SCIENCEDOMAIN international

www.sciencedomain.org

Study of α^* -Homeomorphisms by α^* -closed sets

Vithyasangaran K^{*1} and Elango P^2

¹Department of Mathematics, Faculty of Science, Eastern University, Sri Lanka ²Department of Mathematics, Faculty of Science, Eastern University, Sri Lanka.

Type of Article

Abstract

In this paper, we introduce a new kind of closed sets called α^* -closed sets in a topological space and investigate their properties. These closed sets are compared with the closed sets and the generalized closed sets. We also introduce the α^* -homeomorphisms and develop their properties by using the α^* -closed maps and α^* -continuous maps.

Keywords: g-closed set, *g*-continuous function, *g*-irresolute map, *g*-homeomorphism. 2010 Mathematics Subject Classification: 54A05; 54C08

1 Introduction

The concept of generalized closed sets called g-closed sets were introduced by Levine [1] in 1970 and investigated their properties. With the introduction of this generalized closed sets, many authors introduced different type of generalized closed sets and studied their properties. The ω -closed set [2], semi-generalized closed (briefly sg-closed) set [3], generalized α -closed (briefly $g\alpha$ -closed) set [4], regular generalized closed (briefly rg-closed) set [5], beta weakly generalzed closed (briefly βwg closed) set [6], generalized semi open-closed (briefly gso-closed) set [7] are some of the generalized closed sets in the literature.

Homeomorphisms are mappings which preserves the topological properties of the given topological spaces. By definition, a homeomorphism between topological spaces X and Y is a bijective map $f : X \rightarrow Y$ when both f and f^{-1} are continuous. For the generalization of the notion of homeomorphisms, Maki etal [8] introduced and studied the g-homeomorphisms and gc-homeomorphisms between topological spaces. Devi etal [9] introduced and studied sg-homeomorphisms and gs-homeomorphisms. Veera kumar [10] introduced and studied *g-homeomorphisms and *gc-homeomorphisms. There are some recent researches carried out on generalized homeomorphisms [11,12,13,14,15].

In this paper, we first introduced a new kind of generalized closed sets called the α^* -closed sets and studied their topological properties. The α^* -closed sets are compared with the closed sets and the g- closed sets. We also introduced the α^* -closed maps and α^* -continuous maps and investigated their properties. The notion of irresoluteness was introduced by Crossely and Hilderband [16] in 1972 which is independent of continuous maps. In this paper, we introduced

^{*}Corresponding author: E-mail: kvithy83@gmail.com

the α^* -irresolute and investigated this with the α^* -continuous maps. Finally, we define the notion of α^* -homeomorphism and studied the properties of α^* -homeomorphism in a general topological space.

2 Preliminaries

Throughout this paper, we represent X, Y and Z as the topological spaces (X, τ) , (Y, σ) and (Z, η) respectively on which no separation axioms are assumed unless otherwise stated. For a subset A of X, cl(A) denotes the closure of A and int(A) denotes the interior of A.

We recall the following definitions in the topological space X.

Definition 2.1. (1) A subset A of a space X is said to be generalized closed (g-closed) set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

Definition 2.2. (8) A map $f : X \to Y$ is said to be *g*-closed map if for each closed set F in X, f(F) is *g*-closed in Y.

Definition 2.3. (17) A map $f : X \to Y$ is said to be generalized continuous (*g*-continuous) map if $f^{-1}(V)$ is *g*-open in X for each open set V in Y.

Definition 2.4. (18) A bijective function $f : X \to Y$ is called generalized homeomorphism (g-homeomorphism) if both f and f^{-1} are g-continuous.

3 α^* -Closed Set

Definition 3.1. A subset A of a space X is said to be a α^* -closed set if $int(cl(A)) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

From the definition, it is clear that every closed set is a α^* -closed set as well as every *g*-closed set is a α^* -closed set.

Example 3.1. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}$ be a topology on X. Then, $\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}$ and X are the α^* -closed sets. Moreover, $\phi, \{a\}, \{a, b\}, \{a, c\}$ and X are the *g*-closed sets.

Example 3.2. In \mathbb{R}^n space with usual topology, every closed interval is a α^* -closed set.

Theorem 3.3. The intersection of two α^* -closed sets in a space *X* is a α^* -closed set in *X*.

Proof. Let A and B be two α^* -closed sets. Then, $int(cl(A)) \subseteq U_1$ and $int(cl(B)) \subseteq U_2$ whenever $A \subseteq U_1$ and $B \subseteq U_2$ for the open sets U_1 and U_2 in X. Now, $int(cl(A)) \cap int(cl(B)) \subseteq U_1 \cap U_2$ whenever $(A \cap B) \subseteq U_1 \cap U_2$ and $U_1 \cap U_2$ is open in X. Since $int(cl(A \cap B)) \subseteq int(cl(A)) \cap int(cl(B))$, $A \cap B$ is a α^* -closed set in X.

