distribution quality of the sprayed /spread products	
78	• Effect of economy. (B – max for data CV)	
79		
80	1.4.The agricultural times.	
81	Jest to przedział czasowy, w którym powinien być wykonany zabieg ochrony, nawożenia, i	my,
82	zapewniający najwyższą skuteczność stosowanego środka. Dla ochrony, będzie to skuteczr	lość
83	biologiczna.	
84		
85	1.5.Quality of distribution.	

86	Rozumie się przez to wykonanie zabiegu w terminie agrotechnicznym, przy określonych
87	warunkach meteorologicznych, przyjętą dawką i formulacją środka. Stosowana dawka winna być
88	rozłożona na uprawie (glebie) z określoną równomiernością - ustalonym współczynnikiem zmienności,
89	The quality of distribution, as well as the elements induced drift are connected with: disturbances of the
90	flow field around the flying aircraft, especially the vortex sheets travelling from the wings and the
91	disturbances given by the propeller. This effects is mainly join with the construction design of airplanes.
92	Uwzględnia się również wpływ bliskości ziemi i charakter pokrycia.
93	
94	
95	1.6. Working width (B)
96	Przyjęta w zabiegu szerokość robocza zależna od constructional design of the agricultural
97	aviation, typu aparatury, rozprzestrzenianego środka. Przyjmuje się jej wartość w zabiegach
98	opryskiwania: atomizers 35 m - 40 m, jet nozzles 20 m - 30 m. For spreading: 20 m - 30 m. depends of
99	materials. Make an assumption for the coefficient of variation of the order 20%, for receive
100	magnification of (B), were experimental investigations, wing tips. [11], [17]
101	
102	1.6.Problem od drift.
103	It is "unintentional effect of treatment cause movement of chemicals outside of the targed. For
104	liquids the movement has direct and indirect form. Direct one belongs to drift of spray in all form of state
105	(particles as a result of evaporation of droplets, liquids, and vapour), Indirect – movement with wind
106	vapour of settled droplets and particles after evaporation of liquids".[2],[16],[20],[25],[26],[27],[29]
107	
108	Induced drift:
109	Meteorological conditions in terrain of treatment
110	Disturbances of velocity field caused by flaying aircraft
111	Physical characteristics of dispersed agent. Liquid: droplets size and formulation.
112	Solids: granulation, dusty agents, crystalline agents, taking their humidity into account Terrain of treatment
113	
114 115	Flight parameters and quality of a pilot. Negative effects of spray drift:
115	• The loss of chemicals
117	 The decrease of efficiency of pesticides on the target area
118	Other losses related to the damage or pollution of adjacent crops, water, urban area, gardens
119	 Contamination of environment with a possibility of unpredictable secondary effects
120	(residues, interaction, etc.)
121	• Sociological factor, understood as non-scientific media trend of criticizing chemical plant
122	protection treatments leading to baseless social dislike for those, mainly for aerial spray treatments.
123	The above-mentioned have resulted in the European Union issuing a peculiar document called
124	Directive 2009/128/WE of the European Parliament and of the Council of 21 October 2009. Official
125	Journal of the European Union L 309 of 24 November 2009. In the document in Chapter IV, Article 9,
126	Paragraph 1 reads:
127	1.Member States shall ensure that aerial spraying is prohibited.
128	2.By way of derogation from paragraph 1 aerial spraying may only by allowed in special cases provided
129	the following conditions are met (points a through f of the aforementioned document).
130	
131	2.Theoretical analyses
132	


