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1. INTRODUCTION  
 
 Hibiscus sabdariffa, also known as Roselle, is an annual crop which is valued for its 
red colored calyces that are used for making jam, jelly, and soft drinks (Da-Costa-Rocha et 
al., 2014; Ibrahim and Hussein, 2006). The characteristic red color of their calyces is due to 
the concentration of anthocyanins which can reach 1.5g/kg of dry matter (Cisse et al., 2009). 
Heightened interest in the health benefits of anthocyanins opens a new window of opportuni-
ties for the use of roselle extracts in a variety of applications. Roselle has high potential in 
the world market with its vibrant red color and health promoting attributes.  
 Product yield of anthocyanins from roselle has limitations such as: variability and 
seasonal availability of raw materials; fresh material losses due to insect infestations or to 
natural calamities; and pigment degradation upon extraction and storage. To counter limita-
tions, establishment of plant cell and tissue cultures for pigment production and employing 
the tools of molecular biology in enhancing product yield can be done (Zhang and Furusaki, 
1999).   

Aims: Hibiscus sabdariffa var. sabdariffa (Malvaceae), a shrub locally known as roselle 
has been valued for its vibrant red colored calyces that are used as food colorant and 
health drink. Its anthocyanin content has been known to have health promoting effects 
like antioxidant activity, antimicrobial and anti-cancer, among others. This study was done 
to establish callus cultures of roselle which are capable of producing anthocyanins. 
Study design: An experimental study was done to look into the effects of different factors 
such as explant source and growth hormone concentration on the induction of roselle cal-
lus cultures. The effect of different concentrations of yeast extract as elicitor of anthocya-
nin production was also tested.  
Place and duration of study: The study was conducted at the Biotechnology Laboratory 
for Natural Products, Institute of Biological Sciences, University of the Philippines Los 
Baños from June 2011 to May 2014. 
Methodology: Callus induction was done using aseptically grown seedlings of the Thai-
land accession at MS medium with different combinations of growth hormones (T1: 
0.5ppm 2,4-D and 1ppm kinetin; T2: 1ppm 2,4-D and 1ppm kinetin; T3: 1ppm 2,4-D and 
2ppm kinetin). Established cultures were subjected to anthocyanins elicitation using yeast 
extract (Y1: 8g/L, Y2: 4g/L, Y3: 1g/L and Yc: no extract) as a biotic elicitor. 
Results: Callus formation and ephemeral anthocyanin production were observed 2 weeks 
after inoculation. Addition of yeast extract increased the growth rate up to 10-fold (4g/L) 
but difference among treatments was not statistically significant. Callus cultures produced 
anthocyanins 2 weeks after transferred back to a growth medium without yeast extract. 
Conclusion:  Anthocyanin production was unstable and temporary but the calli proved 
competent for anthocyanin production. Yellow calli were also observed after exposure to 
yeast extract, TLC profile showed presence of chlorogenic acids which are possible pre-
cursors for anthocyanin production. 



 

 

 Plant cell and tissue culture is a method wherein plant cells or unorganized tissues 
are grown under controlled conditions. This method has been an ideal system to study vari-
ous aspects of anthocyanin formation. The process of induction and regulation, compart-
mentalization of biosynthesis and storage can be studied (Walton et al., 1999). A number of 
researches have been directed to increase productivity of plant cell cultures to be able to 
meet market demand for anthocyanins. Some of which focused on strain improvement, 
growth medium optimization, and selection of culture conditions (Sie et al., 2010). Special-
ized procedures such as elicitation and permeabilization are also employed (Zhang and 
Furusaki, 1999).  
 Anthocyanin synthesis and accumulation like other secondary metabolites are regu-
lated in space and time in most plants. The specific localizations of production are related to 
the role of secondary metabolites for defense and survival (Wink, 1999). The plant must de-
tect a stimulus about an attack to trigger the expression of genes for secondary metabolism. 
These corresponding signals are known as elicitors which can either be biotic or abiotic. Bio-
tic elicitors are organic substances that may come from attacking microorganisms, or cell 
wall of spores and hyphae of pathogenic or nonpathogenic fungi. Abiotic elicitors are chemi-
cal or physical factors that put the plant under stress like heavy metals, compounds that in-
teract with deoxyribonucleic acid (DNA), or ultraviolet (UV) rays (Reichling, 1999).  

Fungal elicitors are often used to enhance secondary metabolite production (Loc et 
al., 2014). Wang and colleagues (2004) studied Perilla frutescence cell cultures and their 
susceptibility to yeast elicitors. Results showed an increase in anthocyanin production of up 
to 10% dry weight.  According to Molnar and colleagues (2011), yeast extract was used for 
growth medium as a source of amino acids and vitamins. They said that the provision of 
yeast extract was often found to be essential for tissue growth. Yeast extract was said to 
have unusual properties based on its amino acid content. George and colleagues (2008) 
presented that yeast extract can stimulate chalcone synthase activity leading to the for-
mation of naringenin in Glycyrrhiza echinata. 
 This study was done to induce anthocyanin production in established cultures of ro-
selle using varying concentrations of yeast extract. 
 

