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Abstract 6 

Simulation of drought is needed for proper planning and management of water resources. 7 

This study has been developed using the following five key points: a) primarily from rainfall 8 

Standard Precipitation Index (SPI), Percentage to Normal (PN), Decile based drought index 9 

(DI), Rainfall Anomaly Index (RAI), China Z Index (CZI), and Z-score are estimated on 10 

yearly basis (1901-2017), those indices are added and a new index standardized total drought 11 

(Sd) has been established. b) Considering Sd as the input parameter a comparative assessment 12 

has been made between 4 individual models (3 models from exponential smoothing, 1 model 13 

from machine learning) in simulation and prediction of drought status of next 18 time steps 14 

(years) in Bankura District and Winexpo model outperforms the other models as it obtains 15 

minimized Standard Error (SE), Random Mean Square Error (RMSE), Mean Absolute Error 16 

(MAE), and Mean Absolute Percentage Error (MAPE) and highest Correlation coefficient 17 

(R2) value. c)  The cumulative drought proneness of the region is also assessed and it is found 18 

that the whole district will be drought-prone within the year 2100. This region is historically a 19 

drought prone region and agricultural shock is the common issue. In such a circumstances 20 

simulation of drought is a good attempt. This study provides a comparative study between 21 

exponential smoothing and machine-learning procedures and also introduces a new combined 22 

index standardized total drought.  23 

Keywords: Simulation; Meteorological drought; Winexpo. 24 

1. Introduction: 25 

Drought is one of the natural disasters that human being has been suffering since the ancient 26 

era [71, 73,20] and it is the costliest [67,21], long-lasting most severe natural hazard [43,44]. 27 

It is recurrent natural phenomena associated with the lack of water resources for a prolonged 28 

period of dryness[46,58,64] can occur in arid, semi-arid and rain-forested region [42,1] 29 

however confusion and debates among scholars prove that there are no universal accepted 30 

definitions of drought. Drought forecasting is a critical element in drought risk management 31 
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[49]. Meteorological drought that transforms in a hydrological, agricultural and socio-32 

economic events, onsets with a marked reduction in rainfall sufficient to trigger hydro-33 

meteorological imbalance for a prolonged period [68,43,45,24].Thus drought monitoring and 34 

assessment are hot topics among hydrologists and meteorologists and attract world-wide 35 

attention [33, 58]; its’ preparedness and mitigation depends upon the large scale drought 36 

monitoring and forecasting over a large geographical area [49,70,71,3,4]. Many drought 37 

forecasting models already develop in the field of civil engineering. Mishra and Desai (2006) 38 

[41] developed ARIMA and multiplicative seasonal ARIMA models to forecast drought 39 

using SPI series. These models are able to simulate drought up to 2 months lead time. Morid 40 

et.al 2007 [45] simulated Effective Drought Index (EDI) and SPI using Artificial Neural 41 

Network (ANN). Mishra and Desai (2007) [42] compared linear stochastic models with 42 

recursive multistep neural network model to the 6 months lead time. Barros and Bowden 43 

(2008) [9] employed self-organizing maps (SOM) and multivariate linear regression analysis 44 

to forecast SPI of Murray Darling basin of Australia in 12 months of forthcoming scenarios. 45 

Many scholars worldwide tested SVM in climatological and hydrological applications [16, 6, 46 

59, 65, 66 ]. There are several scholars used SVM to predict drought [16,19,59,65] . Belayneh 47 

and Adamowski in 2012 [11] forecasted meteorological drought using neural network, 48 

wavelet neural network and SVM.  Exponential smoothing is quite new in this field originally 49 

developed in the field of business mathematics in 1960. Exponential smoothing is able to 50 

simulate drought in a long term time frame. This study attempts to simulate drought using 51 

exponential smoothing in a long-term time frame. 52 

2. Study Area and Background Information 53 

The District Bankura is bounded by 22⁰38’ N to 23°38´ N and longitude 86⁰36’ E to 87⁰47’E 54 

covering an area of 6,882 square Kilometers (2,657sq. mile). River Damodar creates the 55 

north and north-east boundary of the district [18]. The neighboring districts are Bardhaman in 56 

the north, Paschim Medinapore in the south, Hoogly in the east and Purulia in the west 57 