133Generally, from mathematical point of vie, the four factors have been researched for over134years both theoretically and experimentally. The subject bibliography is over 500 titles long, althoug135is often contributory literature [6]. To recapitulate, the above factors can be presented as four funct136that mutually influence each other. They are bound as follows:137(1)138K = fl (Uk, λ , p, l)139L = f2 (Vr, h, α , β , ϕ)140M = f3 (Vw. T, Tr, ψ)141C = f4 (m, d, F, A)142where:143K -construction design144L - flight parameters145M -meteorological conditions146C - propagation of agents147148There are two types of methods that illustrate the motion and distribution of droplets. Meth149that do not account for the influence of disturbances in the velocity field behind the aircraft on dro150motion and distribution. Referred "free models". Presented by: [1],[4],[7],[8],[13],[16],[18],[21],[23],	60
135is often contributory literature [6]. To recapitulate, the above factors can be presented as four funct136that mutually influence each other. They are bound as follows:137138 $K = f1 (Uk, \lambda, p, l)$ 139 $L = f2 (Vr, h, \alpha, \beta, \phi)$ 140 $M = f3 (Vw. T, Tr, \psi)$ 141 $C = f4 (m, d, F, A)$ 142where:143 K -construction design144 $L - flight parameters$ 145 M -meteorological conditions146 $C - propagation of agents$ 147148There are two types of methods that illustrate the motion and distribution of droplets. Meth149that do not account for the influence of disturbances in the velocity field behind the aircraft on dro150motion and distribution. Referred "free models". Presented by: [1],[4],[7],[8],[13],[16],[18],[21],[23].	
136that mutually influence each other. They are bound as follows:137138 $K = f1 (Uk, \lambda, p, l)$ (1)139 $L = f2 (Vr, , h, \alpha, \beta, \phi)$ (2)140 $M = f3 (Vw. T, Tr, \psi)$ (3)141 $C = f4 (m, d, F, A)$ (4)142where:(4)143 K -construction design144 $L -$ flight parameters145 M -meteorological conditions146 $C -$ propagation of agents147148There are two types of methods that illustrate the motion and distribution of droplets. Meth149that do not account for the influence of disturbances in the velocity field behind the aircraft on dro150motion and distribution. Referred "free models". Presented by: [1],[4],[7],[8],[13],[16],[18],[21],[23].	· ·
137K = fl (Uk, λ , p, l)(1)138K = f2 (Vr, , h, α , β , ϕ)(2)140L = f2 (Vr, , h, α , β , ϕ)(2)140M = f3 (Vw. T, Tr, ψ)(3)141C = f4 (m, d, F, A)(4)142where:(4)143K -construction design144L - flight parameters145M -meteorological conditions146C - propagation of agents147There are two types of methods that illustrate the motion and distribution of droplets. Method149that do not account for the influence of disturbances in the velocity field behind the aircraft on dro150motion and distribution. Referred "free models". Presented by: [1],[4],[7],[8],[13],[16],[18],[21],[23].	
138 $K = fl (Uk, \lambda, p, l)$ (1)139 $L = f2 (Vr, h, \alpha, \beta, \phi)$ (2)140 $M = f3 (Vw. T, Tr, \psi)$ (3)141 $C = f4 (m, d, F, A)$ (4)142where:(4)143 K -construction design144 $L -$ flight parameters145 M -meteorological conditions146 $C -$ propagation of agents147148There are two types of methods that illustrate the motion and distribution of droplets. Methods149that do not account for the influence of disturbances in the velocity field behind the aircraft on dro150motion and distribution. Referred "free models". Presented by: [1],[4],[7],[8],[13],[16],[18],[21],[23].	
139 $L = f2 (Vr, h, a, \beta, \phi)$ (2)140 $M = f3 (Vw. T, Tr, \psi)$ (3)141 $C = f4 (m, d, F, A)$ (4)142where:(4)143 K -construction design144 $L -$ flight parameters145 M -meteorological conditions146 $C -$ propagation of agents147148There are two types of methods that illustrate the motion and distribution of droplets. Methods149that do not account for the influence of disturbances in the velocity field behind the aircraft on droplets.150motion and distribution. Referred "free models". Presented by: [1], [4], [7], [8], [13], [16], [18], [21], [23].	
140 $M = f3$ (Vw. T, Tr, ψ)(3)141 $C = f4$ (m, d, F, A)(4)142where:143 K -construction design144 $L -$ flight parameters145 M -meteorological conditions146 $C -$ propagation of agents147148There are two types of methods that illustrate the motion and distribution of droplets. Method149that do not account for the influence of disturbances in the velocity field behind the aircraft on droplets150motion and distribution. Referred "free models". Presented by: [1],[4],[7],[8],[13],[16],[18],[21],[23].	
141 C = f4 (m, d, F, A) (4) 142 where: (4) 143 K -construction design (4) 144 L - flight parameters (4) 145 M -meteorological conditions (4) 146 C - propagation of agents (4) 147 148 There are two types of methods that illustrate the motion and distribution of droplets. Methods 149 that do not account for the influence of disturbances in the velocity field behind the aircraft on droplets. 150 motion and distribution. Referred "free models". Presented by: [1],[4],[7],[8],[13],[16],[18],[21],[23].	
 142 where: 143 K -construction design 144 L - flight parameters 145 M -meteorological conditions 146 C - propagation of agents 147 148 There are two types of methods that illustrate the motion and distribution of droplets. Methods 149 that do not account for the influence of disturbances in the velocity field behind the aircraft on droplets 150 motion and distribution. Referred "free models". Presented by: [1],[4],[7],[8],[13],[16],[18],[21],[23]. 	
 143 K -construction design 144 L - flight parameters 145 M -meteorological conditions 146 C - propagation of agents 147 148 There are two types of methods that illustrate the motion and distribution of droplets. Meth 149 that do not account for the influence of disturbances in the velocity field behind the aircraft on dro 150 motion and distribution. Referred "free models". Presented by: [1],[4],[7],[8],[13],[16],[18],[21],[23]. 	
 144 L – flight parameters 145 M –meteorological conditions 146 C – propagation of agents 147 148 There are two types of methods that illustrate the motion and distribution of droplets. Meth 149 that do not account for the influence of disturbances in the velocity field behind the aircraft on droplets 150 motion and distribution. Referred "free models". Presented by: [1],[4],[7],[8],[13],[16],[18],[21],[23]. 	
 M -meteorological conditions C - propagation of agents There are two types of methods that illustrate the motion and distribution of droplets. Meth that do not account for the influence of disturbances in the velocity field behind the aircraft on dro motion and distribution. Referred "free models". Presented by: [1],[4],[7],[8],[13],[16],[18],[21],[23]. 	
 146 C – propagation of agents 147 148 There are two types of methods that illustrate the motion and distribution of droplets. Meth 149 that do not account for the influence of disturbances in the velocity field behind the aircraft on dro 150 motion and distribution. Referred "free models". Presented by: [1],[4],[7],[8],[13],[16],[18],[21],[23]. 	
 There are two types of methods that illustrate the motion and distribution of droplets. Meth that do not account for the influence of disturbances in the velocity field behind the aircraft on dro motion and distribution. Referred "free models". Presented by: [1],[4],[7],[8],[13],[16],[18],[21],[23]. 	
148There are two types of methods that illustrate the motion and distribution of droplets. Meth149that do not account for the influence of disturbances in the velocity field behind the aircraft on dro150motion and distribution. Referred "free models". Presented by: [1],[4],[7],[8],[13],[16],[18],[21],[23].	
 that do not account for the influence of disturbances in the velocity field behind the aircraft on dro motion and distribution. Referred "free models". Presented by: [1],[4],[7],[8],[13],[16],[18],[21],[23]. 	ods
150 motion and distribution. Referred "free models". Presented by: [1],[4],[7],[8],[13],[16],[18],[21],[23].	
1.71	
152 2.1.Free models.	
153 1.In a spray cloud, droplets concentration have Gaussian distribution with standard deviation $\sigma_{\rm y}$ along	the
154 y-axis in the direction of the wind and σ_z – relative to the vertical z – axis	
155 2.The cloud becomes dispersed due to sedimentation, turbulence and wind motion.	
156 3.Droplets are small, implying that sedimentation velocity is low	
157 4. Droplets evaporation rates have been taken into account	
158 5. Average wind speed and coefficient of turbulent diffusion remain constants with change in height.	
159 6.All droplets leave the cloud when it reaches the top of the crop and penetrates it.	
160 Use the CSANADY^S [5] concentration function, is possible to receive the dose distribution in (<mark>y,z)</mark>
161 direction.	
162	
163 2.2.Bound models.	
164 Methods that do account for above factor as well as other parameters. Referred "bound mode	<mark>ls".</mark>
165 Presented by the first Reed W.H. in NACA Report 1954 [14] and [9],[10], [12],[13],[21],[22],[26],[27]	
166 Were also many papers presented this model, but Pietruszka [12] and AGDISP models[2],[<mark>[9],</mark>
167 [24],[25] look the most interesting.	
168 The model propose by Pietruszka [12] take in to account;	
169 1.The wing wake is modelled by inviscid and incompressible flow of 22 vortex line	
170 2. Vortex displacement from propeller axis and deformation of the propeller wake due to v	ing
171 interference were taken into account	
172 3.additionaly the velocity field is modified by the influence of ground proximity	
173 4.droplets evaporation have been taken in analyse	
174 5.the logarithmic wind velocity profile near the ground is determined by the height of crop plans.	
175 The Agriculture Dispersal (AGDISP). [2],[19],[24],[25], is popular and is the currently N	ord
176 American Standard. But in this model are some simplifications:	
177 1.the wing wake is modelled by only one vortex line	
178 2.the propeller wake has too big simplification	
179 3. is the same problem with equations of circulation especially for helicopters	
180 Interesting is also last Seredyn [21] analysis.	

