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Original Research Article 2 

Analysis and Modelling of  Extreme Rainfall: A case study for Dodoma, Tanzania 3 

Abstract : The analysis of climate change, climate variability and their extremes has become more 4 

important as they clearly affect the human society and ecology. The impact of climate change is 5 

reflected by the change of frequency, duration and intensity of climate extreme events in the environment 6 

and on the economic activities. Climate extreme events, such as extreme rainfall threaten to 7 

environment, agricultural production and loss of people’s lives. Dodoma daily rainfall data exported 8 

from R-Instat software were used after being provided by Tanzania Meteorological Agency. The data 9 

were recorded from 1935 to 2011. In this essay, we used climate indices of rainfall to analyse changes in 10 

extreme rainfall. We only used 6 rainfall indices related to extremes to describe the change in rainfall 11 

extremes. Extreme rainfall indices did not show statistical evidence of a linear trend in Dodoma rainfall 12 

extremes for 77 years. Apart from the extreme rainfall indices, this essay utilized two techniques in extreme 13 

value theory namely the block maxima approach and peak over threshold approach. The two extreme 14 

value approaches were used for univariate sequences of independent identically distributed (iid) random 15 

variables. Using Dodoma daily rainfall data, this essay illustrated the power of the extreme value 16 

distributions in modelling of extreme rainfall. Annual maxima of Dodoma daily rainfall from 1935 to 17 

2011 were fitted to the Generalized Extreme Value (GEV) model. Gumbel was found to be the best fit of the 18 

data after likelihood ratio test of GEV and Gumbel models. The Gumbel model parameters were considered 19 

to be stationary and non-stationary in two different models. The stationary Gumbel model was found to 20 

be good fit of Dodoma maximum rainfall. Later, the levels at which maximum Dodoma rainfall is expected 21 

to exceed once, on average, in a given period of time T = 2, 5, 10, 20, 30, 50 and 100 years, were obtained 22 

using stationary Gumbel model. Lastly, the data of exceedances were fitted to     the Generalized Pareto 23 

(GP) model under stationary climate assumption. 24 
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____ 26 
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INTRODUCTION  31 

Extreme weather causes substantial damage to our lives through events such as extreme rainfall, floods and 32 

ecological disturbances as they affect human activities and the economy (Hasan et al., 2013). In Tanzania, 33 

flooding has been reported in 5 regions since mid January, 2016. At least 400 people have been displaced  in Dodoma 34 

municipality after 70 houses were destroyed or damaged after heavy rains between 17 and 18 January 2016. Since 35 

then, flooding has been reported in Morogoro, Katavi, Mtwara and Dar es Salaam (Floods in Tanzania, January 2015). 36 

Some examples of the loss caused by floods in the region are the damage both to life and property 37 

experienced throughout the country during the 1997-1998 El Nino associated with floods, and the 2011 38 

floods that wrecked the coastal city of Dar es Salaam. In recent years (2009-2011), heavy rains accompanied 39 

with strong winds have left thousands of people displaced and without food in Muleba, Kilosa, Same and 40 

Dar es Salaam. The flooding of 2009-2010 in Kilosa proved as serious, that over three quarters of the 41 

farmers reported their households were affected (Mboera,2011). Furthermore, in 2010, floods occurred in 42 

Kilosa (Morogoro), Mpwapwa and Kondoa (Dodoma) where more than 50000 people were affected, 5100 43 

hectares of crops were destroyed and agricultural land was covered with mud and sand; public facilities were 44 

also destroyed (Source: arcjournals,2016). 45 

 46 

2.0 METHODOLOGY 47 

 48 

Various methods were applied to achieve the objectives of the study. Some of the methods were 49 

 50 

 2.1.1 Climate Extreme Indices 51 

 52 
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analysis and comparison of time series, means, extremes and trends (Santikayasa,2015).  54 

 55 

The World Meteorology Organization (WMO) developed the 27 indices which describe the changes in 56 

extremes. Indices are driven from the daily maximum   and  minimum  temperatures  and  daily  rainfall. 57 

In this  paper,  we only defined some extreme rainfall indices which are related to the objectives of the 58 

study. 59 

 60 

2.1.2.1 Extreme Rainfall Indices 61 

 62 

Six indices of rainfall extremes were considered. Some of them are percentile based; very wet days 63 

(R95p) and extremely wet days (R99p). Indices which represent maximum value within a year; highest 64 

daily precipitation (RX1day) and highest 5 consecutive days precipitation amount (RX5day) were 65 

analysed. Indices which represent the number of days on which the rainfall value falls above a fixed 66 

threshold; heavy rainy days (R20) and very heavy rainy days (R50) were also analyzed. In Table 2.1  67 

below, each index was shortly defined. 68 

 69 

Table 2.1: Definition of extreme rainfall indices 70 

 71 

Extreme rainfall indices 

Index Indicator name Definition 

R20 

R50 

R95p 

R99p 

RX1day 

RX5day 

Heavy rainy days 

Very heavy rainy days 

Very wet days 

Extremely wet days 

Maximum 1-day rainfall amount 

Maximum 5-day rainfall amount 

Annual count of days when PRCP  

Annual count of days when PRCP ≥ ( threshold) 

