Statistical Analysis of Rice Husk Ash as a Construction Material in Building Production Process

3

4 Abstract

This study considers the statistical analysis of rice husk ash as a construction material in building 5 6 production process. The quality of concrete mixture is of inevitable concern to all stakeholders in the construction industry in the zone when the climatic conditions of the zone are considered. 7 8 The mix ratio is examined and all the prevailing construction/production practices are considered 9 statistically. The statistical tools employed are descriptive, normality, process statistical summary and confidence estimation methods of statistics. The tools portrays the necessary 10 information in the data to understand what the data information for further production process 11 12 analysis.

13 Keywords: Concrete, Quality, Production, Process, Statistics, rice husk, ash

14

15 1. Introduction

16 Construction industry plays an active role in the fixed capital formation of any economy. It 17 accounts for over sixty percent of the Gross Fixed Capital Formation of any nation, 18 Ezeokonkwo, (2002). The construction industry thus is very strategic in its contribution to the 19 gross domestic product of a country. From the foregoing, it has a very high capacity of 20 generating growth and inducing multipliers effects on a nation's economy.

21 However, current events in construction industry in Nigeria are inducing negative effects within the industry. For instance the issue of collapse of buildings has been persistent in the country in 22 recent times and the need to proffer solutions to avert future occurrences become obvious. Over 23 the last ten years, the incidence of building collapse has become so alarming and worrisome and 24 it does not show any sign of abating. Each collapse carries along with it tremendous effects that 25 cannot be easily forgotten by any of its victim. These effects include loss of human lives, 26 27 economic waste, loss of jobs, incomes, loss of trust, dignity and exasperation of crises among stakeholders and environmental disasters (Ede, 2010). It is believed that any pursuit in human 28 1

life has its cost, but the cost being paid in South-Eastern Nigeria due to incessant incidents ofbuilding collapse cannot be comprehended and quantified.

31 Buildings are structures which provide shelter for man, his properties, and activities. As such, they must be properly planned, designed and constructed to obtain desired satisfaction from the 32 environment. Major factors observed during building construction include; the functional 33 performance requirements of durability, adequate stability to prevent structural failure, 34 35 discomfort to the users, resistance to climatic conditions and use of good quality materials. The styles of building construction are constantly changing with the introduction of new materials 36 and techniques of construction. Consequently, the work involved in the design and construction 37 38 stages are largely those of selecting materials, component and structures that will meet the expected building standards and aesthetics on an economic basis Obiegbu, (2007). 39

40 A general survey shows that most of modern buildings in the south eastern Nigeria have concrete as their major component. It then becomes pertinent that the quality of concrete materials 41 42 required for concrete used in the construction process must be of paramount importance. Many building failures are mostly linked to the use of substandard materials, poor workmanship and 43 inefficient management in the production process. Experts have canvassed the assessment of 44 45 quality of materials and the level of workmanship utilized in concrete production on project sites. According to Amana, (2010), there is also a need for an accurate assessment of quality, strength 46 and variability of the materials used in forming the structural components. 47

He further observed that a good example of how quality, strength and variability play out in our
environment is in the wide variability of the quality of concrete used in our construction sites.

Imaga, (1994) is of the opinion that enterprises in developing countries do not appear to pay sufficient attention to the areas of quality standards, definition and proper inspection of products produced in their organization. A critical look at this, now reminds us that the quality of a product is determined by the character it possesses. It then becomes imperative that the producers and professionals involved in the construction process must decide ahead of time what the characteristics of their product should possess and have them integrated into the design and specification of quality of concrete that should be employed in projects.

57

Quality therefore is defined as pre-determined standards (basis) sets to ensure a minimum level of requirement for achievable out-come. These predetermined standards are seen as an agreed reputable way of doing something. It is a published document that contains a technical specification or other precise criteria designed to be used consistently as a rule, guideline or definition.