181 182 183 184 185 186 187 188 189 190 191 192 193	 3.1.The method is in "<i>The Methods of the Test Agricultural Aircrafts and they Apparatus</i>" [14], presented in Russian language. Methods are for certification of Agricultural Aircrafts for treatments in agriculture, forestry and other branches of national economy. This methods was "<i>Acceptance_for use</i>" by: , Bulgaria, Cech-Slovakia, DDR, Hungarian, Poland, USSR. 3.2. The trials were made agree with [15]: on a former airfield in Gryźliny near Olsztyn, and in lover experimental range in Mielec. In Gryźliny. Its surface is about 150 hectares and covered with 0.1+0.15m tall grass. 3.3. Objects: The airplane An -2R, produced in Polish Aviation Factory - Mielec. The helicopter Mi -2R, produced in Polish Aviation Factory - Świdnik. 								tments
194 195	Table. 1.		Apparatu	s and 1	technical paran	neters of t	ests		
196	<u> </u>		NT 1	Ът					
	Airplanes	Apparatus	Nozzles	<mark>Nr.</mark>	Dose [l/ha]	dVM	V _r [m/s]	<mark>h [m]</mark>	
						[µm]			
	An – 2R	atomisers	<mark>Au-3000</mark>	<mark>6</mark>	<mark>9.65</mark>	109.9	<mark>44.4</mark>	<mark>4.5</mark>	
	An - 2R	jet-nozzles	<mark>W 7-2</mark>	<mark>56</mark>	48.35	<mark>186.1</mark>	44.4	<mark>4.5</mark>	
	An - R2	Jet-nozzles	<mark>W 17-4</mark>	<mark>52</mark>	106.16	223.2	<u> </u>	<mark>4.5</mark>	
	Helicopter	atomiser	electrical	1	<mark>8.08</mark>	<mark>93.6</mark>	22.2	<mark>4.5</mark>	
197	Helicopter	atomiser	electrical	l 1	20.50	125.6	22.2 4	<mark>.5</mark>	
198	<u> </u>	•							
199 200	3.4.Model lic		and the anxis		nt, the following	modallin	uida wara waad		
200		r solution of ni			n, me foffowing	, moder nq	ulus wele used	•	
201					n of 2% nigrosin	ne — M.			
203		parameter of li							
204									
205	Table.2.]	Physical prop	perties	of model liquid	<mark>s</mark>			
206									_
	Solution	Density [kg/	-	Surfa	ace tension [N/	m]*10 ³	Viscosity		
	N N	<u>1.00</u>	<mark>)1</mark>		<mark>64.14</mark>		1.1	<mark>00</mark>	
	M N	1.07	7 <mark>3</mark>		63.80		1	<mark>.292</mark>	
207									
208	_		to 5 repetiti						
209			k place betw	veen 5	to 8 am. and from	m 5 to 8 p	m., for the bett	ter meteorol	ogical
210		condition							
211									
212		line and samp		• ,	· /1 1·	1.		1. 1.	•,
213					the measure lin				
214					This was mark				
215 216					distance was ed line. Each flig				
210					tilinear without				
217					e pilot. Moreov				
218					the measure lir				ouprou
220	cumerus, per			21050 U	, the measure m	10, ut u 1101	She of two filet		