(Figure 1). Bankura is a historically a drought prone district and if no supportive action taken 58 

quickly in this regard the condition will get much severe in the upcoming periods [13,36, 59 

51,52]. 60 

 61 
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Figure 1 Bankura Location Map and location of Meteorological Stations 77 

Bankura is located in the south western central part of the State of West Bengal belonging 78 

transition zone between the plains of Bengal on the east and Chhota Nagpur plateau on the 79 

West [13,18]. It is a part of Midnapur Division of the State and a part of “Rarh” region thus 80 

can be stated as “Rarh in Bengal’ [47]. The areas to the east and north-east are rather flat 81 

belonging to the low lying alluvial plains, known as rice bowl of Bengal [18, 17, 48].  82 

3. Data Sets and Methodology  83 

Figure 2 constructively describes the methodological overview of this paper. Monthly rainfall 84 

data 1901-2017 has been used for overall analysis and 1901 to 1978 data obtained from Govt. 85 

of India water portal website mentioned in Table 1. From 1979 to 2014 daily station wise 86 

rainfall data obtained from National Centres for Environmental Protection (NCEP) official 87 

website. The rainfall data were collected from Disaster Management Plan of Bankura District 88 

2017 published by District Disaster Management Cell (Table 1) and got 6 individual rainfall 89 

stations available for Bankura District and monthly and daily rainfall data have been added to 90 

get yearly rainfall trend. Thus 117 years are taken into consideration.  91 
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Table 1 Source of Rainfall Data 92 

Monthly Rainfall Data Station-wise 1979-2014 

downloaded from NCEP data set  
(https://globalweather.tamu.edu/)  

 

Id of 

Stations 

associated 

Bankura 

Longitude Latitude Elevation(m)  

 

 

Monthly total rainfall data downloaded 

from 1901-1978 from Indian Water 

Portal (www.Indianwaterportal.org.) 

 and 2015,2016 and 2017 rainfall data 

obtained from Disaster Management 

Plan 2017 of Bankura district 

229869 86.875 22.9488 133 

229872 87.1875 22.9488 61 

229875 87.5 22.9488 34 

233869 86.875 23.261 127 

233872 87.1875 23.261 95 

233875 87.5 23.261 46 

 93 

Figure 2 Methodological Overview 94 

                                          95 
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3.1 Formation of Standardized Total Drought (Sd) 96 

There are several indices developed to assess meteorological drought but the most common 97 

are SPI [23, 40], DI [27], PN [28], Z-Score [20], RAI [25,44,53] and CZI [14]. First of all, 98 

from the rainfall data, the above mentioned 6 well-known indices i.e. SPI, DI, CZI, PN, Z-99 

score, and RAI have been estimated on yearly basis and later those are combined and formed 100 

a new Index Standardized Total Drought (Sd). So, those six indices are utilized to estimate the 101 

true nature of meteorological drought and standardized total drought (yearly basis) becomes 102 

the sole input variable for every models of our study. 103 

It can be computed as follows: 104 

Total Drought�T � = �SPI + DI + PN +  ZScore + RAI + CZI�     (1) 105 

Standardized Total Drought�S� =  �  !� """"
δ

                              (2) 106 

Where, T  is the total drought. 107 

T""" is the mean of T  108 

δ  is the standard deviation of the total drought. 109 

Based on estimated Sd values the individual drought categories are subdivided into 9 sub-110 

groups. he whole subgroups are ranging between <-10 to >10 category and <-10 denotes the 111 

most extreme category whereas >10 denotes wet category. Every 9 sub categories are coded 112 

as 1 to 9 (table 2).  113 

Table 3 Probable classes of Standardized Total Drought (Sd) 114 

 115 

Categories of Drought Code Ranges of Drought 

Most Extreme  1 <-10.00 

Extreme  2 -3.00 to -10.00 

Severe 3 -2.99 to -2.50 

Severe Moderate  4 -2.49 to -2.35 
Moderate 5 -2.35 to -1.15 

mild drought 6 -1.15 to 1 

Normal 7 1-5 

Extreme Normal 8 5-10 
Wet  9 >10 
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3.2 Exponential and Holt-Winter Forecast and Winexpo Method: 116 

Exponential smoothing is the technique to smoothing the time series in exponential window 117 

function. Exponential smoothing assigns decreasing weights over time. Holt in 1957 and 118 

