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ABSTRACT 7 
The Western Ghats regions of India are characterised by highly complex and biodiverse forest 8 
ecosystem with heterogeneous tree species. Traditional multispectral remote sensing, due to its poor 9 
spectral information and lower number of bands do not allow a detailed analysis of tree species. The 10 
integration of LiDAR data with multispectral remote sensing has limitations in the case of spectral 11 
information abundance. The given study presented a new approach by the integration of space borne 12 
LiDAR with hyper spectral imagery for the estimation of biomass and Leaf Area Index in the Western 13 
Ghats regions. The main objective of the given study is the biophysical characterisation in the 14 
Western Ghats regions of India by the integration of GLAS ICES at data and AVIRIS hyperspectral 15 
data. The structural characteristics extracted from the LiDAR data are integrated with spectral 16 
characteristics from the AVIRIS NG imagery based on the pixel level so that biophysical characters 17 
including canopy height, biomass, Leaf Area Index are estimated. The integrated product on further 18 
analysis revealed the applicability of this approach to extract more spectral information and forest 19 
parameters. The results indicated that integration of LiDAR with AVIRIS data enabled forest species 20 
discrimination and biophysical parameter retrieval successfully with abundant spectral information 21 
than in the case of multispectral imagery.Please add conclusion in one sentence at least 22 
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1. INTRODUCTION 26 
 27 
  The Western Ghats of India is characterised by complex forest ecosystems with large 28 
varieties of heterogeneous tree species. Mudumalai and Sholayur are two reserved forests in 29 
Western Ghats region. These forests represent a diversity of habitats that vary both spatially and 30 
temporally. Spatial variables are influenced by the factors such as soils, climate, geology, topography 31 
and the species distribution. Temporal variables are influenced by climate and hydrology. The 32 
measurement of biophysical parameters in the complex ecosystem of Western Ghats of India is a 33 
challenge in the case of forest measurements. Biophysical parameters in the forest ecosystem 34 
comprise of structural as well as spatial parameters.Of of these the structural parameters include 35 
canopy height, canopy cover, tree heights, density and the spectral parameters of the forests include 36 
different vegetation indices, biomass etc. 37 

Traditional field inventories for the extraction of biophysical parameters are found to be time 38 
consuming and have both spatial and cost constraints. Remote sensing technologies have found to 39 
overcome the limitations of field inventories in the case of cost, spatial coverage and regular collection 40 
of data.  Remote sensing technologies including the photogrammetric methods and the multispectral 41 
images are capable of measuringcan measure the spectral parameters to some extent. Multispectral 42 
remote sensing has lot of lot of applications in estimating the horizontal and spectral attributes of 43 
forests[1],[2],[3],[4],[5].ButtheyBut they are limited in the case of measuring structural attributes 44 
[6],[7],[8].For measuring the structural attributes, active remote sensing technology mainly Light 45 
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Detection and Ranging (LiDAR), proved to be successful by measuring the threedimensionalthree-46 
dimensional structure of forests. Several studies showed the applicability of LiDAR in the estimation of 47 
structural parameters like canopy height, density, tree heights etc[9],[10],[11].However, in all these 48 
cases, lack of spectral information is a limitation. For estimating both the structural and the spectral 49 
attributes of forest ecosystem integration of LiDAR data along with the optical remote sensing is 50 
possible. Several studies showed the estimation of biophysical parameters by the fusion of optical as 51 
well as LiDAR data. But the multispectral remote sensing is limited by the number of bands. 52 