The union of two α^* -closed sets in a space X need not be a α^* -closed set in X. This can be seen from the following example.

Example 3.4. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$. Then, $A = \{a\}$ and $B = \{c\}$ are α^* -closed in X; but, $A \cup B = \{a, c\}$ is not a α^* -closed set in X.

In general, the collection of all α^* -closed sets in X does not form a topology for X because the arbitrary union of α^* -closed sets is not a α^* -closed set in X as seen in the above example.

Definition 3.2. A topological space X is a T_{α^*} -space if every α^* -closed set in X is a closed set in X.

Theorem 3.5. In T_{α^*} -space, the finite union of α^* -closed sets is a α^* -closed set.

Proof. Suppose $A = \bigcup_{i}^{n} A_{i}$ is a finite union of α^{*} -closed sets in $T_{\alpha^{*}}$ -space. Then,

$$A^c = (\bigcup_i^n A_i)^c = \bigcap_i^n A_i^c$$

Since in T_{α^*} space, every α^* -closed set is a closed set, so A_i^c open for each i and so A^c is open. Therefore, A is closed and hence α^* -closed.

4 α^* -closed map

Definition 4.1. A map $f: X \to Y$ is said to be α^* -closed map if for each closed set F in X, f(F) is a α^* -closed set in Y.

Definition 4.2. A map $f: X \to Y$ is said to be α^* -open map if for each open set U in X, f(U) is a α^* -open set in Y.

Definition 4.3. A map $f : X \to Y$ is said to be α^* -continuous map if $f^{-1}(V)$ is α^* -closed in X for each closed set V in Y.

Definition 4.4. A map $f : X \to Y$ is said to be a α^* -irresolute if $f^{-1}(V)$ is a α^* -closed in X for each α^* -closed set V in Y.

Lemma 4.1. Every closed map is a α^* -closed map.

Proof. Let $f: X \to Y$ be a closed map and let F be a closed set in X. Then, f(F) is a closed set in Y and so α^* -closed Y. Thus, f is a α^* -closed map.

The converse of the above Lemma need not be true in general.

Example 4.2. Let $X = Y = \{a, b, c\}$ and let $\tau = \{X, \phi, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{b\}, \{a, c\}\}$ be topologies on *X* and *Y* respectively. Let f(x) = x for every *x* in *X*. Then, *f* is a α^* -closed map. As the image of $\{c\}$ is not a closed set, *f* is not a closed map.

Remark 4.1. Every *g*-closed map is a α^* -closed map.

Lemma 4.3. If $f : X \to Y$ is a α^* -closed map and if $A = f^{-1}(B)$ for some closed set B in Y, then $f_A : A \to Y$ is a α^* -closed map.

Proof. Let F be a closed set in A. Then, there is a closed set H in X such that $F = A \cap H$. Then, $f_A(F) = f(A \cap H) = f(A) \cap f(H) = B \cap f(H)$. Now f(H) is a α^* -closed set in Y as f is a α^* -closed map. Therefore, $B \cap f(H)$ is a α^* -closed set in Y and so f_A is a α^* -closed map. \Box

Theorem 4.4. Let $f : X \to Y$ and $g : Y \to Z$ be α^* -closed maps. If f is a closed map, then $gof : X \to Z$ is a α^* -closed map.

Proof. Let F be a closed set in X. Then, f(F) is a closed set in Y as f is a closed map. Then, $(g \circ f)(F) = g(f(F))$ is a α^* -closed set in Z as g is a α^* -closed map. Therefore, $g \circ f$ is a α^* -closed map.

Lemma 4.5. If $f : X \to Y$ is a α^* -irresolute, then f is a α^* -continuous map.

Proof. Let *F* be any closed set in *Y*. Since every closed set is a α^* -closed set, *F* is a α^* -closed set in *Y*. Since *f* is a α^* -irresolute, $f^{-1}(F)$ is a α^* -closed set in X. Hence, *f* is a α^* -continuous.

Lemma 4.6. If $f: X \to Y$ is a α^* -continuous map and Y is a T_{α^*} -space, then f is a α^* -irresolute.

Proof. Let F be a α^* -closed set in Y. Since Y is a T_{α^*} -space, F is a closed set. Then, $f^{-1}(F)$ is a α^* -closed set in X. Hence f is a α^* -irresolute.

Theorem 4.7. If $f : X \to Y$ is a α^* -irresolute and $g : Y \to Z$ is a α^* -continuous map, then $gof : X \to Z$ is a α^* -continuous map.