2. MATERIALS AND METHODS 
 
Callus Culture 
 Explants were derived from the cotyledonary leaf and stem of 10-day old aseptically 
grown seedlings. These were inoculated in solid Murashige and Skoog (1962) medium with 
3% sucrose. Three treatments were prepared for the induction of callus, varying on the 
growth hormone levels.   
T1: 0.5ppm 2,4-D (2,4-dichlorophenoxyacetic acid): 1ppm kinetin 
T2: 1ppm 2,4-D:1ppm kinetin 
T3: 1ppm 2,4-D:2ppm kinetin 
 The choice of growth hormone and their levels were as described by Sie et al. 
(2010). The cultures were observed for significant morphological changes. An explant with 
unorganized cell clusters growing at least 1 mm in size was considered “callusing.” 

The induced callus cultures were maintained on MS medium with 1 ppm 2,4-
dichlorophenoxyacetic acid and 2 ppm kinetin, 3% sucrose, and solidified with 0.2% agar 
(Gelrite®). Cultures were maintained in a culture room at 25±2°C under 12/12 h photoperiod 
at 2,692.4 lux of fluorescent light. Subculturing of callus cultures was done every month on 
solid medium of same composition, unless otherwise stated.  
 Growth rate of the callus cultures was determined based on the dry weight of the 
callus. Dry weight was the constant weight achieved by the callus upon drying at 40°C in a 
convection oven (Cassel®).  Measurement was done on 3 replicates every week for a period 
of 1 month. 
 In the 16th month after initiation, callus cultures were transferred to a production 
medium to induce anthocyanin synthesis. As prescribed by Mizukami (1993), a modified LS 
medium with optimized concentrations of nitrogen source, phosphate, MgCl2 and CaCl2 were 
used as production medium. Twenty bottles were prepared and sampling was done for 1 
month. Three samples per treatment were randomly picked, weighed, and observed for an-
thocyanin production. 
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3. RESULTS AND DISCUSSION
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Table 1 shows the percentage of callus formation and the associated anthocyanin 
production of different explant sources under the three treatments. For some cultures, an-
thocyanin production was observed. The occurrence was highest in T3 cultures from the leaf 
explant at 60%. Cultures induced from stem explants exhibited only 30% of anthocyanin 
production in T2 (MS medium with 1ppm of 2,4-D and 1ppm kinetin). 
 
 
Table 1. The percentage callus formation and anthocyanin production in H. 

sabdariffa using the leaf and stem as explants and inoculated in MS medium with var-
ying levels of 2,4-D and kinetin. 
 

 % of Callus Formation % Anthocyanin Production 

Explant used T1 T2 T3 T1 T2 T3 

Leaf 80 80 90 0 20 60 

Stem 100  100 100 10 30 9 

 
 

*T1= 0.5ppm 2,4-D:1ppm kinetin; T2= 1ppm 2,4-D:1ppm kinetin; T3= 1ppm 2,4-D:2ppm kinetin 
 
  
 

In Figure 2, callus cultures with anthocyanin production are presented. Pigment pro-
duction was observed at the surface of the callus cultures at two weeks after inoculation of 
leaf and stem explants. 
 
 

 
 
Fig. 2. Anthocyanin production in the leaf (A) and stem (B) explants two weeks after 
inoculation in MS medium with 2ppm kinetin and 1 ppm 2,4-D. (Scale bar = 1cm) 
 
 Based on the percentages of callus induction and anthocyanin production, T3 with 
1ppm 2,4-D and 2 ppm kinetin was considered as the optimal combination of growth hor-
mones for maintenance of roselle callus cultures. In addition, the use of leaf as explant 
source has proved to be a more favorable choice over stem for the establishment of roselle 
callus culture for pigment elicitation. A possible explanation for this is the leaf being function-
ally imposed to produce anthocyanins upon exposure to stress. A stress response is induced 
upon recognition of the stress at the cellular level. In this case, an abiotic stress like wound-
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4. CONCLUSION 
 Tissue culture establishment was done to be able to manipulate growth conditions to 
achieve increased production of anthocyanin pigment. Growth hormone concentration was 
optimized to bulk up the biomass of the callus cultures to be used in anthocyanin elicitation. 
Based on the results, growth was optimal at MS medium with 1 ppm 2,4-D and 2ppm kinetin.  
 Elicitors such as yeast extract were employed to induce anthocyanin production. 
The basis for choosing elicitors is to achieve pigment production as a result of stress re-
sponse upon exposure to harmful stimuli. The use of yeast extract as an elicitor proved to be 
difficult because yeast extract can affect the growth of the callus. Using the right amount of 
yeast for elicitation is necessary.  Cultures exposed to yeast were responsive to the stress 
caused by its addition to the growth medium. Ephemeral anthocyanin production was ob-
served upon changing growth medium composition. This indicates that the callus cultures 
were competent to express genes for pigment biosynthesis even if it was temporary. Yellow 
colored calli developed for cultures that were previously exposed to yeast extract. TLC 
showed they contained chlorogenic acids which are possible precursors for the biosynthetic 
pathway of anthocyanins. 
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