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In this paper, we introduce a new kind of closed sets called α∗-closed sets in a topological space
and investigate their properties. These closed sets are compared with the closed sets and the
generalized closed sets. We also introduce the α∗-homeomorphisms and develop their properties
by using the α∗-closed maps and α∗-continuous maps.
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1 Introduction

The concept of generalized closed sets called g−closed sets were introduced by Levine [1] in 1970
and investigated their properties. With the introduction of this generalized closed sets, many authors
introduced different type of generalized closed sets and studied their properties. The ω-closed set
[2], semi-generalized closed (briefly sg-closed) set [3], generalized α-closed (briefly gα-closed) set
[4], regular generalized closed (briefly rg-closed) set [5], beta weakly generalzed closed (briefly βwg-
closed) set [6], generalized semi open-closed (briefly gso-closed) set [7] are some of the generalized
closed sets in the literature.
Homeomorphisms are mappings which preserves the topological properties of the given topological
spaces. By definition, a homeomorphism between topological spaces X and Y is a bijective map f :
X → Y when both f and f−1 are continuous. For the generalization of the notion of homeomorphisms,
Maki etal [8] introduced and studied the g-homeomorphisms and gc-homeomorphisms between topological
spaces. Devi etal [9] introduced and studied sg-homeomorphisms and gs-homeomorphisms. Veera
kumar [10] introduced and studied ∗g-homeomorphisms and ∗gc-homeomorphisms.There are some
recent researches carried out on generalized homeomorphisms [11,12,13,14,15].

In this paper, we first introduced a new kind of generalized closed sets called the α∗-closed
sets and studied their topological properties. The α∗-closed sets are compared with the closed
sets and the g− closed sets. We also introduced the α∗-closed maps and α∗-continuous maps
and investigated their properties. The notion of irresoluteness was introduced by Crossely and
Hilderband [16] in 1972 which is independent of continuous maps. In this paper, we introduced
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the α∗-irresolute and investigated this with the α∗-continuous maps. Finally, we define the notion
of α∗-homeomorphism and studied the properties of α∗-homeomorphism in a general topological
space.

2 Preliminaries

Throughout this paper, we represent X, Y and Z as the topological spaces (X, τ), (Y, σ) and (Z, η)
respectively on which no separation axioms are assumed unless otherwise stated. For a subset A of
X, cl(A) denotes the closure of A and int(A) denotes the interior of A.

We recall the following definitions in the topological space X.

Definition 2.1. (1) A subset A of a space X is said to be generalized closed (g-closed) set if cl(A) ⊆
U whenever A ⊆ U and U is open in X.

Definition 2.2. (8) A map f : X → Y is said to be g-closed map if for each closed set F in X, f(F )
is g-closed in Y.

Definition 2.3. (17) A map f : X → Y is said to be generalized continuous (g-continuous) map if
f−1(V ) is g-open in X for each open set V in Y.

Definition 2.4. (18) A bijective function f : X → Y is called generalized homeomorphism (g-
homeomorphism) if both f and f−1 are g-continuous.

3 α∗-Closed Set

Definition 3.1. A subset A of a space X is said to be a α∗-closed set if int(cl(A)) ⊆ U whenever
A ⊆ U and U is open in X.

From the definition, it is clear that every closed set is a α∗-closed set as well as every g-closed set is
a α∗-closed set.

Example 3.1. Let X = {a, b, c} and τ = {φ, {b}, {c}, {b, c}, X} be a topology on X. Then, φ, {a}, {b}, {c}, {a, b}, {a, c}
and X are the α∗-closed sets. Moreover, φ, {a}, {a, b}, {a, c} and X are the g-closed sets.

Example 3.2. In Rn space with usual topology, every closed interval is a α∗-closed set.

Theorem 3.3. The intersection of two α∗-closed sets in a space X is a α∗-closed set in X.

Proof. Let A and B be two α∗-closed sets. Then, int(cl(A)) ⊆ U1 and int(cl(B)) ⊆ U2 whenever
A ⊆ U1 and B ⊆ U2 for the open sets U1 and U2 in X. Now, int(cl(A))∩ int(cl(B)) ⊆ U1 ∩ U2
whenever (A ∩ B) ⊆ U1 ∩ U2 and U1 ∩ U2 is open in X. Since int(cl(A ∩ B)) ⊆ int(cl(A))∩
int(cl(B)), A ∩B is a α∗-closed set in X.

The union of two α∗-closed sets in a space X need not be a α∗-closed set in X. This can be seen
from the following example.

Example 3.4. Let X = {a, b, c} and τ = {φ, {a}, {c}, {a, c}, X}. Then, A = {a} and B = {c} are
α∗-closed in X; but, A ∪B = {a, c} is not a α∗-closed set in X.