Annual total PRCP when RR >  percentile 

Annual total PRCP when RR > 
 
 percentile 

Annual maximum 1-day rainfall 

Annual maximum 5-day rainfall 
 72 

 73 

 74 

2.1.3 Observed change/trend in extreme Rainfall. 75 

Changes in extreme rainfall in Dodoma were analysed through the annual and daily 76 

occurrence of rainfall. Changes in extreme rainfall can be studied by looking at the change 77 

in the frequency of days with precipitation exceeding some threshold; R10mm, R20mm 78 

and Rnnmm where nn represents any fixed threshold (Stephenson et al.,2014 ). Extreme 79 

rainfall is defined also as the highest daily precipitation (RX1day) or the highest 5 80 

consecutive days precipitation amount (RX5day) per year or again extreme rainfall is a 81 

heavy rainfall event (R95p and R99p). The indices were chosen primarily for the assessment of 82 

many aspects of a changing global climate which include changes in intensity, frequency and duration 83 

of precipitation events. They represent events that occur several times per season or year giving them 84 

more strong statistical properties than measures of extremes which are far enough into the tails of the 85 

distribution so as not to be observed during some years (Stephenson et al.,2014 ). 86 

This paper used the linear regression model to describe change of extreme rainfall over the time. Let Y 87 

be response variable and T be independent variable (Time). So, we fitted the following simple model: 88 

 89 

 90 

    91 

 92 

where  is an intercept and  is the slope which describes the change of extreme rainfall over time. 93 

After fitting this model to the data, we made the following inference, 94 

 95 
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   96 

 97 

 98 

to check if there is a relationship between the extreme rainfall and time. To test the statistical significance of 99 

relationship between time  and the extreme rainfall  , the significance level of 0.01 was used. 100 

All climate extremes indices for rainfall presented in Table 2.1 are calculated using data from Dodoma 101 

and the analysis and results are presented in chapter 3. Climate extremes indices can be used to define 102 

extremes and analyse changes in extremes. However, those indices do not give the answer to the question of 103 

return levels of extreme rainfall. Thus, extreme value distributions are introduced in the next section. 104 

 105 

2.1.4 Extreme Value Distributions 106 

 107 

In this section we reviewed the model which focuses on the statistical behaviour of 108 

 109 

     110 

 111 

where , is a sequence of independent random variables having a common distribution function 112 

F (Coles et al.,2001). In applications,  usually represent values of a process measured on a regular time-113 

scale, then we take the maxima over particular blocks of time to extract the upper extreme values from a set 114 

of data. For example, in this essay  represent Dodoma daily rainfall since 1935 to 2011. If 115 

 is the number of observations in a year, then Mn corresponds to the annual maximum of the daily rainfall 116 

over  period. 117 

Now, could we derive the distribution for  for all  to answer this question, we used the probability 118 

theory to find the possible limit distributions of the maxima . From probability theory,  the 119 

cumulative distribution function of  is defined as 120 

 121 

 122 

If  is known, the distribution of  is derived exactly for all values of n as follow: 123 

 124 

 (2.2.1) 125 

By using the fact of independence Equation 2.2.1 becomes 126 

 127 

 128 

 129 

  130 

 131 

As the Xi are independent identically distributed with a common distribution F 132 

 133 

 (2.2.2) 134 

For unknown distribution   we use the limit laws of convergence in distribution to approximate F 
n
 for 135 

large  136 

Theorem (Fisher-Tippett 1928; Gnedenko, 1943). If the sequence  are iid random variables 137 

with the distribution function  and  are sequences of normalizing constants. Then, if there 138 
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exist constants  and a non-degenerate distribution function  so that,  139 

 140 

 141 

 142 

as  143 
 144 

  145 

 146 

 then it must be of the same type as one of the following three types of distributions: 147 

Gumbel distribution 148 

    149 

Weibull distribution 150 

 151 

 152 

 153 

Frechet distribution      154 

 155 

 156 

 157 

with parameters  and   namely scale, location and shape parameters respectively. 158 

2.1.1 Remark. The Theorem 2.2.1 is also known as Extremal type’s theorem while the three max-159 

stable distributions are Gumbel, Weibull and Fréchet. 160 

 161 

 Convergence of sample maxima 162 

 163 

          Sample maxima N =1000 164 

− − −A−s−n−→−∞− − −→ 165 

Figure 2.1: The extremal types theorem: the power of this theorem is to approximate the distribution of 166 

sample maxima as n increases to be max-stable distribution regardless of the parent population Xi . 167 

 168 

If  the Theorem 2.2.1holds for suitable choices of  and then we say that G is an extreme value 169 

cumulative distribution and  is in the domain of attraction of , written as  . However,  170 

can take the form of the generalized extreme value distribution which unifies three extreme value 171 
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distributions is defined by 173 

 174 

 175 

 176 

 177 

            (2.2.3) 178 

with    From  Equation 2.2.3,  we derive the GEV density function by using the 179 

probability theory of cumulative and density function by applying derivative of cumulative distribution 180 

as follows 181 

 182 

 183 

 184 

with 185 (2.2.4)186 

(2.2.4)187 

The GEV distribution and its density function have three parameters namely , location, shape and 188 

scale parameters respectively.  and  can be denoted by  and  respectively. 189 

The x are the extreme values from the block maxima. 190 

Remark. The shape parameter governs the tail behaviour of the distribution. When fitting the GEV 191 

model to sample data, the sign of the shape parameter ξ will usually indicate which one of the three 192 

models best describes the random process we are dealing with (Coles et al.,2001). 193 