Forest management must be interdisciplinary and multiscale. In the complex forest ecosystem 53 
of Western Ghats with high level of biodiversity and spatial heterogeneity, species identification is a 54 
challenge. Thick understory vegetation also contributes to the species diversity of Western Ghats. 55 
Hyperspectral data which have abundant spectral content have potential to measure the complex 56 
forest ecosystems and identification of individual tree species along with fine spectral and spatial 57 
details[12],[13]. Several studies have been reported the application of hyperspectral imagery in 58 
forestry[14].Optical indices which are sensitive to both chlorophyll content and canopy structure are 59 
useful in understanding whether the forests are healthy or stressed, forest decline, for modelling 60 
forest nitrogen content, leaf economic spectrum and leaf development [15],[16],[17],[18],[19],[20]. 61 
Hyperspectral remote sensing can acquire very narrow typically 200 or more bands thus obtaining 62 
contiguous reflectance bands for every pixel in the scene[scene [21], thereby enabling in depth 63 
analysis of the forest species. On integrating the hyperspectral imagery with LiDAR structural as well 64 
as biophysical parameters can be extracted, and several studies reported successful results. The 65 
integration approach is used for biomass estimation [22], and classification of complex forest 66 
areas[23]. For modelling plant composition in a forest landscape [24] and mapping multiscale vascular 67 
plant scape richness, Hakkenberg et al [25] integrated LiDAR and hyperspectral remote sensing. 68 
Forest fuel characteristics in pine forests can be estimated by integrating airborne laser scanner and 69 
hyperspectral imagery[26].  Based on the available literatures, forest parameters estimation along 70 
with the forest health conditions and the identification of individual trees in Western Ghats region is 71 
possible by combining the applications from the hyperspectral and LiDAR sensors.  72 

Full waveform LiDAR can estimate the forest parameters in detail compared to the discrete 73 
airborne LiDAR systems. The first space borne full waveform LiDAR system was developed by NASA, 74 
which is the Geoscience Laser Altimetry System (GLAS) on board by Ice and Cloud Land Elevation 75 
Satellite (ICESat) in January 2003.The diameter of GLAS waveform foot print is 70m with 172m 76 
spacing and have found applications in various earth science fields. GLAS LiDAR data have so many 77 
applications in the case of forest canopy modelling and measurements. A lot of work were done using 78 
GLAS data in forestry[27],[28],[29],[30],[31],[32],[33],[34],[35].GLAS can provide accurate estimates of 79 
canopy heights, biomass, canopy density, above-ground biomass and overall the three dimensional 80 
forest modelling with high levels of precision. In most forest studies the GLAS system was used for 81 
the forest structural measurements [36],[37],[38],[39],[40],[41]. In this study, an attempt has been 82 
made to estimate the biophysical parameters in the heterogeneous forest in Western Ghats by 83 
integrating the AVIRIS -NG imagery with the space borne LiDAR data. 84 

The main objective of the work is the extraction of biomass and Leaf Area Index(LAI)by the 85 
integration of AVIRIS-NG imagery with ICESat GLAS data in the Mudumalai and Sholayur forests of 86 
Western Ghats, India. The integration of LiDAR data with high resolution airborne hyperspectral 87 
imagery narrow band features can offer enhanced spectral information on integration with LiDAR 88 
point cloud. 89 

2. Materials and Method 90 

2.1.STUDY AREA  91 

Mudumalai and Sholayar reserved forests are selected as the study area. They are the parts 92 
of the Western Ghats region. Mudumalai region is in Tamilnadu, with an area of 411݉ܭଶand this 93 

Formatted: Highlight



 

 
 

forest region comprises of and the type of forests is of tropical moist deciduous, dry deciduous, semi 94 
evergreen and thorn forests and having an annual rainfall of range 1700mm. Dominant species in the 95 
study area Mudumalai are Anogeisuslatifolia, Terminalia alata, Grewiatilifolia, Mangiferaindica, 96 
Shorearoxburghi, and Tectonagrandis. Sholayar 368 ݉ܭଶcomprises of tropical evergreen forests with 97 
an annual rainfall of 3780mm and this forest region is in Kerala.The Figure 1 depicts  the study area. 98 

 99 

Fig.1. Study area a) Mudumalai forest and b) Sholayar Forest 100 

32.2..DATA SETS USED  101 

Two data sets are used in the study:- 102 

1. Airborne hyperspectral imagery 103 
2. Space borne LiDAR data 104 

Please, add the physical soil analysis for study area at least from references if you didn’t 105 

