SCIENCEDOMAIN international www.sciencedomain.org

SDI FINAL EVALUATION FORM 1.1

PART 1:

Journal Name:	
	Physical Science International Journal
Manuscript Number:	
	Ms_PSIJ_47006
Title of the Manuscript:	
	Differences Between Two Weak Interaction Theories
Type of Article:	

PART 2:

FINAL EVALUATOR'S comments on revised paper (if any)	Authors' response to final evaluator's comments
I agree with the author that, in the notation of Ref. [14] one can take the Dirac	
spinor $w^{1}(0) = (1,0,0,0)$ as a state with a definite spin (as given in Eq.(3.2) of	
[14]).	
Than the action of the operator (1+-\gamma_5) as shown in Eq.(2) on page 6 of the	
manuscript produces a mixed state of $w^{1}(0)$ and $w^{3}(0)$ (note that unitarity here	
can be restored by an adjustment of the operator normalization, i.e. factor 1/2). So	
one gets a quantum mixture of two states with different spins. Such quantum mixed	
states are well known. The mixed state consists of solutions of the Dirac	
equation(s) which are at rest and have the initial mass m. So this mixed state	
doesn't have infinite energy-momentum, since the operator (1+-\gamma_5) acts	
only in the spinor space and doesn't affect 4-momenta in the Minkowski space. So	
the critics of the author of the standard $(1+-gamma_5)/2$ projection operators is	
completely wrong. Note that the standard treatment of electroweak interactions is	
both justified theoretically and verified experimentally (up to certain but very good	
precision).	
But the main problem of the present paper is not the faults in the critics of the	
Standard Model. The problem is that the suggested alternative is not elaborated.	
Observable consequences of the new model have not been confronted to	
experimental data on week processes, e.g. for decays of Z and w bosons.	
Weanwhile the standard approach describes these decays in the perfect agreement	
the suggested model is shuisasly non renormalizable and violates unitarity	
the suggested model is obviously non-renormalizable and violates unitarity.	
For these reason I recommend to reject the manuscript	

Reviewer Details:

Name:	Andrej B. Arbuzov Bogoliubov
Department, University & Country	Joint Institute for Nuclear Research, Russia

