Original Research Article

Single-step synthesis of Coenzyme Q₀

4 Yi-Yu Yan[#], Yong-Fu Qiu [#], Tian-Li Zhang [#], Yu-Bei He, Shi Qi, Jian-Hua Tian, Wan-Yue Luo, Yan Zhao, Jin Wang*

School of Pharmacy, Jiangsu Key Laboratory for Bioresources of Saline Soils,
 Yancheng Teachers University, Hope Avenue South Road No.2, Yancheng, 224007,
 Jiangsu Province, P. R. China

These authors contributed equally to this work

12 Corresponding authors e-mail: jaxdon@126.com or wangj01@yctu.edu.cn(Jin WANG)

Abstract

A new method for the preparation of 2-methyl-5,6-dimethoxy-1,4-benzoquinone (Coenzyme Q_0) was developed. This improved process in one step by the oxidation of 3,4,5-trimethoxytoluene to coenzyme Q_0 by simple oxidation using potassium or ammonium persulfate under transition -metal free conditions.

Keywords: Coenzyme Q₀, 3,4,5-trimethoxytoluene, potassium persulfate

Introduction

Coenzyme Q_{10} (Co Q_{10} , **Fig.1**), also known as ubiquinone, is a vitamin-like 1,4-benzoquinone compound^[1] and functions as a potent antioxidant that scavenges free radicals.^[2] Co Q_{10} is widely used in the treatment of cardiovascular disease, mitochondrial disorders,^[3] and in the improvement of immunotherapy.^[4] 2,3-Dimethoxy-5-methyl-1,4-benzoquinone, known as Coenzyme Q_0 (Co Q_0 , **Fig.1**), is a key constituent part of coenzyme Q_{10} . Coenzyme Q_0 has been reported possess antineoplastic, anti-inflammatory and antimicrobial activities.^[5]

There have been several methods published for the preparation of Coenzyme Q_0 through oxidation of commercially available 3,4,5-trimethoxytoluene (1) with the oxidant-hydrogen peroxide (H_2O_2) system. Among metal catalysts applied were potassiumhexacyanoferrate(III) $K_3Fe(CN)_6$, $^{[6]}$ methyltrioxorhenium (CH_3ReO_3), $^{[7]}$ ruthenium complex-bound norvaline, $^{[8]}$ and γ -Keggin divanadium-substituted phosphotungstate. $^{[9]}$ Recently, Bjørsvik *et al* utilized hydrogen peroxide in combination with mineral acids (HNO_3) $^{[11]}$ to produce CoQ_0 , which imposed practical problems related to reactor corrosion and safety risks. Based on our previous study, $^{[10]}$ here we described a single step synthesis of CoQ_0 by treatment of 3,4,5-Trimethoxytoluene 1 with persulfate ($K_2S_2O_8$, $Na_2S_2O_8$, (NH_4) $_2S_2O_8$) under transition metal-free conditions (**Table 1**).

Results and discussion

Table 1 Single-step synthesis of CoQ₀

Entry	oxidant	Solvent	Temp (°C)	Yield (%)
1	30% H ₂ O ₂	CH ₃ COOH	50	50
2	$K_2S_2O_8$	CH ₃ COOH	50	80
3	$(NH_4)_2S_2O_8$	CH ₃ COOH	50	70
4	$Na_2S_2O_8$	CH ₃ COOH	50	60

Reaction Conditions: compound 1 (0.01mol), oxidant (1.5 equiv), 2 hour under open air

As shown in **Table 1,** the reaction is conducted in acetic acid at 50° C in less than 2 h and without using any metal catalyst. The traditional method employing 30% H_2O_2 as oxidant give a yield of 50% (entry 1, **Table 1**). The use of $Na_2S_2O_8$ and $(NH_4)_2S_2O_8$ can improve the reaction yield (entry 3-4, **Table 1**). The best yield was obtained using $K_2S_2O_8$ as oxidant to afford the desired product CoQ_0 in 80% yield

(entry 2, **Table 1**). Persulfate salts were first employed as oxidants instead of transition metal complexes as the catalyst to synthesize 1,4-benzoquinone under mild condisitons, this chemistry is clean and easy to work up.

Conclusion

In summary we have developed a high-yielding and selective synthetic protocols for the preparation of 2,3- dimethoxy-5-methyl-[1,4]benzoquinone (Coenzyme Q_0) from the cheap and readily available 3,4,5-Trimethoxytoluene 1 by oxidation using potassium persulfate in the presence of catalytic sulphuric acid. The reaction is efficient, clean and easy work-up. This method could be used for the synthesis of other coenzyme Q compounds.