measured 106 

3.1 2.3. Airborne hyperspectral imagery 107 

Airborne Visible and Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) of JPL (Jet 108 
Propulsion Laboratory), NASA, has been used for the ISRO-NASA airborne campaign on-board an 109 
ISRO B200 aircraft. There are about 430 narrow continuous spectral bands in VNIR and SWIR 110 
regions in the range of 380 –2510 nm at 5nm interval with high SNR (>2000 @ 600 nm and >1000 @ 111 
2200 nm) with accuracy of 95% having FOV of 34 degree and IFOV of 1mrad. Ground Sampling 112 
Distance (GSD) vis-à-vis pixel resolution varies from 4 –8m for flight altitude of 4 –8 km for a swath of 113 
4-6 km. AVIRIS-NG for Sholayar and Mudumalai are collected during the first phase (January 2016) is 114 
the data set used in this study. For Sholayar region level 1 (L1) data is used which represent raw 115 
data, calibrated and ortho-rectified top-of-radiance (TOA), respectively which were generated on-116 
board the aircraft. For Mudumalai region both L1 and L2 (surface reflectance products in all the bands 117 
after atmospheric correction) are used. The data after atmospheric correction and radiometric 118 
calibration were converted to reflectance measurements for further analysis. The AVIRIS data sets 119 
after atmospheric corrections for Mudumalai and Sholayarare shown in Figures2 and 3 respectively. 120 
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 121 

Fig. 2. AVIRIS -NG data sets for Mudumalai forest Fig. 3.AVIRIS- NG for Sholayarforest 122 

 123 

3.22.4 Space borne LiDAR data 124 

GLAS ICESat laser altimetry data isobtained from the ICESat/GLAS NSIDC website and are 125 
pre-processed by means of ICESat /GLAS tools. Product 14 is used here which contains surface 126 
elevations and elevation corrections.The data sets are filtered by using available quality flags for 127 
saturation, presence of cloud and validity of elevation.  128 

4.3.   METHODOLOGY 129 

The methodology used in the study is depicted in the Figure 4. 130 

43.1 Pre-Processing of spaceborne LiDAR data 131 

From the GLAS LiDAR point cloud data digital elevation models and surface models are 132 
generated which by normalization gives canopy height models for both the regions.  133 

43.2 Pre-processing of AVIRIS - NG imagery 134 

For radiometric calibration, atmospheric correction module named Quick Atmospheric 135 
correction (QUAC) is done for the AVIRIS-NG imagery for both study area thereby creating surface 136 
reflectance images. 137 

 138 
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Biomass, Leaf Area Index, Agricultural Stress Vegetation Index, Forest Health 158 
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 161 

43.3 Integration of LiDAR point cloud and hyperspectral imagery 162 

The point cloud-based canopy height models are integrated with hyperspectral imagery based 163 
spectral indices on a pixel level fusion strategy after linearly stretching the imageries incorporating for 164 
each pixel in the hyperspectral imagery.  165 

 166 

4.4 Estimation of biophysical parameters 167 

Canopy heights are directly estimated from the LiDAR point cloud by the analysis of the 168 
waveform LiDAR data. Forest biomass cannot be directly estimated from the LiDAR data or the 169 
hyperspectral imagery. In the given work, forest biomass is estimated by Support Vector Machine 170 
predictive algorithm from the integrated image by using Radial basis function as the kernel function 171 
and Laplacian function as the loss function for handling the non-linearity among the input features. 172 
Agricultural stress vegetation indces are calculated by using the vegetation indices in the broadband, 173 
narrowband, light use efficiency, canopy nitrogen, leaf pigment and canopy water content categories 174 
and created a spatial map showing the  distribution of canopy stress. Forest health is also calculated 175 
by using the vegeatation indices in the broadband , narrowband, light use efficiency, leaf pigment and 176 
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canopy water content and created a spatial map showing the overall health and vigour of the two 177 
study area. Leaf area index is obtained for both thestudy area by using the equation  178 

LAI= 3.618*EVI- 0.118         (1)  179 

where EVI is the Enhanced vegetation indices. LAI for both the regions can estimate the foliage cover 180 
and forecast canopy growth and yield 181 

Please, add the details of the model used for getting maps  182 

5.RESULTS AND DISCUSSION 183 

5.1 Estimation of structural and spectral biophysical parameters 184 

Canopy height model for the Sholayar and Mudumalai region is shown in the Figure 5 and 6 185 
respectively. The Canopy height models indicates the height distribution of the study area along with 186 
the understory vegetation heights. From the canopy height model, the canopy height of Mudumalai 187 
varies from 1m to 60m and for Sholayar,its 1m to 66m. 188 

 189 

Fig. 5. Canopy height model for Sholayar Fig.6. Canopy height model for MudumalaiForest 190 
Forest 191 