Winter in 1960 developed smoothing technique and later their method was combined and 119 

making Holt-Winter smoothing technique to forecast the recursive trend from the historically 120 

observed data series [12,26,30]. Here we use the single exponential smoothing technique as 121 

Kaleker in 2004 [34] used in his thesis:  122 

S#$% = α ∗ y# + �1 − α� ∗ S#    0 < α < 1, t > 0                           (3) 123 

Eq. (11) can be written as 124 

S#$% − S# = α ∗ €#                                                                                                            (4) 125 

The Holt-Winter method time series can be represented using the following model: 126 

y# = �b% + b+t� ∗ S# + €#                    (5) 127 

Where b% is the permanent component, b+  is the linear trend component, S# is the 128 

multiplicative seasonal factor, €# is the random error component, t is the time and t+1 is the 129 

lead time from t. 130 

From the Eq. (13)   131 

S# = ,-
./$.0# + €#                     (6) 132 

Sum of all the seasons can be written as 133 

∑ S##2%+ = M                      (7) 134 

Where L is the length of the year. 135 

So, the Eq. (7) can be written as, 136 

∑ y#%+#2% = �b% + b+ ∑ t� ∗ ∑ S# +%+#2%%+#2% €#                  (8) 137 

Assuming, ∑ y%+#2% # = Y , ∑ t%+#2% = 6 and ∑ S%+#2% # = M we get from Eq. (16)   138 

Y# = �b% + b+T� ∗ M + €#                    (9) 139 

And Eq. (14) can be written after the sum of all the seasons 140 

 M = 7-!€-
./$.0�                    (10) 141 
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Winexpo method has been developed by us to combine the traditional exponential and Holt-142 

Winter method. Combining Eq. (12) and Eq. (18) we get, 143 

8-9/!8-
 : = α∗€-

;-<€-=/9=0>
                    (11) 144 

Or,   
8-9/!8-

 : = α∗�./$.0��
�7-!€-� + €#                  (12) 145 

Winexpo is one of the integrative models as it holds the combination of Holt-Winter 146 

exponential smoothing and traditional exponential smoothing.  147 

3.4 Support Vector Machine model (SVM) 148 

Support Vector Machine (SVM) is the supervised learning models that analyse data used for 149 

classification and regression analysis [7,15,61,62,63].  The x related all points can be mapped 150 

in the hyperplane can be defined by the relation ∑ α?k�x?,? x� = constant where k (xi, x) is the 151 

kernel function used to suit the problem. Kernel function becomes small where y grows 152 

further away from x so it becomes the matter of closeness of each point of y to x. With the 153 

kernel function SVM actually use the relative closeness between the each point in the feature 154 

space. The detailed method of analysis can be expressed as following: 155 

Suppose our training data is consist of N pairs (X1,Y1), (X2, Y2)………….. (Xn, Yn); where 156 

Xi € Rp and Yi € {-1, 1}. Define a hyperplane by, {x: f(x) = xT
β + β0 = 0}, where β is a unit 157 

vector. A classification rule induced by f(x) is G(x) = sign {xT
β + β0}. Now the signed 158 

distance from the point x to the hyperplane is 0. Here we are able to find the hyperplane that 159 

creates biggest margin between training points for class 1 and -1. So, the optimization 160 

problem just reverses and forms the following dimension: 161 

maxβ,βE,‖β‖2% = M                                (13) 162 

Subject to,  163 

subject to,  y?Hx�β +  βIJ ≥ M   ;  i = 1,2, … … … . . , N                (14) 164 

We have used here Least Square Support Vector Machine is based on structural risk 165 

minimisation [61,62] in the model weight. It counters convex quadratic programming 166 

associated with Support Vector Machine (SVM) [56, 57]. The least square version of the 167 

SVM classifier is obtained by reformulating the minimization problem as 168 



8 

 

min J+ �w, b, e� = µ

+ x�β+ ∞

+ ∑ e?+R?2%   169 

Subject to equality constraints, 170 

y?Sx�β +  βIT = 1 − e?, i=1,2,……….n               (15) 171 

Eq. 36 can be written as 172 

e? = 1 − y?Sx�β +  βIT                  (16) 173 

The eq. 37 hold the case of regression. To solve the eq. 37 we use Lagrangian multiplier by 174 

which it can be solved. 175 

L+�w,β, e, α� = J+�w, e� − ∑ α?U?2% {[β +  βI] + e? − y?}              (17) 176 

Where, α?€ R , the Lagrangian multipliers. For evaluation performance test of SVM we use 177 

the error estimation and Kappa Coefficient statistic as well as the accuracy. The definition of 178 