Proof. Let F be a closed set in Z. Then, $g^{-1}(F)$ is a α^* -closed set in Y as g is α^* -continuous. Now $(g \circ f)^{-1}(F) = f^{-1}(g^{-1}(F))$ is a α^* -closed set in X as f is a α^* -irresolute. Therefore, $g \circ f$ is a α^* -continuous map.

Corollary 4.8. If $f : X \to Y$ and $g : Y \to Z$ are α^* -continuous maps and Y is a T_{α^*} -space, then $g \circ f$ is a α^* -continuous map.

Proof. In T_{α^*} -space, each α^* -closed set is a closed set, the result is directly follows from theorem 4.2.

Lemma 4.9. Every continuous map is a α^* -continuous map.

Proof. Let $f: X \to Y$ be a continuous map and G be an open set in Y. Then, $f^{-1}(G)$ is an open set in X and hence α^* -open set in X. Therefore, f is a α^* -continuous map.

Remark 4.2. Every *g*-continuous map is a α^* -continuous map.

5 α^* -Homeomorphism

Definition 5.1. A bijection $f : X \to Y$ is called α^* - homeomorphism when f is both α^* -continuous and α^* -closed map.

Lemma 5.1. Every homeomorphism is a α^* -homeomorphism.

Proof. Let $f : X \to Y$ be a homeomorphism. Then, f is both continuous and closed. Then, clearly f is a α^* -continuous and α^* -closed. So f is a α^* -homeomorphism.

Lemma 5.2. Every *g*-homeomorphism is a α^* -homeomorphism.

Proof. Let $f : X \to Y$ be a *g*-homeomorphism. Then, *f* is both *g*-continuous and *g*-closed. Then, clearly *f* is α^* -continuous and α^* -closed. So *f* is a α^* -homeomorphism.

The converse of the above two lemmas need not be true as seen from the following example.

Example 5.3. Let *X* with a topology $\tau = \{X, \phi, \{a\}, \{a, c\}\}$ and *Y* with a topology $\sigma = \{Y, \phi, \{a\}, \{c\}, \{a, c\}\}$ where $X = Y = \{a, b, c\}$. If $f : X \to Y$ with f(a) = a, f(b) = c and f(c) = b. Then, *f* is a α^* -homeomorphism, but not a homeomorphism and also not a *g*-homeomorphism as the inverse image of $\{a, b\}$ in *Y* is not closed and also not *g*-closed in *X*.

Theorem 5.4. For any bijection $f : X \to Y$, the following statements are equivalent:

- (a) the inverse map $f^{-1}: Y \to X$ is a α^* continuous map,
- (b) f is a α^* -open map,

(c) f is a α^* -closed map.

Proof. Let $f^{-1}: Y \to X$ be a α^* -continuous map and G be any open set in X. Then, the inverse image of G under f^{-1} , f(G), is α^* -open in Y and so f is a α^* -open map. Now, let f be a α^* -open map and let F be any closed set in X. Then, F^c is open in X so $f(F^c)$ is α^* -open in Y. But $f(F^c) = Y \smallsetminus f(F)$ and so f(F) is α^* - closed in Y. Therefore, f is a α^* - closed map. Finally, let f be a α^* -closed map and let F be any closed set in X. Then, f(F) is α^* - closed in Y. But f(F) is the inverse image of F under f^{-1} . Therefore, f^{-1} is α^* - continuous.

Theorem 5.5. Let $f : X \to Y$ be a α^* - continuous map from a space X onto a space Y. Then, the following statements are equivalent:

- (a) f is a α^* -open map,
- (b) f is a α^* -homeomorphism,
- (c) f is a α^* -closed map.

Proof. Assume that f is a α^* -open map. Then, clearly f is a α^* - homeomorphism. Now, if f is a α^* -homeomorphism, then, by definition f is a α^* -closed map. Finally, if f is a α^* -closed map, then, by Theorem 5.4, f is a α^* -open map.

The following example shows that, in general, the composition of two α^* -homeomorphisms need not be a α^* -homeomorphism.

Example 5.6. Let $X = Y = Z = \{a, b, c\}$ be topological spaces with $\tau = \{X, \phi, \{a\}, \{a, b\}\}, \sigma = \{Y, \phi, \{a\}, \{c\}, \{a, c\}\}$ and $\eta = \{Z, \phi, \{a\}, \{b\}, \{a, b\}\}$ respectively. Let $f : X \to Y$ with f(a) = a, f(b) = c, f(c) = b and let $g : Y \to Z$ with g(x) = x for each x in Y. Then, both f and g are α^* -homeomorphisms, but their composition $gof : X \to Z$ is not a α^* -homeomorphism as $\{a, c\}$ is closed in Z, but $(gof)^{-1}(\{a, c\}) = \{a, b\}$ is not α^* -closed in Z.