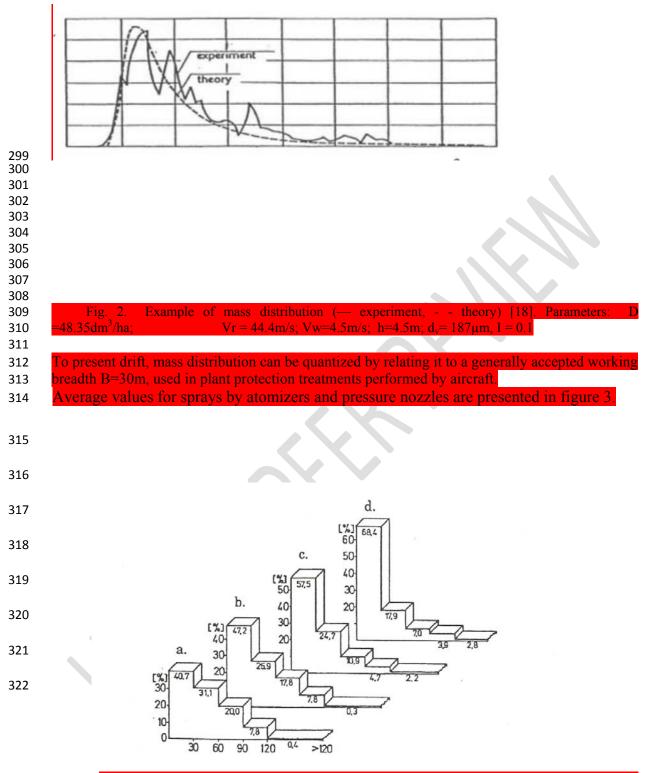
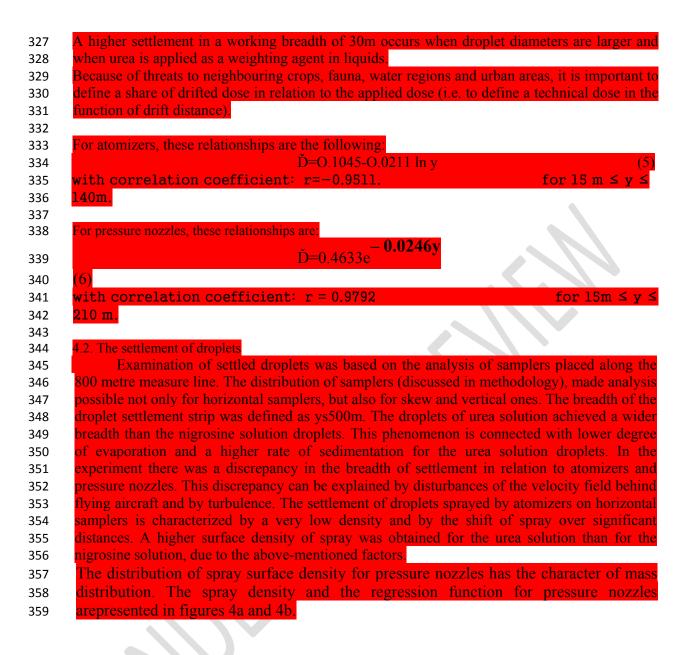
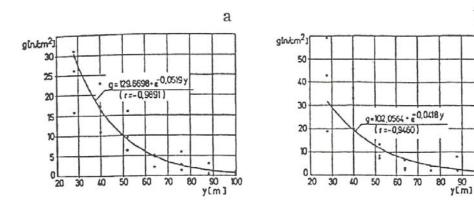
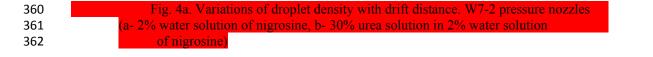
222 meteorological conditions during the test were registered. The following data were measured and

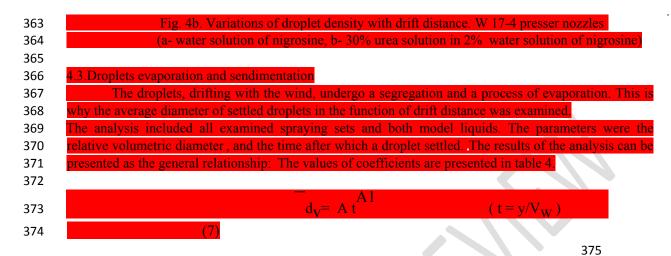
registered: temperature, ΔT - the difference of temperatures on dry-bulb and wet-bulb thermometers

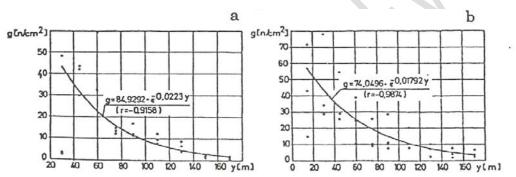
(Assmann's method), wind velocity (gust velocity included) and direction of the wind. Figure 1 shows the
 scheme of the measure line.

226	Fig. 1. Scheme of measure line (1-measure line, 2- flight path, 3- mass samplers, 4- droplet						
227	amplers,						
228	5- masts, 6- measurements of meteorological parameters, 7- camera, 8- markers).						
229							
230							
231	After the flight and subsidence of the spray cloud (after 8+10 minutes), the samples were						
232	collected and replaced by new ones. Following the direction of the wind, an 800 metre measure line was						
233	established.						
234							
235	The line was composed form the following samplers:						
236	1. to measure mass distribution:						
237	cellophane samplers (0.01m ² each) were distributed horizontally at grass level (0.20m), every two						
238	metres over a distance of 200 metres for the plane and 140 metres for the helicopter;						
239	2. to measure liquid dispersion:						
240	dispersion in this case is understood as the number of droplets and the structure of their spectrum						
241	obtained from the surface of samplers. Samplers were microfilm negative tapes marked and						
242	plasticized with 6µm of thick mineral oil. This tape was then cut and framed for slides. The						
243	surface of the samplers at $4.05 \cdot 10^{-4} \text{m}^2$ (4.05cm^2) and $7.03 \cdot 10^{-4} \text{m}^2$ (7.03cm^2). This method was						
244	patent.						
245	The above-mentioned samplers were placed: on stands (0.20m tall) and distributed horizontally, at an						
246	angle of 45 ⁰ and vertically.						
247							
248	The stands were distributed:						
249	every 5m from 0+100m,						
250	every 10m from 100+200m,						
251	every 20m from 200+300m						
252	every 50m from 300+500m,						
253	every 100m from 500+ 800m.						