• For , light tail (Gumbel type) 194 

• For , bounded upper tail (Weibull type) 195 

• For , heavy tail (Fréchet type) 196 

 197 

 198 

 199 

 200 

 201 

 202 

 203 

 204 
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 207 

 208 

 209 

 210 

Modelling by Generalized Extreme Value Distributions 211 

   The Block Maxima approach description 212 

In ordinary statistics, we describe the main part of the distribution; many ignore outliers. However, 213 

in the statistics of extremes we characterise the tail of the distribution by keeping only the extreme 214 

observations. We do not care about mean and variance, we care only about tails. If we fit the one 215 

distribution to entire data sets, we shall often miss the tail. Therefore, we take data and we extract some data 216 

which are said to be extreme. One of the methods of extracting extreme data is the block maxima method. 217 

In this method, the idea is to break the data into the monthly/annual blocks of equal length then extract 218 

the maximums from each month/year and fit the model to that data (monthly/annual maxima) 219 

(Coles et al.,2001). The right distribution to fit block maxima is the generalised extreme value 220 

(GEV) distribution as shown in Equation 2.2.3. In practice, the implementation of this model for any 221 

particular data, to choose the block size is critical because of the following reasons: 222 

i. By the limit model in Theorem2.2.1, blocks that are too small are likely to have poor 223 

approximation, which leads to bias in estimation and extrapolation. 224 

ii. Large blocks generate few block maxima, leading to large estimation variance. 225 

a) Maximum likelihood estimation 226 

Let us denote the maximum of a sample  by . So, a sample of independent 227 

sample maxima has a common GEV distribution. The parameters σ, µ and ξ of GEV distribution can be 228 

estimated by using different  methods. Various methods of estimation for fitting GEV model have been 229 

proposed: least squares estimation, maximum likelihood estimation, probability weighted moments and 230 

others. In this essay, we focus on the maximum likelihood ) method because of its flexibility to any 231 

model.  232 

Consider independent random variables such that 233 

    234 

The GEV log-likelihood function is: 235 

 236 

 237 

 238 

defined when       (2.2.5) 239 

The ML estimates with respect to the entire GEV family are obtained by maximising the  Equation 2.2.5 with 240 

respect to the parameter vector  It is possible to obtain the maximum likelihood estimator explicitly, 241 

usually by differentiating the log-likelihood and equating to zero. 242 

b) Inference for return levels 243 

 244 

Definition. A return period, also known as a recurrence interval is defined as an estimate of the 245 

likelihood of an event, such as extreme rainfall, flood or a river discharge flow to occur. 246 

In simple terms, the return level is associated with the corresponding return period and indicates the 247 

maxima can reach within such a return period. We used the annual block maxima approach which 248 

consists of fitting the GEV model to a series of annual maximum data with n taken to be the number of 249 

 events in a year. The T -year return value is formally defined by setting Equation 2.2.3 to 250 
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 251 
 252 

 is then the solution to the resulting equation. We need to choose an optimal threshold  such that 253 

   the probability that an observed value exceeds  is equal to  where  is 254 

the 255 

upper tail probability. 256 

 257 

 258 

                   (2.2.6) 259 

  Solving Equation 2.2.6 for , we obtain  260 

 261 

  (2.2.7) 262 

 263 

 264 

In terms of extreme value 265 

terminology,  is the return level associated with the return period p and it is common to extrapolate the 266 

relationship (2.2.7) to obtain estimates of return levels considerably beyond the end of the data to which 267 

the model is fitted. After estimating the GEV parameters by maximum likelihood method, we obtain 268 

the maximum likelihood estimates of,  by substituting estimated GEV parameters into Equation 2.2.7 269 

 270 

        (2.2.8) 271 

 272 

The p−year return level,  , is the level an extreme is expected to exceed once every n time-units. 273 

Modelling by Generalised Pareto Distributions. 274 

  The Peak Over Threshold approach description 275 

Modelling by generalized extreme value distribution is based on the block maxima approach. However, 276 

the block maxima approach does not consider all maximums. It considers only the highest value in all 277 

maximum values. Therefore, sometimes using only the block maxima can be wasteful if it ignores much of 278 

the data. It is often more useful to look at exceedances over a fixed high threshold instead of simply the 279 

maximum or minimum of the data. Consider values of  to be extreme if they are above (below) a 280 

high (low) threshold u. In peak over threshold method, we fix the threshold and we extract the data 281 

exceeding the threshold. Let { } be the sequence of independent random variables with common 282 

distribution function  and  be the sample maxima of the sequence { } (Coles et al.,2001). 283 

Theorem. Denote an arbitrary term in the sequence by , and suppose that  satisfies Theorem 284 

2.2.1. 285 

By Theorem 2.2.1, for a large , 286 

 287 

where 288 

   ,  for  some   and  289 

   Then, for large enough  the distribution of  conditional on , is approximately 290 