Furthermore standards help to make life simpler and increase reliability and the effectiveness of many goods and services we use. Standards are created by bringing together the experience of all interested parties such as the producers, sellers, users and regulators of a particular material, product, process or service. Through these, the quality of any product now becomes achievable in the actual production process in construction sites. This study is therefore an effort to evaluate the quality control management of concrete works in building construction projects within the study area (Ezeokonkwo, 2015).

70

The research method used in this work is the application of Factorial design Analysis of Mathematical Models for Variables in the Zones. The method is used to study the relative influence of each of the factors on the slumps (workability) of concrete, density and compressive strength for each climatic season, quasi or mono factorial models were obtained. From the analysis, it is possible to make the following deductions on the influence of the different factors over the workability density and strength of concrete.

- 77 2. Computer Analysis of the Experimental Results from the Two Zones
- 78 Table 1: Values of Results from Hot Humid Zone (Awka)

Level of factors and test	Cement	=		X_4 = Ca coarse Aggregate kg/m ⁰	
Xnar Highest level	300	7	690	1380	

Comment [M1]: I didn't find any compressive strength data in this paper.

Formatted: Font color: Red

(1)	207	5	414	953	
(+)					
Xim Lowest level (-)	254	6	552	1167	
Xer Central Level (0) average	46	1	138	213	
\Im Interval of Change Δ					
Test No	X ₁	X ₂	X ₃	X4	Yı
1	207	5	414	953	88
2	207	7	690	953	109
3	207	5	690	953	160
4	207	5	690	953	156
5	300	7	414	953	65
6	300	5	690	1380	81
7	207	7	690	1380	99
8	207	7	690	1380	50
9	207	6	552	1167	67
10	300	7	552	1167	62
11	254	5	552	1167	82
12	254	7	552	1167	93
13	254	6	414	953	166
14	300	5	690	953	157
15	207	7	414	1380	110
16	254	6	552	1167	179
17	207	5	414	953	105
18	207	5	690	953	101
19	254	7	552	1167	95
20	254	5	552	1167	90
21	254	7	690	953	89

22	254	6	414	1167	102
23	254	6	552	1380	105
24	254	6	552	953	195
25	254	6	552	1167	165

Source: Researcher's Field Work, 2018

After experimentally generating data on Tables 1, the data was subjected to electronic

manipulation with Statistical Packages for Social Science (SPSS) software and the following

results with appropriates tables were obtained.

able 2:	Descriptive	Statistics	Analysis
	Descriptive	Statistics	1 1 1 1 1 1 1 1 1 1 1

		Table 2:	Descript	tive Stat	istics Analys	sis	
		Statistic	Std.			Bootstrap	
			Error	Bias	Std. Error	BCa 98%	Confidence Interval
						Lower	Upper
	Ν	25		0	0		•
	Range	93.00					
	Minimum	207.00					
	Maximum	300.00					
Cement	Sum	6064.00					
(kg/m3)	Mean	242.5600	6.743 16	0956	6.7534	229.480 0	255.6527
	Std.	33.71582		-	3.35725	26.6262	38.66859
	Deviation			.86767		4	
	Variance	1136.757		-	217.272	707.324	1495.260
				46.496			
	N	25		0	0		•
	Range	2.00					
	Minimum	5.00					
Water	Maximum	7.00					
Content	Sum	150.00		0010			<
(kg/m3)	Mean	6.0000	.1732	.0069	.1755	5.6187	6.4213
	Std. Deviation	.86603	1	- .02117	.05960	.75719	.92736
	Variance	.750		033	.098	.573	.860
Fine Rice	N	25		.055	0.020		.000
Husk	Range	276.00		Ű	Ŭ		
(kg/m3)	Minimum	414.00					