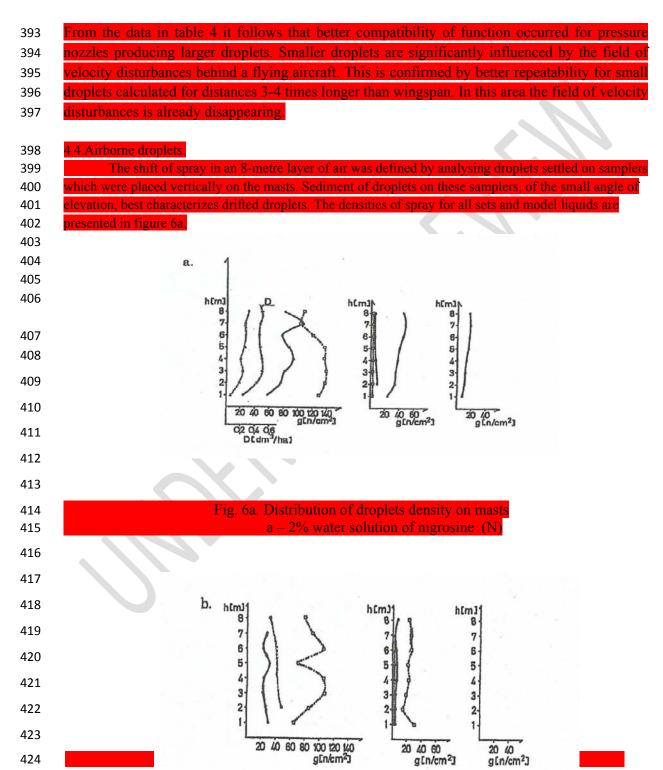
254 255 256 257 258 259 260 261 262	 The stands with samplers were placed in two rows. One row had 9 samplers (three in each exposure) which were replaced after every test flight. The other row had 3 samplers (one in each exposure) which were replaced after each series of three or five test flights agricultural aircraft. 8 metre-tall masts, distributed 100m, 300m and 500m from the beginning of the measure line. The samplers on the masts were distributed every one metre, one vertically and one horizontally along the whole mast length. In opinion of specialists mast's tall have to be at list 11 m- 13 m., but was too difficult to did it. 4.Analysis of results
263 264 265 266 267 268 269 270 271 272 273 274 275	In this paper are presented results of experimental investigation only of An-2R. Results of the test of Mi-2R are in [20]. Mass distribution was analysed using the colorimetric method on a spectral colorimeter with a length range of 1 =580nm. After recalculations, the distribution was presented in the form of dose distribution in a distance function, Dp=f(y), for each performed flight, mean value and distribution uniformity analysis. The tests of droplets were conducted using indirect methods, by measuring fixed, coloured traces. The size, surface density (i.e. spray density) and the structure of the droplet spectrum were determined on a computer image analyser, based on fixed coloured droplet traces. The traces were grouped into ranges, according to trace sizes. The collection of droplet traces, arranged according to droplet diameters, was converted into a collection of droplets based on equations presented in Table 3.
275	
	No. Solution Functional relations $d = f(ds)$ Diameter
	$I \qquad d=-0.0087+0.54155 ds - 0.13643 ds^2+0.01459 ds^3 > 0-1.7 mm$
	2 M d=100.707+0.56334ds > 0-600mm
277	
278	The results are recorded in the form of a distributive ordered series from each measuring point,
279	and sum of the number of droplets in classes from the measure line or a pan of it, e.g. the masts. These
280	results are presented as size, surface density (i.e. spray density), average diameters (arithmetic and
281	volumetric), and medians (quantitative and volumetric). Cumulative quantitative and volumetric
282	distributions of liquids, which is the basic information about the spectrum structure, are presented
283	graphically.
284	Analysis determined:
285	1. the change of dose in relation to drift distance $-y$ direction, and average doses for airborne crop
286 287	 protection treatment working breadth (B=30m), the distribution of surface spray density along an 800m strip,
288	3. the structure of the droplet spectrum along the 800m strip, (i.e. the change of average droplet
289	diameter in relation to drift distance),
290	4. droplets evaporation and sendimentation in drift distance
291	5. airborne movements of droplets clout received on masts
292	
293	4.1. The distribution of mas
294	The mass distribution of a spray in the case of a cross-wind is characterized by asymmetry, the shift
295	of the centre of mass with the wind in relation to an aircraft flight direction, and a large spray area with a
296	low dose. The average mass distribution from three flights for the technical dose of Dr=48.35dm ³ /ha is
297	presented in figure 2.
298	

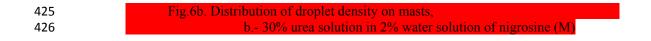






Fig.3.Percentage mass distribution at 30m intervals (a - atomizers, 2% water solution of nigrosine, b-atomizers, 30% urea solution in 2% water solution of nigrosine, c- pressure nozzles, 2% water solution of nigrosine, d- pressure nozzles, 30% urea solution in 2% water solution of nigrosine)



b

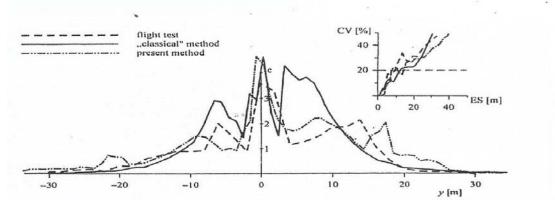




383 Fig. 5. Average diameter of settled droplets in the function of drift distance

Table 4

300	1 abic. +		Counter			
	Apparatus	Liquids	Coefficient equation 3(A)	Coefficient equation3(A1)	Correlation coefficient	Diameter range [µm]
	Atomizers	N	1.3555	<mark>- 0.2126</mark>	- 0.9330	<mark>90 - 150</mark>
		M	1.4227	- 0.2050	- 0.8358	150 - 300
	Press. nozz.	N	1.8101	- 0.3365	- 0.9550	170 - 300
		M	1.8608	- 0.2897	-0.9897	<mark>250- 400</mark>
387						
388						