                (2.2.9) 291 
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Defined on    and          293 

For  which is interpreted as limit  in (2.2.9), leading to  294 

        (2.2.10) 295 

Where   296 

As , the two Equation 2.2.10 and (2.2.9) can be written as   297 

  (2.2.11)  298 

   299 

300 

 301 

The family of distributions defined by Equation 2.2.9 is known as generalised Pareto family. There- 302 

fore, if block maxima have approximating distribution , then threshold excesses have a corresponding 303 

approximate distribution within the generalised Pareto family (Coles et al.,2001).nFrom Equation 304 

2.2.11, we derive the density function of the generalised Pareto distribution 305 

 (2.2.12) 306 

 307 

 308 

Remark. There are three types of generalised Pareto distribution which are: 309 

Exponential  Pareto  and Beta . 310 

a) Threshold selection 311 

One consideration for POT modelling is the right choice of threshold. In practice, the implementation of 312 

this model for any particular data set to choose the right threshold is critical because of the following 313 

reasons: the threshold that is too low is likely to violate the asymptotic basis of the threshold model, 314 

which leads to bias in estimation and extrapolation (Coles et al.,2001). Too high threshold generates few 315 

excesses, leading to high estimation variance. To handle this challenge, two methods are available: the first 316 

method is an exploratory technique carried out prior to model estimation. The second is to assess the 317 

stability of parameter estimates, based on the fitting of models across a range of different thresholds. 318 

There are two common graphical tools that can help in choice of the threshold. The first is the mean 319 

excess plot. 320 

Remark. Above a threshold u0 at which the generalised Pareto distribution provides a valid 321 

approximation to excess distribution, the mean residual life plot should be approximately linear in u. 322 

In the second method, we plot the parameter estimates and confidence intervals at different thresholds. The 323 

estimated parameters remain constant above the threshold at which the asymptotic approximation is valid.  324 

 325 

Above a level u0 at which the asymptotic motivation for the generalised Pareto distribution is valid, 326 

estimates of the shape parameter ξ should be approximately constant, while estimates of σu should be 327 

linear in u. 328 
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b) Maximum likelihood estimation 329 

After determining the threshold, the generalised Pareto distribution parameters can be estimated by using the 330 

maximum likelihood method. Let  be  excesses of a threshold . The log-likelihood is 331 

derived from (2.2.12) as 332 

    (2.2.13) 333 

defined  , . We obtain the ML estimates  for  by 334 

maximizing numerically Equation 2.2.13. 335 

c) Inference on the return levels 336 

The more convenient way of interpreting extreme value models is using the quantiles or return levels, 337 

rather than individual parameter values. So, we suppose that a generalized Pareto distribution with 338 

parameters  and  is a suitable model for exceedances of a threshold  by a variable . For , 339 

 340 

  341 

It means that 342 

 343 

where        . Thus, for  the level  that is exceeded on average once every  observations is the 344 

solution of      345 

 346 

347      348 

 (2.2.14) 349 

 350 

 351 

 352 

provided  is sufficiently large to ensure 353 

that . 354 

To estimate the return levels, we substitute the parameters by their corresponding maximum likelihood 355 

estimates. However, the probability of an individual observation exceeding the threshold u has a natural 356 

estimator of   357 

the sample proportion of points exceeding (Coles et al.,2001). 358 

 359 

 360 

 361 

 362 

Stationary and non-stationary model. 363 

Most of the time when one deals with real life data some assumptions are violated. Therefore, in this 364 

essay we considered both assumptions, stationarity and non-stationarity of climate extremes data. Climate 365 
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110 
is change over period and the reliable future projections of extreme rainfall cannot rely only on stationary 366 

assumption. Under the assumption of non-stationarity, we have non-stationary model with a linear trend in 367 

location parameter. Using the notation  to denote the GEV distribution with parameters 368 

 it follows that a suitable model for , the annual maximum Dodoma rainfall in year , 369 

might be 370 

 371 

 372 

 373 

where 374 

 375 

with parameters  and . In this way, variations through time in the observed process are modelled as 376 

a linear trend in the location parameter of the appropriate extreme value model, which in this case is the 377 

GEV model. The parameter  corresponds to the annual rate of change in annual maximum rainfall. 378 

Non-stationarity can be expressed in terms of the location parameter as follow: 379 

 380 

 381 

 382 

(2.2.15) 383 

where 384 

 385 

     386 

 387 

 . 388 

For  389 

                      390 

(2.2.16) 391 

The advantage of maximum likelihood over other techniques of parameter estimation is its adaptability to 392 

the changes in model structure (Coles et al.,2001). That is why for this non-stationary model, we did not 393 

change our previous model. We maximised the Equation 2.2.5 by considering a linear trend in location 394 

parameter. Note that, for stationarity, the GEV and GP models assume that the parameter location, 395 

scale and shape are time-independent (parameters are constants). 396 

Likelihood Ratio (LR) Test and Model Diagnostics or goodness-of-fit checks. 397 

As in any statistical model, after fitting model, we check the good of fit of the model. The Likelihood 398 