Cohen’s Kappa is as follows [26, 54]: 179 

k = ZE!Z[
%!Z[

                    (18) 180 

Where, P0 is the relative observed agreement among variables; Pe is the hypothetical 181 

probability of chance agreement. If the rates are in the complete agreement then k =1 and if 182 

there is no agreement then k = 0. 183 

3.7 Estimation of Cumulative Hazard Proneness: 184 

To estimate the cumulative drought-proneness of the study region over the years we took help 185 

of the hazard function and survival analysis[7]. Let T be a non-negative random variable 186 

representing the waiting time until the occurrence of an event. For simplicity we can adopt 187 

the term ‘survival analysis’ referring to the event of interest as ‘hazard proneness’ and to the 188 

waiting time we state as ‘survival time’. We can assume T is a continuous random variable 189 

with probability density function (p.d.f.) f(t) and cumulative distribution function (c.d.f.) 190 

Pr {k < ]} given that probability that the event has occurred by duration t. Complement of 191 

c.d.f. the survival function becomes 192 

S�t� = Pr{T ≥ t} = 1 − F�t� = _ f�x�dx∞

#                            (19) 193 

Which gives probability of being ‘less drought prone’ just before duration t more generally 194 

the probability that the event of interest has not occurred by duration t. Here we use the 195 
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following distribution of T is given by hazard function or instantaneous route of occurrence 196 

of the event defined as 197 

Ώ�t� = lim#→I
bc {#d�ef$gf,hif}

# = j�#�
8�#�                            (20) 198 

Where f (t) is the derivative of S (t) 199 

S# = exp{− _ Ώ�x�}#
I dx                  (21) 200 

3.9 Error Estimation 201 

  3.9.1 Standard Error estimation (SE): 202 

The standard error can be stated as [31, 39] 203 

SE = m
√U                    (22) 204 

Where ∂the standard deviation of the distribution and n is is the number of samples. 205 

  3.9.2 Root of Mean Squared Error (RMSE): 206 

Root of mean squared deviation can be stated as [31,4,5] 207 

RMSE = p∑ �,-"""!,-�0>-q/
√�                                (23) 208 

Where, The RMSD of predicted values  for  y#""" times t of a regression's dependent 209 

variable y# with variables observed over T times. 210 

3.9.3. Mean Absolute Error (MAE): 211 

MAE measures average magnitude errors in the set of predictions without considering their 212 

direction. It is the average over the test sample of the absolute differences between prediction 213 

and actual observation where all individual differences have equal weight:  214 

MAE = 1/n ∑ syt − yuvsUt2%                    (24) 215 

Where yt is the observed value and yuv  is the predicted value. 216 

3.9.4. Mean Absolute Percentage Error (MAPE) 217 

Mean Absolute Percentage Error (MAPE) is a measure of prediction accuracy of a 218 

forecasting method of accuracy. MAPE can be stated as [31] 219 
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MAPE = %II%
U ∑ x,-!y-

,- xU#2%                                (25) 220 

Where, y# is the actual value and Ft is the forecasted value. 221 

 3.10 Significance test 222 

  3.10.1 Anderson-Darling Test: 223 

The Anderson-Darling test is the hypothesized distribution is F, and cumulative distribution 224 

is Fn and the formula can be written as 225 

A+ = n _ �yz�{�!y�{�0
y�{�|%!y�{�}

∞

!∞ dF�x�                               (26) 226 

3.10.2 Kolmogorov-Smirnov Test: 227 

Kolmogorov Smirnov test is a nonparametric test of the equality of continuous one 228 

dimensional probability distribution with compare of a sample with reference probability 229 

distribution [37, 55]. Kolmogorov Smirnov test statistic can be expressed as  230 

FU�x� = 1/n ∑ I[!∞,{]�X?�U?2%                              (27) 231 

Where I[!∞,{]�X?� is the indicator function, equal 1 if �X?�≤ x and equal to 0 otherwise. 232 