In general, the collection of all α∗-closed sets in X does not form a topology for X because the
arbitrary union of α∗-closed sets is not a α∗-closed set in X as seen in the above example.
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Definition 3.2. A topological space X is a Tα∗ -space if every α∗-closed set in X is a closed set in
X.

Theorem 3.5. In Tα∗ -space, the finite union of α∗-closed sets is a α∗-closed set.

Proof. Suppose A = ∪n
i Ai is a finite union of α∗-closed sets in Tα∗ -space. Then,

Ac = (∪n
i Ai)

c = ∩n
i Ac

i .

Since in Tα∗ space, every α∗-closed set is a closed set, so Ac
i open for each i and so Ac is open.

Therefore, A is closed and hence α∗-closed.

4 α∗-closed map

Definition 4.1. A map f : X → Y is said to be α∗-closed map if for each closed set F in X, f(F ) is
a α∗-closed set in Y .

Definition 4.2. A map f : X → Y is said to be α∗-open map if for each open set U in X, f(U) is a
α∗-open set in Y .

Definition 4.3. A map f : X → Y is said to be α∗-continuous map if f−1(V ) is α∗-closed in X for
each closed set V in Y.

Definition 4.4. A map f : X → Y is said to be a α∗-irresolute if f−1(V ) is a α∗-closed in X for each
α∗-closed set V in Y.

Lemma 4.1. Every closed map is a α∗-closed map.

Proof. Let f : X → Y be a closed map and let F be a closed set in X. Then, f(F ) is a closed set in
Y and so α∗-closed Y . Thus, f is a α∗-closed map.

The converse of the above Lemma need not be true in general.

Example 4.2. Let X = Y = {a, b, c} and let τ = {X, φ, {a, b}} and σ = {Y, φ, {b}, {a, c}} be
topologies on X and Y respectively. Let f(x) = x for every x in X. Then, f is a α∗-closed map. As
the image of {c} is not a closed set, f is not a closed map.

Remark 4.1. Every g-closed map is a α∗-closed map.

Lemma 4.3. If f : X → Y is a α∗-closed map and if A = f−1(B) for some closed set B in Y , then
fA : A → Y is a α∗-closed map.

Proof. Let F be a closed set in A. Then, there is a closed set H in X such that F = A ∩ H.
Then,fA(F ) = f(A ∩ H) = f(A) ∩ f(H) = B ∩ f(H). Now f(H) is a α∗-closed set in Y as f is a
α∗-closed map. Therefore, B ∩ f(H) is a α∗-closed set in Y and so fA is a α∗- closed map.

Theorem 4.4. Let f : X → Y and g : Y → Z be α∗-closed maps. If f is a closed map, then
gof : X → Z is a α∗-closed map.

Proof. Let F be a closed set in X. Then, f(F ) is a closed set in Y as f is a closed map. Then,
(g ◦ f)(F ) = g(f(F )) is a α∗-closed set in Z as g is a α∗-closed map. Therefore, g ◦ f is a α∗-closed
map.

Lemma 4.5. If f : X → Y is a α∗-irresolute, then f is a α∗-continuous map.
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Proof. Let F be any closed set in Y. Since every closed set is a α∗-closed set, F is a α∗-closed set
in Y. Since f is a α∗-irresolute, f−1(F ) is a α∗-closed set in X. Hence, f is a α∗-continuous.

Lemma 4.6. If f : X → Y is a α∗-continuous map and Y is a Tα∗ -space, then f is a α∗-irresolute.

Proof. Let F be a α∗-closed set in Y. Since Y is a Tα∗ -space, F is a closed set. Then, f−1(F ) is a
α∗-closed set in X. Hence f is a α∗-irresolute.

Theorem 4.7. If f : X → Y is a α∗-irresolute and g : Y → Z is a α∗-continuous map, then
gof : X → Z is a α∗-continuous map.

Proof. Let F be a closed set in Z. Then, g−1(F ) is a α∗-closed set in Y as g is α∗-continuous. Now
(g ◦ f)−1(F ) = f−1(g−1(F )) is a α∗-closed set in X as f is a α∗-irresolute. Therefore, g ◦ f is a
α∗-continuous map.

Corollary 4.8. If f : X → Y and g : Y → Z are α∗-continuous maps and Y is a Tα∗ -space, then
g ◦ f is a α∗-continuous map.

Proof. In Tα∗ -space, each α∗-closed set is a closed set, the result is directly follows from theorem
4.2.

Lemma 4.9. Every continuous map is a α∗-continuous map.

Proof. Let f : X → Y be a continuous map and G be an open set in Y. Then, f−1(G) is an open set
in X and hence α∗-open set in X. Therefore, f is a α∗-continuous map.