Ratio (LR) test is used to compare the fit of two models where the null model, H0 is a special case of 399 

the other (alternative model, H1 ) (Hasan et al.,2013). The best model is determined by deriving400 
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 403 

the probability or p-value of the difference in , the LR test statistic, defined as  404 

where  has a chi-square distribution. However, LR test is applied to nested models, which means that 405 

comparison can only be made between one complex model and one simpler model (Hasan et al.,2013). In 406 

the model checking we are comparing the observed data to GEV or GP estimates. We use probability 407 

Plots, quantile plots, return level plots and density plots to assess the quality of a fitted GEV or GP 408 

Model. The probability plot compares the empirical and fitted distribution functions. 409 

i. The probability plot should lie close to the unit diagonal. In probability plot, we Look for linearity 410 

and deviations in tails. 411 

ii. Quantile plot compares observed quantiles in data to quantiles estimated by the GEV. In quantile 412 

plot, we also Look for linearity and deviations in tails. 413 

iii. The return level plot. 414 

iv. The density function of fitted GEV or GP model is compared to histogram of block maxima 415 

(histogram of exceedances for GP model). 416 

 417 

 418 

Data preparation. 419 

The daily rainfall data obtained for Dodoma starts in January 1935 and lasts in December 2013. The data had 420 

no missing values apart from the last two years. The data were supplied by Tanzania Meteorological Agency 421 

in 2013.Table 3.1 below details the information of the missing values. 422 

 423 

Table 3.1: Missing values in Dodoma daily rainfall data 424 

 425 

Variable Period Month Number of missing values 

Rain 2013 November 30 

December 31 

2012 November 30 

 426 

As shown in Table 3.1, all years had values except the last two years. Hence, we chose to use the data to 427 

2011. We shifted years so that we obtain all extreme rainfall in the same season for Dodoma. Then, the 428 

daily rainfall data starts from August 1935 and ends in July 2011 (see Figure 3.4). The number of 429 

observations did not change because we brought half of the data for 1935 to 1934 and the last year ends in 430 

July 2011. 431 

Data description. 432 

We put our data into two main groups; rainy days and dry days to get rainy season data for extreme 433 

rainfall. As we were interested in studying the behaviour of maximum rainfall in Dodoma, we considered 434 

rainy days ( Rain > 10.0mm in our data). The Dodoma data has 4 variables; Year, Month, Date and Rain. 435 

The statistical summaries for rainy days between 1935 and 2011 are presented in a table below. 436 

 437 

Table 3.2: Statistical summaries of Dodoma rainy days. 438 

 439 

 440 

 441 

 442 

 443 

 444 

Table 3.2 shows that in our Dodoma daily rainfall data approximately 5% of the daily rainfall exceeds 445 

10mm, and this was 1337 out of 28124 days. In total, we have 1337 rainy days for Dodoma from 1935 to 446 

2011 and the data for rainfall were recorded in millimetre (mm). The maximum rainfall in our data was 447 

119.8mm which  occurred on 02 Feb 1964. The average daily rainfall was 27.1mm. The table below 448 

describes the Dodoma daily rainfall on the monthly basis.449 
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Table 3.3: Statistical monthly summaries of rainfall from 1935 to 2011 451 

 452 

R10(days) R10 per 

year(days) 

chance to 

rain each 

year ( %) 

Mean 

(mm) 

Max(mm) Std(mm) Month 

315 4 13 27.2 113.00 18.3 Jan 

274 4 13 25.9 119.8 16.3 Feb 

259 3 11 28.2 102.5 18.9 Mar 

117 2 5 26.7 92.5 16.9 Apr 

7 0 0 19.1 41.7 11.8 May 

2 0 0 10.8 11.4 0.8 Jun 

0 0 0 - 0.6 - Jul 

0 0 0 - 0.8 - Aug 

0 0 0 - 2.2 - Sep 

9 0 0 30.7 54.4 12.9 Oct 

60 1 2 24.5 90.4 16.7 Nov 

294 4 12 27.8 107.0 17.4 Dec 

 453 

In Table 3.3, the column with R10 represents the number of days in each month with daily rainfall 454 

greater than 10mm for 77 years. Mean column is the average monthly rainfall for 77 years. The chance to 455 

rain was calculated taking R10 per year divided by days of the month. The Table 3.3above shows, for 456 

example, July, August and September were found to be months with almost no rain, while January, 457 

February, March and December were the wettest months with some possibility of the daily rainfall being 458 

greater than 10mm. To better understand the behaviour of the daily maximum rainfall for Dodoma, 459 

some analyses were investigated using graphical methods.460 
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d) Different graphical Description of Dodoma daily rainfall data 462  463 

 464 

 465 

                                             Figure 3.2: Histogram of Dodoma daily rainfall 466 

 467 

 468 

 469 

 470 

Figure 3.3: Daily rainfall scatter plot 471 

 472 

 473 

Figure 3.3 above shows the daily rainfall. We observe that all years had rainfall above 27.1mm, which is 474 

the average rainfall of rainy days for 77 years (seeTable 3.2) . The red line represents the average 475 

rainfall in Dodoma for 77 years. This scatter plot can give us an idea about the extreme rainfall by 476 

studying the behaviour (distribution) of rainfall exceeding the average rainfall. We defined the year 477 

to start in August and end in July as shown in a monthly boxplot in Figure 3.4 below.478 
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 480 