The Kolmogorov-Smirnov statistic of a given cumulative function F(x) is 233 

DU = sup{�FUx − F{�                    (28) 234 

Where sup is the supremum of the set of distance between the FUx and F{. In our case this 235 

model has been run at 95% significance level. 236 

3.10.3 Shapiro -Wilk Test 237 

Shapiro and Wilk test of the normality formula can be written as, 238 

W = �∑ ��{��^+z�q/
∑ �{�!{"�^+z�q/

                     (29) 239 

a? is the (a1………an) , x" is the mean. 240 

The constants ai can be written as �a% … … … . . aU� = �>�</
��>�</�</��//+ here 241 

m = �m% … … … . . mU�^T 242 
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and m% … … … . . mU are the expected values of the order statistics of independent and 243 

identically distributed random variables sampled from the standard normal distribution, 244 

and V is the covariance matrix of those order statistics. 245 

4. Application and Discussion 246 

Fluctuation of rainfall and a negative exponential trend are specified in Figure 3 (Yt = 247 

1418.88 × (0.999642^t). Rainfalls are more or less normally distributed at 95% confidence 248 

interval (Figure 4a). Residuals versus fit plot (Figure 4b) displays that the points are 249 

randomly distributed on both sides of zero with no recognisable patterns thus our rainfall data 250 

are having a constant variance. Residuals of rainfall are having a mean close to zero and the 251 

histogram is symmetric close to around zero (Figure 4c). Residuals versus order fit (Figure 252 

4d) shows that the residuals fall randomly around the centre line. Before proceed with rainfall 253 

and estimated 6 indices the reliability of those 6 indices are judged using Cronbach’s Alpha. 254 

The overall value of Cronbach’s alpha is 0.9694.  Average SPI and Z-score between the time 255 

frame 1901-1939 are -0.06 and 0.299 , in between 1940 -1980, 0.037 and 0.382 respectively 256 

and from 1980-2035 the average SPI and Z-score becomes -2.345. Average PN value from 257 

1901-1939 is 100.792 %, 1940-1980 PN becomes 100.641%; 1980-2035 it is diminished and 258 

become 98.967%. In the same way average DI is estimated and from 1901-1939 DI 5.76%, 259 

1940 to 1980 5.73% and DI from 1980 to 2035 4.64% value of DI is obtained. CZI and RAI 260 

are also decreased from 0.32 (1901-1939) and 0.38 to 0.26 (1940-1980) ,0.28 and later 1980-261 

2035 it reaches to 0.14 and 0.19. Overall all the indices attain negative trend. SPI, PN, DI, 262 

RAI, CZI and Z-score are added and a new index Standardized Total Drought (Sd) has been 263 

formed to estimate overall trend of meteorological drought of Bankura District. Estimation 264 

and prediction of the trend of Sd using the traditional exponential smoothing has been done 265 

and a slightly negative trend is obtained (Values reach to -0.143 in 2035) (Figure 5a). The 266 

residuals of traditional exponential smoothing trend values are ranging between -15 to +5 267 

(Figure 5b). In case of traditional exponential smoothing the average value between 1901-268 

1939 experiences -0.170, 1940 to 1980 the value reaches to -0.034 whereas between the 1980 269 

to 2035 the average value attains -0.134 thus overall trend is seemed to be more drought 270 

prone in recent upcoming periods. Similarly using Holt-Winter exponential smoothing 271 

analysis and prediction of drought has been done (Figure 5c) and residuals are fitted 272 

randomly as histogram plot based on the centre line (ranging between -2 to +5 range) (Figure 273 

5d). In case of Holt-Winter exponential smoothing the average value between 1901-1939 274 

achieve -0.163, between the time frame 1940-1980 and 1980 to 1935 it attain 0.061 and -275 
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0.261 values respectively. The combined model Winexpo attains 0.423 for 1901-1939, 0.51 276 

for 1940-1980 and -1.423 for 1980-2035.  277 

 278 

 279 

 280 

 281 

 282 

 283 

 284 

 285 

 286 

Figure 3 All station accumulated rainfall according to yearly time steps (1901-2017) 287 

 288 

 289 

 290 

 291 

 292 

 293 

 294 

 295 

 296 

 297 

Figure 4a Normal probability Plot of Rainfall Figure 4b Fitted value of rainfall vs. Residual 298 

value Figure 4c Residual value versus Frequency value Figure 4d Observation order vs. 299 