The agricultural stress vegetation indices and the forest health distribution for Mudumalai and 192 
Sholayar are shown in the Figures 7 and 8. From the Figures growth efficiency can be estimated 193 
since the dying species do not efficiently use nitrogen and light indicating the forest stress. Where as 194 
the tree species showing healthy, productive vegetation indicates low stress. The agricultural stress 195 
vegetation indices divided the study area into classes ranging from lowest stress to highest stress. 196 
Forest health distribution detected pest and blight conditions of Mudumalai and Sholayar and for 197 
assessing area of timber harvest. Healthy forest areas showed low stress conditions in the figure 198 
whereas the high stressed forest indicated in the study area shows the signs of dry, sparse canopy 199 
and inefficient light use. 200 
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 202 

Fig. 7.Agricultural stress vegetation indices and forest health for Mudumalai forest 203 

 204 

Fig.8.Agricultural stress vegetation indices and forest health for Sholayar forest 205 

 206 

The estimated LAI for Mudumalai and Sholayar forest is shown in Figures9and 10. The value 207 
of LAI for Sholayar has a maximum of 3.8 and Mudumalai has a maximum of 5.79. 208 



 

 
 

 209 

Fig.9. Leaf Area Index for Mudumalai forest        Fig.10. Leaf Area Index of Sholayar forest 210 

 211 

Biomass estimated for Mudumalai and Sholayar is indicated in the Figure 11. The maximum 212 
value of biomass of Mudumalai region is 389.5 Ton/ha and for Sholayar the value is 380Ton/ha. 213 

 214 

 215 

Fig. 11. Biomass of Mudumalai and Sholayar 216 



 

 
 

The biomass and LAI are compared with the field measured values over the two study area 217 
for the same period and is found to have strong correlation. Scatter plot showing the variation of LAI 218 
and biomass with the field based measurements are shown in the Figures12 and 13. 219 

 220 

Fig.12. Scatter plot showing estimated biomass verses field based biomass for Sholayar and 221 
Mudumalai forest  222 

 223 

Fig. 13. Scatter plot showing estimated biomass verses field based biomass for Mudumalai 224 
and Sholayar forest  225 

 226 

 227 

The study extracted the biophysical parameters in the Western Ghats effectively. In the 228 
regions with lower value of LAI and biomass, degradation of forest is indicated. But in the regions with 229 
higher value of biomass, presence of thick canopy along with understory vegetation is seen. Canopy 230 
of height ranging from 10m -45 m are seen here based on the CHM created by GLAS point cloud. 231 
Agricultural stress and the forest health indices successfully predictthe health of the forest. The 232 
structural parameters estimated from CHM is applicable in estimating the tree species of the specified 233 
forests. GLAS point cloud data used here enabled to extract the structural parameters in the forests 234 
which cannot be measured by the hyperspectral imagery directly. The integration approach 235 
successfully estimated both structural as well as spectral parameters which is not possible 236 
independently. 237 

y = 1.0075x ‐ 9.6029
R² = 0.98

0

100

200

300

400

500

0 200 400 600

M
e
as
u
re
d
 B
io
m
as
s

Estimated Biomass

Mudumalai Forest

y = 0.8732x + 0.2226
R² = 0.94

0

1

2

3

4

5

6

7

0 2 4 6 8 10

M
ea

su
re

d
 L

A
I

Estimated LAI 

Mudumalai forest

y = 0.9978x ‐ 2.6183
R² = 0.99

0

100

200

300

400

500

0 200 400 600

M
e
as
u
re
d
 B
io
m
as
s

Estimated Biomass

Sholayar Forest

y = 0.9167x + 0.1625
R² = 0.98

0

1

2

3

4

5

0 2 4 6

M
ea

su
re

d 
L

A
I

Estimated LAI

Sholayar forest



 

 
 

 238 

6. CONCLUSION 239 

The main conclusions of the study are the following. The integration of LiDAR with the 240 
hyperspectral imagery in the Western Ghats regions of India successfully estimated the biophysical 241 
parameters. The important biophysical parameters estimated are canopy height, biomass, vegetation 242 
stress indices, forest health indices and Leaf area index. Good correlation with the field 243 
measurements is obtained for biomass and LAI for both Sholayar and Mudumalai forest. The 244 
approach developed in this study enabled to understand the forest health conditions with detailed 245 
spectral parameters along with the structural parameters. 246 

 247 
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