 481 

 482 

 483 

Figure 3.4: Monthly boxplot of Dodoma daily rainfall. 484 

 485 

 486 

This box plot is showing the variability in the daily rainfall on monthly basis across the years for the 487 

Dodoma station. The daily rainfall rises during the wet season (from November to December and again 488 

from January to April) and declines during the dry period (from May to September). Several periods 489 

of heavy rainfall in Tanzania since 14 January 2016 have caused flooding in the regions of Mwanza and 490 

Dodoma. The Tanzania Meteorological Agency issued a warning of severe weather in most parts of the 491 

country, with possible rainfall of 50mm in 24 hours expected in many areas until 16 April (Rainfall and 492 

forecasts,14 January 2016). We used records of extreme rainfall causing floods in some regions, to fix 493 

the threshold to describe extreme rainfall in our Dodoma data. The plots below show the daily rainfall 494 

of Dodoma from 1935 to 2011 exceeding some heavy rainfall causing floods in Dodoma.495 
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 497 

 498 

 499 

 500 

Figure 3.5: Daily rainfall for Dodoma with rain exceeding 50mm 501 

 502 

 503 

The blue points represent the daily rainfall in Dodoma exceeding 50mm each year for 77 years. Data 504 

with rainfall greater than 50mm is much scattered compared to others. 505 

 506 

 507 

 508 

Figure 3.6: Daily rainfall for Dodoma with rain exceeding 30mm 509 

 510 

 511 

The blue points represent daily rainfall in Dodoma exceeding 30mm each year since 1935. Data with 512 

rainfall greater than 30mm is scattered compared to others. This scatter plot does not show obvious trend 513 

in daily rainfall greater than 30mm. Even if the above scatter plots did not show an obvious trend in rainfall 514 

exceeding some maximum rainfall, we need some statistical evidences to confirm this. In the next section 515 

we used precipitation indices to see whether there was a linear trend in  516 

Extreme rainfall or not. 517 

 518 

 519 

 520 
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Analysis of a linear trend in extreme rainfall over time using rainfall indices 522 

 523 

Changes in extreme rainfall in Dodoma were analysed through the annual and daily occurrence of rainfall. In 524 

Table 2.1, we described some useful indices to analyse extreme rainfall. Changes in extreme rainfall can 525 

be studied by looking at the change in the frequency of days with precipitation exceeding some 526 

threshold; R10mm, R20mm and Rnnmm where nn represents any fixed threshold (Stephenson et al., 527 

2014). Extreme rainfall is defined also as the highest daily precipitation (RX1day) or the highest 5 528 

consecutive days precipitation amount (RX5day) per year or again extreme rainfall is a heavy rainfall 529 

event (R95p and R99p) (Alexander et al.,2006). As extremes are defined based on the occurrence, 530 

frequency and intensity, the plots below are based on some threshold of exceedance, intensity and 531 

frequency of rainfall in Dodoma. To study the trend in rainfall extremes over period of 77 years, linear 532 

regression model was used and the fitted line (in red) indicates linear trend in occurrence, frequency and 533 

intensity of extreme rainfall. How often does extreme rainfall in Dodoma occur? Is there any statistical 534 

evidence of change in extreme rainfall in Dodoma over a period of 77 years? 535 

Using the indices described inTable 2.1, we can answer those questions. In this essay, 7 precipitation 536 

indices related to exceedances, frequency and duration of rainfall were analysed. To determine whether 537 

there exist a linear trend, a linear regression of rainfall indices against year was fitted. The slopes of the 538 

annual trends of extreme rainfall indices were calculated based on a least square linear fitting. Trends 539 

were obtained for each index and the statistical significance of the trends were assessed using a p-value. The 540 

trends were considered to be statistically significant at 99% confidence level. 541 

The observed linear trend of extreme rainfall indices are presented below 542 

 543 

Table 3.4: Summary of linear regression model 544 

 545 

 546 

 547 

R50 0.18 0.01 Y = 0.01 × T − 15.71 548 

R95p 0.20 0.01 Y = 0.59 × T − 1038.52 549 

R99p 0.74 0.00 Y  = 0.11 × T − 175.36 550 

RX1day 0.16 0.01 Y = 0.13 × T − 195.39 551 

RX5day 0.14 0.02 Y = 0.28 × T − 442.84 552 

 553 
 554 

The line in red is a trend-line computed by least square fit and the corresponding regression equation is 555 

presented for each index in Table 3.4. 556 

 557 

 558 

 559 

Figure 3.7: Annual daily maximum rainfall with a regression line y = 0.13t − 195.39. 560 

 561 

index p-value(slope) R-squared Trend line 

R20 0.79 0.00 Y = −0.01 × T + 18.59 
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 563 

 564 

Figure 3.8: Annual maximum of 5-day consecutive rainfall with a regression line y = 0.28t − 442.83. 565 

 566 

 567 

 568 

 569 

Figure 3.9: The exceedance of 95 percentile threshold with a regression line y = 0.59t − 1038.51. 570 

 571 

 572 

 573 

 574 

 575 
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 577 

Figure 3.10: The exceedance of 99 percentile threshold with a regression line y = 0.11t − 175.36. 578 