Residual value 300 
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Figure 5 Exponential Smoothing models and associated Residual Plots a) Exponential 301 

Smoothing c) Holt-Winter Smoothing e) Winexpo Simulation  302 

From the true classes determined from the categories of Sd SVM is capable to predict the 303 

nature of drought category. A user friendly SVM tool LSSVM is used to implement the 304 

classification of drought status of Bankura District. At data pre-processing stage raw values 305 

of Sd are linearly rescaled into [-1, 1] using the ranges of their minimums and maximums for 306 

binary distribution of classifiers. Applying the SVM each category against all is estimated in 307 

every case. In case of Extreme vs. others the model is obtained 43 support vectors, for 308 

extreme normal the model is obtained 33 support vectors, for mild drought the model obtains 309 

34 support vectors, most extreme the model obtains 28 support vectors, normal vs. others 310 

obtains 51 support vectors, severe vs. others obtains 8 support vectors and wet vs. others 311 
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obtains 20 support vectors.  From the observed true classes of 135 observations (used 312 

simulated value using Winexpo) drought probability classes are predicted by SVM. SVM 313 

performs with a medium accuracy level. According to SVM identified drought categories 314 

over years over 80% years are concentrated within severe moderate, severe, extreme and 315 

most extreme categories and about 20% years are concentrated within Moderate, Normal, and 316 

Extreme Normal, wet categories (Figure 6a) whereas according to Winexpo identified 317 

drought categories 36% years are mingled with severe moderate, severe, extreme, most 318 

extreme and moderate categories and over 64% are mingled with normal, mild, extreme 319 

normal and wet categories (Figure 6b). The extreme normal versus others, wet versus others, 320 

mild versus others, normal versus others training sample sets achieve over 90% accuracy 321 

whereas extreme and most extreme versus others and severe moderate versus others category 322 

training samples achieve less than 30% accuracy (Table 4). Overall average SVM achieve 323 

0.724 as Cohen’s Kappa and overall 60% accuracy has been achieved. So, SVM has 324 

performed moderately well in prediction of drought of our study area.  325 

 326 

 327 

 328 

 329 

 330 

 331 

 332 

 333 

 334 

 335 

 336 

Figure 6 Frequency of drought under each drought categories a) based on simulation model 337 

of SVM b) based on simulation of Winexpo 338 

 339 
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Table 4 Performance matrix of Support Vector Machine (SVM) 340 

 Training set Accuracy Cohen's kappa 

Extreme versus 

Others 

0.847 0.978 

Extreme 

Normal versus 

Others 

0.187 0.086 

Moderate 

versus Others 

0.987 0.987 

Most Extreme 

versus Others 

0.847 0.978 

Normal versus 

Others 

0.253 0.222 

Severe versus 

Others 

0.987 0.998 

Severe 

Moderate 

versus Others 

0.876 0.965 

Wet versus 

Others 

0.153 0.042 

Mild versus 

Others 

0.165 0.078 

 341 

The significance test using three individual tests has been run at 95% and 99% 342 

confidence interval (Table 5). The traditional exponential smoothing experiences probability 343 

value 0.004 for Anderson-Darling test, 0.005 for Shapiro-Wilk test and 0.004 by 344 

Kolmogorov-Smirnov test. The Holt-Winter exponential smoothing attains 0.003 345 

probabilities for Anderson-Darling test, 0.004 for Shapiro-Wilk test and 0.001 for 346 

Kolmogorov-Smirnov test. Winexpo model also attains probability value 0.002 for Anderson-347 

Darling test, 0.004 for Shapiro-Wilk test and 0.003 for Kolmogorov-Smirnov test. The 348 

Bayesian model of LSSVM extreme category vs. other categories experiences 10.275 as 349 

Anderson-Darling test statistic value, 0.527 as Shapiro-Wilk test statistic value and 0.435 as 350 

KS test statistic value. LSSVM Bayesian most extreme vs. other category is mingled with 351 

5.543 as Anderson-Darling test statistic, 0.727 as Shapiro-Wilk test statistic and 0.316 as KS 352 

test statistic. SVM extreme normal vs. other categories achieves 2.165 as Anderson-Darling 353 

test statistic, 0.904 as Shapiro-Wilk test statistic and 0.482 as KS test statistic value. 354 