	Maximum	690.00					
	Sum	14214.00					
	Mean	568.5600	21.55 629	.6624	20.3936	524.400 0	612.7200
	Std.	107.78145		-	9.73109	85.4781	121.61760
	Deviation			2.6008		3	
		11616.840		-	2026.610	7109.76	15044.760
	Variance			459.27 8		0	
	Ν	25		0	0		
	Range	427.00					
	Minimum	953.00					
	Maximum Sum	1380.00					
Coarse	Sum	27886.00 1115.4400	33.27	1.9812	33.3459	1047.04	1192.3457
aggregate	Mean	1113.4400	011	1.9012	55.5459	1047.04	1192.3437
(kg/m3)	0.1	166.35055		-	15.74731	136.291	188.17191
	Std. Deviation			3.6295		15	
	Deviation			6			
	T 7 ·	27672.507		-	5066.358	17966.0	35408.667
	Variance			946.65 5		90	
	Ν	25		5 0	0		
	Range	145.00		0	0	•	
	Minimum	50.00					
	Maximum	195.00					
	Sum	2771.00					
Slump (mm)	Mean	110.8400	8.011 80	2532	7.6574	94.0974	129.6330
	Std.	40.05900	00	-	4.73820	28.6244	47.60430
	Deviation			.98032		2	
	Variance	1604.723		-	360.532	799.994	2281.044
Valid N		25		55.152 0	0		
(listwise)	Ν	25		0	0		

85 Table 2 shows the descriptive statistical analysis which was used to portray information in the

86 data. It analysis the data statistically, reveals and details the information in the data. It also

87 emphasis the data mean, median, sum, range, variance standard deviations, confidence level,

residual errors in the data and the standard error in the data.

89

90 Coarse aggregate (kg/m3)

 Table 3:
 Case Processing Summary

	Coarse	Cases					
	aggregate	Valid		Missing		Total	
	(kg/m3)	N	Percent	Ν	Percent	Ν	Percent
C1	953.00	11	100.0%	0	0.0%	11	100.0%
Slump (mm)	1167.00	9	100.0%	0	0.0%	9	100.0%
(11111)	1380.00	5	100.0%	0	0.0%	5	100.0%

HARAC

Table 4: Coarse aggregate M-Estimators

- - - Formatted Table

4

Coarse aggregate (kg/m3)	Statistic	Bootstrap	
--------------------------	-----------	-----------	--

				Bias	Std. Error	BCa 98%	Confidence Interval
						Lower	Upper
	-	Huber's M-	125.6317	3535 ⁱ	19.0402 ⁱ	_89.7525 ⁱ	160.2611 ⁱ
		Estimator					
	953.00	Tukey's Biweight	125.8833	-1.5816 ⁱ	22.1158 ⁱ	88.4845 ⁱ	162.9755 ⁱ
	955.00	Hampel's M-	126.4545	7262 ⁱ	19.6975 ⁱ	88.8551 ⁱ	162.6822 ⁱ
		Estimator					
		Andrews' Wave	125.8787	-1.6135 ⁱ	22.1574 ⁱ	88.4890 ⁱ	162.9655 ⁱ
		Huber's M-	92.4295	2.4849 ^j	14.4906 ^j	67.4795 ^j	162.6503 ^j
		Estimator					
Slump	1167.00	Tukey's Biweight	86.0199	6.2427 ^j	16.8065 ^j	j	j
(mm)	1107.00	Hampel's M-	86.0148	7.9399 ^j	15.8676 ^j	j	j
()		Estimator					
		Andrews' Wave	86.0156	6.2076 ^j	16.8339 ^j	j	j
		Huber's M-	95.0578	9595 ^k	10.1189 ^k	65.6282 ^k	107.5000 ^k
		Estimator					
	1380.00	Tukey's Biweight	99.4180	-3.5515 ^k	10.9710 ^k	68.4169 ^k	108.4724 ^k
	1500.00	Hampel's M-	94.6979	1041 ^k	10.6841 ^k	65.5000 ^k	108.7500 ^k
		Estimator					
		Andrews' Wave	99.6441	-3.7565 ^k	10.9742^{k}	68.4245 ^k	108.4839 ^k
	Table 5: Tests of Normality						

ble 5: Tests of Normality

	Coarse	Kolmogorov-Smirnov			Shapiro-Wilk		
	aggregate (kg/m3)	Statistic	df	Sig.	Statistic	df	Sig.
	953.00	.216	11	.160	.924	11	.351
Slump (mm)	1167.00	.296	9	.022	.826	9	.041
	1380.00	.259	5	$.200^{*}$.876	5	.290