 579 

Figure 3.10 and Figure 3.9above represent very wet days and extremely wet days: The 95
th
 and 99

th
 580 

percentiles describe the annual precipitation amount accumulated on days when daily precipitation is 581 

greater than the (95
th
) and (99

th
) percentiles threshold of the wet-day precipitation (Rain> 1mm). 582 

 583 

 584 

 585 

Figure 3.11: Annual counts of days with daily rainfall exceeding 20mm with a regression line y = 586 

−0.01t + 18.59. 587 

 588 

 589 
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 591 

Figure 3.12: Annual counts of days with daily rainfall exceeding 50mm with a regression line y = 592 

0.01t − 15.71. 593 

 594 

Figure 3.11and Figure 3.12above represent the heavy rainfall days (Rain > 20, 50mm). An increase 595 

shown in annual counts of days with rainfall exceeding 50mm could indicate an increase of extreme 596 

rainfall in Dodoma for 77 years. We observed a positive slope of the trend line to all indices except 597 

R20, which means that the rainfall extremes increased over time. However, we need statistical test to 598 

confirm this change in extreme rainfall. From Table 3.4, all the p-values were greater than 0.01 level of 599 

significance. We therefore did not have enough evidence to reject the null hypothesis, since our test was 600 

not significant. In addition, the value of the R-squared is very small. This implies there is a very small 601 

(for example 1 % for R50) variability in extreme rainfall that can be explained by the change in time. 602 

Then, we concluded that the rainfall indices showed that there is no statistical evidence of the change in 603 

rainfall extremes in Dodoma between 1935 and 2011. 604 

One of the unanswered questions clearly by the above indices is the distribution of observed extreme 605 

rainfall in Dodoma since 1935. As extreme events are also defined as those in the tail of the distribution, to 606 

accurately assess potential changes in the shape of the distribution of rainfall observations requires 607 

additional rigorous analysis rather than using the rainfall indices. To study the distribution of extreme 608 

rainfall over period in Dodoma, extreme value distributions were used. In the next section, extreme value 609 

distributions with stationary and non-stationary parameters were fitted to observations of Dodoma daily 610 

rainfall to model trends in extreme rainfall and to determine return levels. 611 

 612 

 613 

Modelling of Extreme Rainfall using Extreme Value Distributions 614 

 615 

This modelling is based on the time series of daily rainfall for Dodoma recorded from 1935 up to 2011 as 616 

described in section 3.1. In this section, we applied the theory of extreme value distributions presented in 617 

section 2.2. At the first, we used block maxima (BM) approach. Secondly, we considered model with 618 

stationary and non-stationary extreme value distribution parameters. We finally used the peak over a 619 

threshold (POT) approach to model the data of exceedances. 620 

Fitting the model to the data by BM Approach. 621 

One of the most important things to do before applying GEV model is to obtain , 622 

the maximum observations in m blocks of length  related to the period  For this, 623 

we need to choose a block of equal length n, and discard all values, remaining with only the maximum 624 

value in each block. First, we have extracted the block maxima of annual maximum from Dodoma daily 625 

rainfall. Therefore, for Dodoma rainfall  for annual blocks of maxima. 626 

 627 

 628 
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There is a need to know the risks of extreme events in agriculture, especially those that are damaging, such 630 

as heavy rainfall. Too much rainfall can affect the quality and productivity of crops. Figure 3.13 shows 631 

the extreme daily rainfall in a year. In 1964 we had the highest rainfall amount of 119.8mm whereas, 632 

the lowest extreme amount of rainfall was 29.0mm. 633 

e)  The figure below represents the annual block maxima for Dodoma daily rainfall 634 

 635 

 636 

Figure 3.13: The extreme rainfall in Dodoma since 1935 to 2011 637 

 638 

Fitting the data to a GEV model with stationary parameters 639 

We assumed that the pattern of variation of extreme rainfall has stayed constant over the period 1935- 2011, 640 

so we modelled the daily Dodoma rainfall as independent observations from the GEV distribution. After 641 

filtering 77 blocks of maximum, we fitted the annual block maxima to GEV model and we estimated the 642 

parameters µ, σ and ξ by maximum likelihood method. The GEV log-likelihood of annual maxima  643 

with  is given by 644 

 645 

        646 

(3.4.1) 647 

 648 

If ξ = 0, we have Gumbel model. The log-likelihood of annual maxima L(φ) with φ = (µ, σ) is given 649 

by 650 

 651 

 652 

 653 

(3.4.2) 654 

Maximisation of the log-likelihood (Equation 3.4.1 and Equation 3.4.2) numerically using R, leads to the 655 

estimates presented in Table 3.5. 656 

 657 

 658 

 659 
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Table 3.5: GEV and Gumbel parameter estimates with their 99% confidence intervals 661 

 662 

 GEV parameters 

Parameter Estimate Standard Error CI (99%) 

Shape(ξˆ) -0.19 0.08 (−0.39, 0.01) 

Location(µ̂) 61.91 2.29 (56.00, 67.83) 

Scale(σ̂) 18.23 1.61 (14.08, 22.37) 

 Gumbel parameters 

Parameter Estimate Standard Error CI (99%) 