Similarly, Mild versus others, severe versus others, severe moderate versus others and wet 355 

versus others are also calculated (Table 5). All the Anderson–Darling test is successful and 356 

valid at 95% confidence interval as the significance level P-value achieves <0.005 value in all 357 
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the nine combinations. Shapiro-Wilk and KS test for all the SVM nine possible combinations 358 

the probability value is <0.010 that means those values are significant at 99% confidence 359 

interval. Overall SVM model is significant at 95% confidence interval (in case of Anderson-360 

Darling test) and 99% significance level (in case of Shapiro-Wilk test and KS test). As P 361 

values are <0.005 and <0.010 for all the cases the distribution is not normal here and null 362 

hypothesis that there were no difference between the observed class and predicted class can 363 

be rejected and the alternative hypothesis is accepted. The error estimation and goodness of 364 

fit statistics (Table 6) of the individual models indicate that Winexpo attains the lowest error 365 

and highest R-square value in comparison with the other models altogether.  366 

Table 5 Error Estimation and Goodness of fit statistics (for error estimation 0.001 used 367 

as a multiplicative factor) 368 

Model Name SE Adjusted 

RMSE 

Adjusted 

MAE 

Adjusted 

MAPE 

R
2
(using Linear 

kernel) 

Traditional 

exponential 

smoothing 

0.024 0.996 0.790 25.65 0.39 

Holt-Winter 

Smoothing 

0.026 1.006 0.654 95.43 0.04 

Winexpo Model 0.111 1.64 0.445 49.53 0.35 

SVM-Most 

Extreme versus 

others  

3.080 0.049 0.045 4.559 0.99 

SVM-Extreme 

versus others 

1.303 0.038 0.019 2.048 0.94 

SVM-Severe 

versus others 

11.180 0.026 0.026 1.915 0.95 

SVM-Severe 

moderate versus 

others 

11.345 0.023 0.045 1.934 0.99 

SVM-Moderate 

versus others 

5.533 0.015 0.008 0.833 0.99 

SVM-Mild versus 

others 

5.333 0.020 0.013 1.413 0.97 

SVM-Normal 

versus others 

1.668 0.033 0.019 2.048 0.52 

SVM-Extreme 

Normal versus 

others 

7.580 0.018 0.014 1.487 0.35 
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SVM-Wet versus 

others 

83.724 0.001 0.008 0.900 0.34 

Overall SVM 

versus other  

0.130 0.02175 0.022 1.904 0.78 

 369 

Table 6 Significance test of the models 370 

 

Standardized 

Total 

Drought 

Anderson-Darling Test Shapiro-Wilk Test Kolmogorov-

Smirnov Test 

Type of 

Model 

Test 

Statistic 

Significanc

e Level 

Test 

Statistic 

Signific

ance 

Level 

Test 

Statistic 

Signific

ance 

Level 

 
 
 
 
Exponen
tial 
Smoothi
ng  

Traditional 

Exponential 

Smoothing 

8.827 0.004 
(<0.005) 

0.916 0.005 
(<0.05) 

0.169 0.004 
(<0.005) 

Holt-Winter 

Exponential 

Smoothing 

7.192 0.003 
(<0.005) 

0.917 0.004 
(<0.005) 

0.163 0.001 
(<0.005) 

Winexpo 

Model 

28.790 0.002 
(<0.005) 

0.529 0.004 
(<0.005) 

0.363 0.002 
(<0.005) 

Combine
d model 

SVM-

Extreme 

versus others 

10.275 <0.005 0.527 <0.010 0.435 <0.010  
 
 
 
 
 
 
 
 
Machine 
Learning 

SVM- 

Extreme 

normal 

versus others 

2.165 <0.005 0.904 <0.010 0.482 <0.010 

SVM-Mild 

vs. others 

11.598 <0.005 0.482 <0.010 0.419 <0.010 

SVM-

Moderate vs. 

others 

10.550 <0.005 0.455 <0.010 0.427 <0.010 

SVM-Most 

Extreme vs. 

others 

5.543 <0.005 0.727 <0.010 0.316 <0.010 

SVM-

Normal vs. 

others 

5.274 <0.005 0.827 <0.010 0.261 <0.010 

SVM-Severe 

vs. others 

5.544 <0.005 0.597 <0.010 0.466 <0.010 

SVM-Severe 

moderate_vs.