427

- 428
- 429
- 430
- 431

432 In Mielec

433

The second experiment took place in Polish Aircraft Plant (PZL) in Mielec. They carried out a 434 crop dusting experiment with the involvement of the M18 "Dromader" airplane equipped with jet type nozzles. Flying height was 4 m and flight speed was 46.4 m s⁻¹ along the wind axis and against the wind. 435 Liquid flow rate was 7.1 dm³·s⁻¹ and the volume-median droplet diameter was $d_{MV} = 215 \ \mu m$. The 436 437 modeled liquid was 1% aqueous solution of nigrosine. Every test was performed in 3 replications. Droplet 438 evaporation rates were very low due to high relative humidity of 98%. Crosswind speed was 0.2 m·s

439 esults are in Fig.7 440 441

ig.7. Lateral distribution of 1% nigrosine aqueous solution determined theoretically experimentally [12], compare with proposed by [26].

442 443

444

5. Estimation of measuring error

445 Here is a short analyse od errors. In the above-mentioned experiments treble averaging of 446 samples was applied. To define if this multiplication factor is enough, it was assumed that the averages 447 from 3 groups of measurements and variations of these groups are equal to each other. The alternative 448 hypothesis, that not all of them are equal to each other, was also assumed. To verify these two hypotheses. est F (Snedecor and Bartlett's (f)) was applied, with critical value on significance level a=0.01. The 449 450

430	values of test statistics were defined. The equality of group variations was also tested.
451	For tests performed with W 17-4 and W7-2 sprayers for both model liquids, there is no basis to
452	reject the hypothesis of average equalities and group variations.
453	For atomizers, the testing showed that the averages vary significantly, relative values do not
454	differ significantly and they were used in this form for further analyses. Errors of other measurements
455	were also estimated (dosage, rate-of-flow and droplet size included).
456	
457	6.Drift

The amount of drifted liquid is the difference between a technical dose and the field dose¹. This 458 459 ifference can be presented as the following relative relationship:

	$z_{-}D_{T}-D_{T}$	$P_{-1} D_{p}$				
460	Z^{-} D_T	$\overline{D_T}$			(8)
461 when	ere: $D_T = a W/B V_r a - coefficient 10^4$	[ha/m ²]				<mark>(9)</mark>
464 esse	After the analysis of many parameter plets included), a relative amount of drift we ential measure of spray structure. On the bas rosine and 30% urea solution in 2% water so	vas related to a v sic of research the plution of nigrosi	volume diame ese relationsh	eter d _{VM} m ips (for 2%	edian whicl	h is an
467	Z = 134.937			00 < 1	× * * * * * * * * * * * * * * * * * * *	10)
468 <mark>with</mark> 469	a correlation coefficient: $r = 0.8690$	Ior dia:	meter range 1	$00 \ \mu m \le d$	$_{\rm VM} \geq 250$	рш
470 471 With 472	h correlation coefficient: $r = -0.8470$	e ^{- 0.0047 dvm} for diameter ra		$\leq d_{VM} \leq 4$.00 µm	
	he case of a global analysis of air drift, the f	ollowing equation	n can be use :			
474 475	Z = 13 53	24 d _{VM} - 0.5955				(11)
			meter range 1	$00 \ \mu m \leq d$		
477						
	ossible to compare this results with Zemp [2	29] equations :				
479		- 0.01 due				
	1 5 0	8 - 0.01 dvm				(12)
	sprays with ground equipment $Z = 1.8$	36 - 0.01 01				(13)
482 483 The	results of analyses are presented in fig.8.					
483 1116	results of analyses are presented in fig.8.					
485		Z[%]		1 1		
	results of analyses are presented in figure 8	0.8		- 1. Rowins	iki - aerial app	
	m tests carried out here it follows that smalle			2. Zemp 3. Zemp	- aerial app - ground sp	
	blets drift more than Zemp's equations state.					
	ironmental protection, it essential to define					
	ral distribution of drifted liquid. The drift m					
	livided into two processes:	0.3			- 2	
492 <u>1.in</u>	relation to the movement of droplets will	hich a2			3	
493 settle	e on crop within the tested area,	0,1				
494 and						
	relation to a spray cloud which moves with	<mark>i the</mark>	100	200	300 d _{VM} (.jum]
	d in the near-ground air layer (the spray cl			o		
	be measured by the structure of spray whic	ch settles on the r	nasts Fig.	8. Drift ana	lys1s	
498						
499	Id does in the many on amount of limit and	wich actilation as		ation to an	and and aires	i41-
	Id dose is the mass or amount of liquid when working breadth and with the assumption					s, with
501 mm	ie working oreauth and with the assumption	that a marker m	model inquid	ubes not e	vaporate.	
302			-			
503	<u>й р.</u>	otection Zones				
503 504	<mark>9. Pr</mark>	otection Zones				
503 504 505	9. Pr The results of the above experiments co			protection	zones for ei	rhorne

508 509 510 511	 the insulation zone (also called insulation strip), on the lee side of the treated area, where most of the droplets settle, and the buffer zone, which provides protection from the negative effects of shift and settlement of a spray cloud in the near-ground air layer.
512	The sum of these two zones constitutes the protection zone (see fig.9).
513 514 515 516	From the mass distribution analysis for both liquids applied it is possible to define the relative dose \check{D} (i.e. the ratio of field dose to technical dose). Unlike equations 7 and 8, a real treatment was considered, where distributions overlap with a shift equal to the applied working swath B=30m. The following results were obtained:
517	for atomizers:

	Ď=0.03032-0.0613 1ny	(r = - 0.9932)	(14)
for pressure nozzles:			
	$\check{D} = 0.9136 \text{ e}^{-0.0273 \text{ y}}$	(r = -0.9987)	(15)

518	Differentiating these equations, we obtain a measure of drop for a relative dose. These values are
519	the following:
520	
521	for atomisers:
522	$(d\check{D}/dy)_a = -0.0613 * 1ny$ (16)
523	
524	for pressure nozzles:
525	$(d\tilde{D}/dy)_p = -0.025 e^{-0.0273y}$ (17)
526	
527	This means that during airborne treatment, in which pyrethroids are sprayed with atomizers, with
528	an acceptable level of dosage on a field's periphery.
529	e.g. $D = 4\%$, the area of drift will be $y \le 73$ m, and wind direction
530	insulation zone 43m (with a working breadth of 30 protection zone -
531	metres). Analogically, when herbicides are used in
532	airborne treatments, with an allowed dose on the
533	periphery of e.g. $D=0.5\%$ the drift area is y ≤ 190 m.
534	and the insulation zone is 160m. These are also the
535	areas where droplets settle (see figures 6 and 7). The
536	area of a buffer zone can be estimated only on the
537	basis of dose which settles on vertical samplers on the
538	masts. This will depend on toxic and dynamic
539	properties of the applied pesticide, as well as on the \rightarrow $\not\sim$ working
540	threat it poses to neighbouring areas.
541	Fig.9. The Protection zone
542	
E 42	
543	As mentioned above, a spraying conducted with atomizers settles at a distance of 300m in a dose in
544	relation to a technical dose $D = 0.047$, and at a distance of 500m for dose $D = 0.015$. Assuming a linear
545	distribution of a dose between the masts with the above-mentioned assumption that an allowed dose of
546	pyrethroid $D = 0.04$, it is possible to evaluate a drift distance y=350m. For pressure nozzles and the above
547	assumption \check{D} =0.005, a drift distance is y \leq 360m. Buffer zones can be evaluated as 320m and 330m,

respectively, for working breadth B=30m. The above sizes of protection zones are extreme.

549 550 551 552 553 554 555 556	They were calculated for the application of herbicides and the threats related to them for the most sensitive cultivated crops (i.e. lettuce and cucumbers). In the case of these plants, a relative dose of 0.1 % to 0.5% can make it impossible for the crop to be sold [6]. Data on what doses responsible for crop losses are allowed or what pesticide residues are acceptable make it possible to calculate protection zones (based on equations presented in this paper). These zones will be much narrower for most insecticides and fungicides applied
557	10.Mass balance
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575	The process of drift is an element of a broader problem concerning the mass of an expanded factor. Like in Thermodynamics Sankey' figure for engines, the mass balance can be presented in figure 10. In this balance (although it does not have any direct influence on the mass), degradation of chemicals (due to solar radiation) was also marked (evaporation). So far, broader research of the whole process has not been available, and the- roses aviation practice has been basically restricted to biological effects. The balance presented here, although it is – fall off from a plant extremely difficult in experiments, will enable a complex analysis of plant protection treatment efficiency, as well as the negative effects of treatment on the environment. It is interesting from agriculture engineers to receive the total efficiency of our treatments. (DT/biological effect)
576	Fig.10.Mass balance
577	
578 579	11. Conclusions
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594	 The Document of EU from 2009 year, forbidden use of airplanes in crop protection treatments, and agreement is possible only in a particular situation. From that no reason to continue very labour consuming and expensive, experimental investigation, in this field of knowledge. But if will be continued should be based on a generally accepted, standard method which would make it possible to compare results. Still more attention should be payed to model research, mathematical model of drift included, to recognize the physics of occurring processes. So far there have been too many segment tests. Application of pesticides require establishing protection zones (insulation and buffer zones included) on the lee side. The breadth of these zones ranges from 50m to 60m up to 330 m, depending on threats certain pesticides imply and the type of equipment.
595 596	12.Inference