Experimental Section

All reactions were monitored by TLC (SiO₂, petrol ether/EtOAc 5:1), Melting points were measured on Melting Point M-565 (BUCHI). NMR and mass spectra were recorded on a Bruker Avanc III-HD 400 NMR and a TripleTOF Mass spectrometers, respectively. All reagents: e.g. Potassium Persulfate (K₂S₂O₈), Ammonium persulphate ((NH₄)₂S₂O₈), acetic acid were purchased from Adamas, P. R. China, and used without further purification.

- General method for preparation of CoQ₀
- 3,4,5-Trimethoxytoluene (1.82 g, 10 mmol) was dissolved in a mixture of acetic acid (99%, 10 mL) and catalytic $H_2SO_4(0.1 \text{ mL})$, then a solution of oxidant (15 mmol) was added dropwise over 10 minutes. The mixture was stirred and heated at 50 °C for 1 hour and extracted with CH_2Cl_2 (3 x 10 mL). The combined organic phases were washed with H_2O and saturated NaHCO₃, then dried over anhydrous Na₂SO₄, and evaporated under reduced pressure. The residue was purified by a silica-gel column chromatography (PE/EtOAc 5:1) to give coenzyme Q_0 .

Coenzyme Q₀, red-colored needles, m.p. 55-58 °C (Lit. [12] 57-59 °C).

- 89 IR (KBr/cm⁻¹): 3590, 3415, 1661, 1603, 1291, 1226, 999.
- 90 ¹H NMR (400 MHz, CDCl₃) δ 6.44 (q, J = 1.7 Hz, 1H), 4.02 (s, 3H, OC**H**₃), 4.00 (s,
- 91 3H, OC**H**₃), 2.04 (d, J = 1.6 Hz, 3H, C**H**₃).
- 92 ¹³C NMR (101 MHz, CDCl₃) δ 184.4 (C=O), 184.2(C=O), 145.0, 144.8, 144.0, 131.2,
- 93 61.2 (OCH₃), 61.1 (OCH₃), 15.4 (CH₃).
- 94 MS (ESI): $m/z = 205 [M+Na]^+$.

95

96

97 References

- 98 [1] J. Wang, J. Yang, B. Yang, X. Hu, J. Q. Sun, T. Yang, J. Chem. Res., 2010, 34, 717.
- 99 [2] A. Khattab, L. Hassanin, N. Zaki, AAPS PharmSciTech 2017, 18, 1657.
- 100 [3] M. Hirano, C. Garone, C. M. Quinzii, BBA-Gen. Subjects., 2012, 1820, 625.
- B. M. Davis, K. Tian, M. Pahlitzsch, J. Brenton, N. Ravindran, G. Butt, G. Malaguarnera, E. M.
 Normando, L. Guo, M. F. Cordeiro, *Mitochondrion* 2017, 36, 114.
- 103 [5] Q. Fan, Y. Zhang, H. Yang, Q. Wu, C. Shi, C. Zhang, X. Xia, X. Wang, Food Control 2018, 90, 274.
- 104 [6] M. Matsumoto, H. Kobayashi, J. Org. Chem., 1985, 50, 1766.
- 105 [7] R. Bernini, E. Mincione, M. Barontini, G. Fabrizi, M. Pasqualetti, S. Tempesta, *Tetrahedron* 2006, *62*, 7733.
- 107 [8] R. Yoshida, K. Isozaki, T. Yokoi, N. Yasuda, K. Sadakane, T. Iwamoto, H. Takaya, M. Nakamura, 108 *Orq. Biomol. Chem.*, **2016**, *14*, 7468.
- 109 [9] O. V. Zalomaeva, V. Y. Evtushok, G. M. Maksimov, R. I. Maksimovskaya, O. A. Kholdeeva,
 110 Dalton., 2017, 46, 5202.
- 111 [10] J. Wang, X. Hu, J. Yang, Synthesis **2014**, 46, 2371.
- 112 [11] G. Occhipinti, L. Liguori, A. Tsoukala, H.-R. Bjørsvik, Org. Process. Res. Dev., 2010, 14, 1379.
- 113 [12] J. Wang, S. Li, T. Yang, J. Yang, Eur. J. Med. Chem., 2014, 86, 710.

114115