_others 

2.131 <0.005 0.662 <0.010 0.462 <0.010 

SVM-Wet vs. 

Others 

1.108 <0.005 0.935 <0.05 0.236 <0.010 
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Based on Winexpo and SVM model simulation the hazard prone zones have been estimated 371 

(Figure 6). The southern and south-western blocks are extreme drought-prone and northern 372 

and north-western blocks are mild to normal mode. The whole regimes form the coherent 373 

clusters in space highlighted in figure 7. Most extreme to severe drought categories are 374 

clubbed into negative x, y direction and wet categories are clubbed into positive directions of 375 

x and y. Based on the whole aspects of meteorological drought the year wise hazard and 376 

cumulative failure functions are developed. The most extreme, extreme, severe, severe 377 

moderate, moderate and mild categories are included in the category of “hazard prone or 378 

failure “whereas normal, extreme normal and wet categories are included in “censored” 379 

category.  Winexpo attains the best result so this model has been used here.  According to 380 

simulation of drought category using winexpo, almost 84 observations are fallen into 381 

“hazard-prone” category and 51 observations have fallen into the “censored” group. The 382 

distribution of yearly censored and failure categories are compared based on Weibull and 383 

logistic probability fit but logistic probability fit gave us the better association  (Correlation 384 

value 0.984 for logistic and 0.678 for Weibull). So, finally the logistic probability fit have 385 

been taken for year-wise estimation of cumulative hazard-proneness. The whole logistic 386 

model seemed to be more or less normal (Figure 8a and 8b) and it had achieved the 3.223 387 

value as the Anderson-Darling test. From the survival function (Figure 8c) fitted based on 388 

logistic probability plot encounters the fact that as the time (year) will progress the drought 389 

proneness will increase and at the year 2100 the vulnerability will be almost intolerable that 390 

will lead to massive disruption over the local community. Reversely, the progression of 391 

hazard based on cumulative curve plotting (Figure 9, figure 8d) exhibits the fact that the 392 

whole district will be severely affected by drought within 2100. The significance test for 393 

hazard function is done in 95% significance level .So, it can be concluded that the district will 394 

face extreme to severe drought hazard in the recent future. 395 

 396 

 397 

 398 

 399 

 400 

 401 
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 406 

 407 
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 409 

 410 

 411 

Figure 6 Drought-prone zone identification (12 month time steps) using a) Winexpo b) SVM 412 

 413 

 414 

 415 

 416 

 417 

 418 

 419 

 420 

 421 

Figure 7 Plotting of points in the coherent space 422 

 423 
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 427 

 428 
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 431 

 432 

Figure 8a Probability density function b Logistic probability fit c Survival function based on 433 

logistic probability fit d Progression of hazard rate with years 434 

5. Conclusion 435 

The evolution and quantification of drought are necessary for the proper planning and 436 

management of water resources to mitigate the hazard of future occurrences. By far the main 437 

challenge in this field is that a) to identify the correct method to analyze the meteorological 438 

drought b) to identify the spatial dimension over which the drought can be affected c) to 439 

simulate and predict the drought correctly as it is inherently needed for proper planning and 440 

management of water resources. Continuous year wise monitoring and simulation is also an 441 

important issue even seriously neglected in the drought monitoring and assessment. In most 442 

of the cases of drought monitoring and assessment historical rainfall data is one of the input 443 

factors. Our study is also not an exception with the above scenarios. Taking rainfall as the 444 

sole input factor we estimated 6 essential meteorological indices and from those indices we 445 

form a new index Standardized Total Drought (Sd) and simulate it up to 2035 and make a 446 

comparative assessment of exponential smoothing and machine learning procedures. 447 

Cumulative drought-proneness of the region using hazard function has been analysed and we 448 

found that the whole region will be severely drought affected within 2100.  The extremities of 449 

rainfall and temperature drive a potential threat to agriculture, food security and socio-450 

economic vulnerability. Thus a more detailed structural study is required to explore the 451 

synergetic effects of trends and patterns of other climatic variables. However the conclusion 452 
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reached in this study can be an elementary step to improve the risk management strategy, 453 

review of agricultural practices and water use in this counterpart.  454 
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