597		The method was acknowledge by Ministry of Agriculture and Rural Development, The
598		Institute of Environmental Protection, The Forest Research Institute, as a better than EU
599		Directive to use airplanes in crop protection treatment and formally agree after analyse
600		presented the method to use treatments "Mospilan 20 SP" in insecticide control in forest.
601		
602		
603		
604		
605		13.References
606		
	F1 1	DACHE D.H. SAVED W.I.D. 1075 Transmit of Assist Source A Madel of Assist Discoursion
	[1]	BACHE D.H., SAYER W.J.D., 1975. Transport of Aerial Spray. A Model of Aerial Dispersion.
608	[2] 1	Agricultural Meteorology V. (15): p. 257-271.
609	[2] I	BILIANIN A. J., TESKE M.E., BARRY J.W., EKBLAD R.B., 1989. The Aircraft Spray Dispersion
610		Model. Code Development and Experimental Validation. AGDISP. ASAE, V.32 (1): p.327-
611	[2]	334. DEVER F. M. 1991. C R. C. d. Cl. II
612	[3]	BEYER, E. M. 1991. Crop Protection-Meeting the Challenge. Proceeding Brighton Crop
613	E 4 3	Protection. Conference, Weeds 18—21 November, Brighton, 1991, 3-22.
614	[4]	BRAGG M.B., 1986. A Numerical Simulation of the Dispersal of Liquids from Aircraft.
615	5 6 3	Transaction of the ASAE, V.29:p.10-15.
616	[5]	CSANADY G. T. 1973 Turbulent Diffusion in the Environment. D. Reidel Publishing Company,
617	50	Dordrecht – Boston.
618	[6]	ELLITT J. G., WILSON B. J (Editors). 1983. The influence of Weather on the Efficiency and
	Safety	of Pesticide Application. Occasional Publication No 3. Report of Working Party of the BCPC.
620		Research and Development Committee.
621	[7]	KAUL P., MEYER E., GEBAUER S., 1995. <i>Direkte abtrift</i> von Pflanzenschutzdmitteln-
622	503	Flugzeug Nachrichtenbl. Deut. Pflanzenschutzd. 47(2): p. 36-44.
623	[8]	LEONARD A., 1980. Vortex Methods for Slow Simulation. Journal of Computational Physics.37:
624	507	p. 289-335.
625	[9]	MIRANDA L.R., ELLIOT R.D., BAKER W.M., 1977. A Generalized Vortex Lattice Method
626	54.07	for Subsonic and Supersonic Flow Applications. NASA CR 2865.
627	[10]	MOORE D.W., 1974. A Numerical Study of the Roll-up of a Finite Vortex Sheet. Journal of
628		Fluid Mechanics 63(2): p. 225-235.
629	[11]	PARKIN C. S., SPILLMAN I. C., 1980. The Use of Wing-Tip Sails on a Spraying Aircraft to
630		Reduce the Amount of Material Carried Off-Target by a Cross- Wind. Journal of Agricultural
631		Engineering Research, V.25. p.65-72.
632	[12]	PIETRUSZKA, J. ROWIŃSKI R.S. 2004 Computer Simulation of Aerial Spraying. Annual
633	[12]	Review of Agricultural Engineering V3(1).
634	[13]	RANZ W.E., MARSHALL W.R., 1952. Evaporation from Drops. Chemical Engineering
635	[13]	Progress. 48(3): 141-146, 48(4): p.173-180.
636	[14]	REED W. H. 1954 An Analytical Study of Effect of Air Wake on the Lateral Dispersion of
637	[14]	Aerial Sprays. NACA Report, 1196.
638	[15]	ROWIŃSKI, R. S.; WODECKA, C. ; JUMRYCH, KAUL P., BOIGH S., 1988 . Methods of
639	[13]	Investigation Agricultural Aircrafts and they Apparatus. ART Olsztyn, Olsztyn, (in
640		Russian)
641	[16]	ROWIŃSKI, R.S.1993. Problems of Drift in Plan Protection Using Aviation Techniques. Acta.
642		Academie Agric. Tech. Olstenensis. (450) Agricultura 56. Supplement C. (in Polish)
643	[17]	ROWIŃSKI R. S.,SIECHEŃ P.1993. Investigation on Wing-Tips of Agricultural Aircraft PZL
	[1/]	
644	54.63	106A – Kruk. Roczniki Nauk Rolniczych, T-79-C-2.
645	[18]	ROWIŃSKI R.S., FERENC M., 2000. Some Problems Concerned with the Theory of Drift.
646	F 1 0 2	Annual Review of Agricultural Engineering. 2(1): p. 148-156.
647	[19]	RYAN S.D, GERBER A.G., HOLLOWAY G. L., 2013. A Computational Study on Spray
648		Dispersal in the Wake of an Aircraft. American Society of Agricultural and Biological Engineers.
649		Vol. 56 (3) p. 847-868

650	[20]	SEREDYN T., ROWIŃSKI R. S., 2014. Experimental Investigations of a Drifting Cloud of
651		Droplets Dispersed from Aircrafts. Archive of Mechanical Engineering V. LXI. Nr.3.
652	p.393-	407.
653	[21]	SEREDYN T. 2017. Verification of Mathematical Formulas Describing the Process of
654		Movement of Droplets Dispersed from Aircraft. Wyd. Instytut Lotnictwa. Warszawa.
655		(in Polish). (Rozprawa doktorska).
656	[22]	SLADE D.H., 1966. Summary Measurements of Dispersion from Quasi Instantaneous Sources.
657		Nuclear Safety 7(2).
658	[23]	STENKE W.E., YATES W.E., 1988. Modifying Gaussian Models to Obtain Improved Drift
659		Prediction. Agricultural Engineering Department, University of California, Davis.
660	[24]	TESKE M.E, THISTLE H. W., LONDERGAN R. J 2011. Modification of Droplets
661		Evaporation in the Symulation of Fine Droplet Motion using AGDISP. Tran. of ASAE 54 (2)
662		p. 417-421.
663	[25]	TESKE M. E. THISTLE H. W., SCHOU W. C. MILLER P. C. H., STRAGER J. M.,
664		RICHARDSON B., BUTLER E. M. C., BARRY J. W., TWARDUS D. B., THOMPSON D.
665		G., A Review of Computer Models for pesticide Deposition Prediction. Trans. ASAE 54(3)
666		p.789-801, 2011.
667	[26]	TRAYFORD R.S., WELCH L.W., 1977. Aerial Spraying.: A Simulation of Factors Influencing
668		the Distribution and Recovery of Liquid Droplets. Journal of Agricultural Engineering
669	[07]	Research, Vol.22: p. 183-196.
670	[27]	WICKENS R.H., 1977. Calculation of Wake Vortex Trajectories for Low Flying Spraying
671	52 01	Aircraft. National Aero Report LTR-LA-215 Nat. Res. Council. Canada.
672	[28]	YATES, W. E.; AKESSON, N. B.; BAYER, D. E. 1978 Drift of Glyphosate Sprays Applied
673 674	[29]	with Aerial and Ground Equipment. Weed Science, 1978 26 597-605. ZEMP, H. 1977 Interrelation Between Droplet Density, Droplet Size and Meteo Implication for
675	[29]	Calibration of Agro sprays Applied by Aircraft. Symposium on "Aerial Application of
676		Herbicides", Beograd.
677		neroleides , Deograd.
678		
679		
680		
681		
682		
683		
684 685		
686		
687 688		
689		