Fine Rice Husk (kg/m3)

Table 6:	Fine M-Estimators

	Fine (kg	g/m3)	Statistic	Bootstrap					
				Bias	Std. Error	BCa 98%	Confidence Interval		
						Lower	Upper		
Slump (mm)	414.00	Huber's M- Estimator	101.3111	1.4796 ⁱ	10.8098 ⁱ	77.7682 ⁱ	135.5000 ⁱ		

Comment [M2]: What does the superscript i,j and k mean

-	Tukey's Biweight	98.4511	3.1955 ⁱ	11.4013 ⁱ	i	i
	Hampel's M-	98.8138	3.7421 ⁱ	10.9845 ⁱ	i	i .
	Estimator					
	Andrews' Wave	98.4261	3.1892^{i}	11.4333^{i}	i •	i ·
	Huber's M-	98.0502	5.0902 ^j	19.8758 ^j	69.5201 ^j	174.0098 ^j
	Estimator					
	Tukey's Biweight	86.0940	13.315	23.0046 ^j	j.	j
552.00	• •		4 ^j			
	Hampel's M-	96.8503	5.8041 ^j	21.1481 ^j	66.8653 ^j	175.2135 ¹
	Estimator				;	
	Andrews' Wave	85.7565	13.555	23.0681 ^j		
	Huber's M-	106 2020	4.4396 ^k	19.3970 ^k	81.0441 ^k	156.4626 ^k
	Estimator	106.3838	4.4390	19.3970	81.0441	150.4020
	Tukey's Biweight	107.4876	2.2151 ^k	21.0520 ^k	84.2190 ^k	157.9911 ^k
690.00	Hampel's M-	107.4870	1.6786 ^k	20.2975 ^k	85.0286 ^k	158.0000 ^k
	Estimator	107.2051	1.0700	20.2715	05.0200	150.0000
	Andrews' Wave	107.5429	2.1427 ^k	21.0657 ^k	84.1899 ^k	157.9906 ^k
		$\langle \rangle$				

9	6

		Table 7:	Tests of	f Normality	,				
	Fine (kg/m3)	Kolm	Kolmogorov-Smirnov			Shapiro-Wilk			
		Statistic	df	Sig.	Statistic	df	Sig.		
-	414.00	.286	6	.137	.904	6	.396		
Slump (mm)	552.00	.269	10	.039	.850	10	.057		
	690.00	.210	9	$.200^{*}$.903	9	.269		

Water Content (kg/m3)

	Та	i <mark>ble 8</mark> : Ca	ase Proces	ssing Sumn	nary					
	Water Content	Cases								
	(kg/m3)	Val	id	Mis	sing	Total				
		Ν	Percent	Ν	Percent	Ν	Percent			
C1	5.00	9	100.0%	0	0.0%	9	100.0%			
Slump (mm)	6.00	7	100.0%	0	0.0%	7	100.0%			
(IIIII)	7.00	9	100.0%	0	0.0%	9	100.0%			

Comment [M3]: In this Table, there is no data changing, this table doesn't need, table 3 and table 11 are same as table 8.