Remark 4.2. Every g-continuous map is a α∗-continuous map.

5 α∗-Homeomorphism

Definition 5.1. A bijection f : X → Y is called α∗- homeomorphism when f is both α∗-continuous
and α∗-closed map.

Lemma 5.1. Every homeomorphism is a α∗-homeomorphism.

Proof. Let f : X → Y be a homeomorphism. Then, f is both continuous and closed. Then, clearly
f is a α∗-continuous and α∗-closed. So f is a α∗-homeomorphism.

Lemma 5.2. Every g-homeomorphism is a α∗-homeomorphism.

Proof. Let f : X → Y be a g-homeomorphism. Then, f is both g-continuous and g-closed. Then,
clearly f is α∗-continuous and α∗-closed. So f is a α∗-homeomorphism.

The converse of the above two lemmas need not be true as seen from the following example.

Example 5.3. Let X with a topology τ = {X, φ, {a}, {a, c}} and Y with a topology σ = {Y, φ, {a}, {c}, {a, c}}
where X = Y = {a, b, c}. If f : X → Y with f(a) = a, f(b) = c and f(c) = b. Then, f is a α∗-
homeomorphism, but not a homeomorphism and also not a g-homeomorphism as the inverse image
of {a, b} in Y is not closed and also not g-closed in X.

Theorem 5.4. For any bijection f : X → Y , the following statements are equivalent:

(a) the inverse map f−1 : Y → X is a α∗- continuous map,

(b) f is a α∗-open map,
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(c) f is a α∗-closed map.

Proof. Let f−1 : Y → X be a α∗-continuous map and G be any open set in X. Then, the inverse
image of G under f−1, f(G), is α∗-open in Y and so f is a α∗-open map. Now, let f be a α∗-
open map and let F be any closed set in X. Then, F c is open in X so f(F c) is α∗-open in Y. But
f(F c) = Y r f(F ) and so f(F ) is α∗- closed in Y. Therefore, f is a α∗- closed map. Finally, let f
be a α∗-closed map and let F be any closed set in X. Then, f(F ) is α∗-closed in Y . But f(F ) is the
inverse image of F under f−1. Therefore, f−1 is α∗- continuous.

Theorem 5.5. Let f : X → Y be a α∗- continuous map from a space X onto a space Y . Then, the
following statements are equivalent:

(a) f is a α∗-open map,

(b) f is a α∗-homeomorphism,

(c) f is a α∗-closed map.

Proof. Assume that f is a α∗-open map. Then, clearly f is a α∗- homeomorphism. Now, if f is a
α∗-homeomorphism, then, by definition f is a α∗-closed map. Finally, if f is a α∗-closed map, then,
by Theorem 5.4, f is a α∗-open map.

The following example shows that, in general, the composition of two α∗-homeomorphisms need not
be a α∗-homeomorphism.

Example 5.6. Let X = Y = Z = {a, b, c} be topological spaces with τ = {X, φ, {a}, {a, b}}, σ =
{Y, φ, {a}, {c}, {a, c}} and η = {Z, φ, {a}, {b}, {a, b}} respectively. Let f : X → Y with f(a) =
a, f(b) = c, f(c) = b and let g : Y → Z with g(x) = x for each x in Y. Then, both f and g are
α∗-homeomorphisms, but their composition gof : X → Z is not a α∗- homeomorphism as {a, c} is
closed in Z, but (gof )−1({a, c}) = {a, b} is not α∗-closed in Z.

Theorem 5.7. Let X and Z be any two topological spaces and let Y be a Tα∗ -space. If f : X → Y
and g : Y → Z be α∗-homeomorphisms, then the composition g◦f : X → Z is a α∗-homeomorphism.

Proof. Let F be a closed set in Z. Then, g−1(F ) is a α∗-closed set in Y as g is a α∗-continuous map.
Since Y is a Tα∗ -space, g−1(F ) is a closed set in Y . Thus f−1(g−1(F ))=(g ◦ f)−1(F ) is a α∗-closed
set in X. Thus g ◦ f is a α∗-continuous map.

Again, let F be a closed set in X. Then, f(F ) is a α∗-closed set in Y as f is a α∗-closed map.
Since Y is a Tα∗ -space, f(F ) is a closed set in Y . Thus g(f(F )) = (g ◦ f)(F ) is a α∗-closed set in
Z. Thus g ◦ f is a α∗-closed map. Hence g ◦ f is a α∗-homeomorphism.

6 Conclusions

In this paper, we introduced a new kind of generalized closed sets, α∗-closed sets, and investigated
their properties. The α∗-closed maps, α∗-continuous maps and α∗-irresolutes were also defined and
investigated their properties. Finally, the α∗-homeomorphisms were introduced and their properties
were established.
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