Theorem 5.7. Let *X* and *Z* be any two topological spaces and let *Y* be a T_{α^*} -space. If $f: X \to Y$ and $g: Y \to Z$ be α^* -homeomorphisms, then the composition $g \circ f: X \to Z$ is a α^* -homeomorphism.

Proof. Let *F* be a closed set in *Z*. Then, $g^{-1}(F)$ is a α^* -closed set in *Y* as *g* is a α^* -continuous map. Since *Y* is a T_{α^*} -space, $g^{-1}(F)$ is a closed set in *Y*. Thus $f^{-1}(g^{-1}(F))=(g \circ f)^{-1}(F)$ is a α^* -closed set in *X*. Thus $g \circ f$ is a α^* -continuous map.

Again, let *F* be a closed set in *X*. Then, f(F) is a α^* -closed set in *Y* as *f* is a α^* -closed map. Since *Y* is a T_{α^*} -space, f(F) is a closed set in *Y*. Thus $g(f(F)) = (g \circ f)(F)$ is a α^* -closed set in *Z*. Thus $g \circ f$ is a α^* -closed map. Hence $g \circ f$ is a α^* -homeomorphism.

6 Conclusions

In this paper, we introduced a new kind of generalized closed sets, α^* -closed sets, and investigated their properties. The α^* -closed maps, α^* -continuous maps and α^* -irresolutes were also defined and investigated their properties. Finally, the α^* -homeomorphisms were introduced and their properties were established.

Acknowledgment

The authors acknowledge the reviewers for their valuable comments.

References

- [1] Levine, N. (1970). Generalized closed sets in Topology. Rend. Circ. Mat. Palermo, 19, 89-96.
- [2] Sundaram, P. and Sheik John, M. (1995). Weakly closed sets and weak continuous maps in topological spaces. Proc.82 nd Indian Sci.Cong, 49.
- [3] Bhattacharyya, P. and Lahiri B. K. (1987). Semi generalized closed sets in Topology. Indian J. Math., 29(3), 375-382.
- [4] Maki, H. Devi, R. and Balachandran K. (1993). Generalized a closed sets in topology. Fukuoka Uni. Ed, III, 13-21.
- [5] Pallaniappan, N. and Rao K. C. (1993). Regular generalized closed Sets. Kyungpook. Math. J., 33, 211-219.
- [6] Govindappa. Navalagi1 and Kantappa. M. Bhavikatti. (2018). Beta Weakly Generalized Closed sets in Topology. Journal of Computer and Mathematical Sciences, 9(5), 435-446.
- [7] Irshad M. I. and Elango, P (2019). On gso-Closed Sets in Topological Spaces. Advances in Research, 18(1), 1-5.
- [8] Maki, H. Sundaram, P. and Balachandran, K. (1991). On generalized homeomorphisms in topological spaces. Bull. Fukuoka Univ. Ed. Part III, 40, 23-31.
- [9] Devi, R., Maki, H and Balachandran, K. (1995). Semi Generalized homeomorphism and generalized semi homeomorphism in topological spaces. Indian Jour. Pure Appl. Math., 26(3), 271-284.
- [10] Veera Kumar, M. K. R. S. (1993). Between g*-closed sets and g-closed sets. Antarktika J. Math. (Reprint).
- [11] Charanya, S. and Ramasamy, Dr. K. (2017). Pre Semi Homeomorphisms and Generalized Semi Pre Homeomorphisms in Topological Spaces. International Journal of Mathematics Trends and Technology (IJMTT), 42(1), 16-24.
- [12] Vivekananda Dembre, Pravin G Dhawale, and Devendra Gowda. (2018). New semi generalized spaces in topological spaces. International Journal of Applied Research, 4(2), 99-102.
- [13] Prabhavati Shankarraddi Mandalageri, Revanasiddappa Shrishailappa Wali. (2018). On $\alpha r \omega$ -Homeomorphisms in Topological Spaces. Journal of New Theory, 21, 68-77.
- [14] Malathi, S. and Nithanantha Jothi, S. (2018). On Pre-generalized c*-homeomorphisms in topological spaces. Journal of Ultra Scientist of Phsical Sciences, 30(11), 395-400.
- [15] Basavaraj M. Ittanagi and Mohan, V. (2018). On $S\alpha rw$ -Homeomorphism in Topological Spaces. International Journal of Engineering and Technology, 7(4.10), 880-882.
- [16] Crossley, S. G. and Hilderbrand, S. K. (1972). Semi topoogical properties. Fund. Math., 74, 233-254.
- [17] Balachandran, K. Sundaram P. and Maki. H (1991). On generalized continuous maps in topological spaces. Mem. Fac. Sci. Kochi Univ. Ser.A. Math., 12, 5-13.
- [18] Andrijevic, D. (1986). Semi-preopen sets. Mat. Vesnik., 38(1), 24-32.