	Water	Content (kg/m3)	Statistic]	Bootstrap		
				Bias	Std. Error	BCa 98% Confidence Interval		
						Lower	Upper	
		Huber's M- Estimator	103.7866	4.2753 ⁱ	20.2857 ⁱ	82.5721 ⁱ	156.4945 ⁱ	
	5.00	Tukey's Biweight	102.2221	3.6057 ⁱ	22.6701 ⁱ	82.6736 ⁱ	158.3351 ⁱ	
		Hampel's M- Estimator	107.2360	.8281 ⁱ	21.8922 ⁱ	83.6913 ⁱ	158.2500 ⁱ	
		Andrews' Wave	102.3307	3.4688^{i}	22.6921 ⁱ	82.6725 ⁱ	158.3075 ⁱ	
	6.00	Huber's M- Estimator	143.9491	.3490 ^j	23.7487 ^j	93.6233 ^j	183.1073 ^j	
Slump		Tukey's Biweight	145.5352	.9948 ^j	27.1169 ^j	88.8371 ^j	189.0046 ^j	
(mm)	6.00	Hampel's M- Estimator	143.5207	1.1220 ^j	24.1167 ^j	90.5028 ^j	185.8005 ^j	
		Andrews' Wave	145.4891	1.0361 ^j	27.1510 ^j	88.6338 ^j	189.0296 ^j	
		Huber's M- Estimator	88.5363	4308 ^k	9.4347 ^k	61.2381 ^k	108.8327 ^k	
	7.00	Tukey's Biweight	88.0530	.8954 ^k	10.6101 ^k	54.0308 ^k	109.7560 ^k	
	7.00	Hampel's M- Estimator	86.8562	1.2952 ^k	9.6713 ^k	56.7241 ^k	109.7500 ^k	
		Andrews' Wave	88.0466	.9086 ^k	10.6317 ^k	54.0397 ^k	109.7560 ^k	

Table 9: Water Content (kg/m3) M-Estimators

100

Table 10:Tests of Normality

	Water Content	Kolm	logorov-Sm	irnov	Shapiro-Wilk			
	(kg/m3)	Statistic	df	Sig.	Statistic	df	Sig.	
	5.00	.263	9	.073	.787	9	.014	
Slump (mm)	6.00	.271	7	.129	.901	7	.338	
	7.00	.226	9	$.200^{*}$.899	9	.246	

101

102

103 Cement (kg/m3)

Table 1	1:	Case Processing Summary	
Cement (kg/m3)		Cases	

		Valid		Mis	sing	Total		
		Ν	Percent	Ν	Percent	Ν	Percent	
	207.00	10	100.0%	0	0.0%	10	100.0%	
Slump (mm)	254.00	11	100.0%	0	0.0%	11	100.0%	
	300.00	4	100.0%	0	0.0%	4	100.0%	

Tables 3, 8 and 11 reveal the validity of a data and the missing values in the data using a method that is known as case processing summary. This method reveals the number of values in the lower boundary, mean boundary and upper boundary in the data system and the possibility of valid data in the boundaries. However, it also reveals the possible missing data in the lower boundary, mean boundary and upper boundary in the data system.

	Cemer	nt (kg/m3)	Statistic]	Bootstrap			
				Bias	Std. Error		6 Confidence Iterval		
	-				EII0	Lower	Upper		
	•	Huber's M- Estimator	102.0348	1.1497 h	11.6041 h	_71.4591 ^h	155.2357 ^h		Comment [M4]: Can you show the source of this Estimator, and also include others
	207.0	Tukey's Biweight	100.1067	2.3994 h	12.2625 h	58.2672 ^h	159.1125 ^h		
	0	Hampel's M- Estimator	100.5684	2.3589 h	11.9952 h	70.2221 ^h	158.9132 ^h		
		Andrews' Wave	100.1103	2.4031 h	12.2662 h	58.1394 ^h	159.1173 ^h		
Slum		Huber's M- Estimator	104.2431	6.9247 i	19.7272 i	89.6182 ⁱ	169.8525 ⁱ		
p (mm)	254.0	Tukey's Biweight	93.7213	12.361 9 ⁱ	22.8537 i	i	i •		
	0	Hampel's M- Estimator	100.4116	8.9054 i	21.0067 i	86.6663 ⁱ	173.9062 ⁱ		
		Andrews' Wave	93.7216	12.289 7 ⁱ	22.8952 i	i	i		
	300.0	Huber's M- Estimator	73.5722	6.1730 j	17.2994 j	63.5000 ^{j,} k	119.0000 ^j		
	0	Tukey's Biweight	68.8974	7.3918 j	17.9252 j	62.6465 ^{j,} k	119.0000 ^j		

 Table 12:
 Cement (kg/m3) M-Estimators

Hampel's M- Estimator	69.3333	9.3889 j	17.9394 j	62.7500 ^{j,} k	119.0000 ^j
Andrews' Wave	68.8924	7.3635 j	17.9294 j	62.6457 ^{j,} k	119.0000 ^j

Tables 4, 6, 9 and 12 shows that some M-Estimators cannot be computed in one or more split 110 111 files because of the highly centralized distribution around the median. Some results could not be computed from jackknife samples or the estimators, so this confidence interval is computed by 112 the percentile method rather than the BCa method. M-Estimators is a method used to determine 113 the average estimated confidence level of the data using several estimation methods to achieve 114 more effective results. The estimation methods developed their confidence methods around the 115 lower value, mean value and the upper value of the used data. However, it will be noted that the 116 estimated confidence level in this research is 98 percent (%), this is used because of the 117 economic importance and its necessity to construction. 118 119

Table 14:Tests of Normality^c

	Cement (kg/m3)	Kolmogorov-Smirnov ^a			Shapiro-Wilk			
		Statistic	df	Sig.	Statistic	df	Sig.	
	207.00	.236	10	.122	.926	10	.411	
Slump (mm)	254.00	.306	11	.005	.804	11	.011	
	300.00	.341	4	•	.773	4	.062	

120

126

Tables 5, 7, 10 and 13 investigates and reveals tests of normality using Kolmogorov-Smirnov and Shapiro-Wilk which shows that statistically, the data is not normally distributed along the upper and lower boundaries of the data mean except at the mean. The cement data is significance along the mean of slump data but is not significance at the upper and lower boundary of the slump wet data. This is applicable in the two normality test methods applied.

127 Generalized Linear Mixed Models

Comment [M5]: Where is Table 13

Model Summary

Target: Slump (mm)

Target		Slump (mm)
Probability Distribution		Gamma
Link Function		Log
Information Criterion	Akaike Corrected	2,246.667
	Bayesian	2,235.293

Information criteria are based on the -2 log pseudo likelihoo (2, 196,667) and are used to compare models. Models with smaller information criterion values fit better. When compar models using pseudo likelihood values, caution should be us because different data transformations may be used across th models.

128 129

130 Conclusion

- 131 On the basis of the statistical analysis, the derived mathematical model for the slumps
- 132 (workability) and strength of concrete in a hot humid zone as functions of quantity of cement,
- 133 water-cement ratio and quantity of aggregates, it is possible to evaluate the composition of the
- 134 concrete mix by varying the independent factors (variables) for various seasons.
- 135 The statistical results developed will help to understand the data and what the data portrays.
- 136

137 **References**

- Aman, A. (2010): Assessment of the Quality Strength and Variability of the Consturtion
 Materials. Nigerian Institute of Structural Engineers Conference 2010. 10-12.
- Dhir, R. K. and Green J.W. (1990): *Protection of Concrete Processing*. Paper presented at
 International Conference held at the University of Dundes Scotland, UK on 11-13
 September, 1990.
- Edeh, et.al, (2011): Analysis of Environmental Risk factors affecting Rice farming in
 Ebonyi State, South Eastern Nigeria.

- Ezeokonkwo, J.U. (2002): Quality Control in Construction, Project. *Effective Building Procurement and Delivery in Nigerian Construction Industry*. Rex Charles and Patrick
 Ltd. Nimo Anambra State. 85-101.
- Ezeokonkwo J.U. (2015). "Assessment of Quality Control of Concrete Production Works in
 Nigeria", Publisher: LAP LAMBERT Academic Publishing, Deutschland, Germany.
 ISBN: 9783659389306
- 151 Heiseman, (2007): Concrete Characteristics. Sweet Haven publishers.
- Imaga, (1994): *Theory and Practice of Production Management*. Afritrade International Limited
 Publishers. 8/10 Broad Street 10th Floor Western House.
- Obiegbu, M. E. (2007): The Professional Builder. Magazine Published by Nigerian Institute of
 Building.
- US Research Department of Transportation, Federal Highway Administration (2012): *Concrete Mixture Optimization Using Statistical Methods*. FHWA-RD-03-060.