Location(µ̂) 60.08 2.12 (54.62, 65.54) 

Scale(σ̂) 17.69 1.48 (13.87, 21.51) 

 663 

 664 

Maximization of Equation 3.4.1for Dodoma annual maxima rainfall data leads to the estimate ( µ̂, σ̂, ξ̂) = 665 

(61.91, 18.23, −0.19), for which the only one parameter (ξ̂) was statistically insignificant. But all 666 

parameters were statistically significant (µ̂, σ̂) = (60.08, 17.69) when we maximised the Equation 3.4.2. 667 

 3 parameter (GEV) versus 2 parameter (Gumbel) model 668 

The shape parameter ξ is the only parameter which governs the tail behaviour of the distribution. After 669 

fitting the GEV model to annual maxima data, ξ indicates which one of the three models best describe the 670 

Dodoma annual maxima rainfall. We used likelihood ratio-test to test GEV and Gumbel models with 671 

the following hypothesis 672 

 673 

H0: Gumbel model (ξ = 674 

0), H1:GEV model (ξ  675 

≠0). 676 

The smaller the p-value, the stronger the evidence against H0 provided by the data. Using function 677 

lr.test() in extRemes package for likelihood ratio-test, we got the p-value 0.024 at alpha (α = 0.01), 678 

therefore, we failed to reject the null hypothesis. The zero belongs to the shape parameter’s confidence 679 

interval ( 0 ∈ 99%CI(ξ)) (see Table 3.5). Thus, we did not reject the null hypothesis H0 , which means 680 

that the suitable model for our Dodoma extreme rainfall belongs to Gumbel model. 681 

Diagnostic plots of GEV and Gumbel model 682 

 683 

 684 

 685 

Figure 3.14:  GEV model 686 

 687 
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 689 

 690 

On top, there are two plots; probability and quantile plots and at the bottom we have plot of the fitted 691 

GEV density superimposed onto the empirical density of the actual data (bottom left) and retun level 692 

plot. 693 

 694 

Figure 3.15: Gumbel model 695 

 696 

 697 

The above plots are four diagnostic plots; probability plot, quantile plot, return level plot and density 698 

plot of Gumbel model. 699 

 700 

 701 

Modelling a linear trend in extreme rainfall using Gumbel with non-stationary parameters 702 

 703  704 

After finding that Gumbel model is the best fit of Dodoma maximum rainfall, we modelled linear trend in 705 

extreme rainfall using Gumbel model. In the context of environmental processes, non-stationarity is often 706 

apparent because of seasonal effects, perhaps due to different climate patterns in different months, or in the 707 

form of trends, possibly due to long-term climate changes. Due to climate change, the trend in frequency 708 

and intensity of extreme weather events occurs through time. To model change in extreme rainfall, extreme 709 

value distributions with non-stationary parameters could be used. Non-stationarity can be expressed in terms 710 

of location parameter with trend. Thus, we used Gumbel with two parameters as follow: 711 

, t = 712 

1, 2,..  713 

The classical Gumbel; Gu(x, µ, σ) model assumes that the two parameters of location and scale are time 714 

independent (stationary parameters). However, if trends are detected in the data sample, the non-715 

stationarity case where parameters are no longer constants but expressed as covariates (e.g.time), should be 716 

considered. To study linear trend checking whether there exist a trend in change of extreme rainfall, two 717 

models were considered; stationary model1 (classical Gumbel), and non stationary model2 (Gumbel with 718 

time as covariates). 719 

 720 

Model 1 without trend:   are constants 721 

Model 2 with trend:   σ  is constant, 722 
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rainfall data). 724 

 725 

We fitted Gumbel without trend in model 1 to compare with model 2 including trend. The second 726 

model is Gumbel fitted with linear trend in location parameter. The detail result of each model is shown 727 

below: 728 

Table 3.6: Gumbel parameter estimates for Model1 and Model2 with their 99% confidence intervals 729 

 730 

 Model1 

Parameter Estimate Standard Error CI (99%) 

Location(µ̂) 60.1 2.1 (54.6, 65.5) 

Scale(σ̂) 17.7 1.5 (13.9, 21.5) 

 Model2 

Parameter Estimate Standard Error CI (99%) 

Location(µˆ0) 61.4 201.8 (−458.3, 581.2) 

Location(µˆ1) -0.001 0.1 (−0.3, 0.3) 
Scale(σ̂) 17.7 1.5 (13.7, 21.6) 

 731 

Fitting the model without a trend in location parameter, we got that all two parameters are statistically 732 

significant at 99 %. The second model is Gumbel fitted with linear trend in only location parameter 733 

and we got only one parameter statistically significant (σ̂) but location parameters were not. 734 

Writing a location parameter with linear trend µ t = 61.4 − 0.001t,  where t is an index for year, with t = 1 735 

corresponding to 1935. The parameter µ̂1 = −0.001 corresponds to the annual rate of change in yearly maximum rainfall 736 

in Dodoma. However, all estimates of location parameter in model2 were not statistically significant at 99%. We used 737 

the likelihood-ratio test to test two models. We got a big p-value (≈ 1) indicating that the stationary model 738 

(Model1) should be accepted. This implies there is no evidence of a linear trend in location parameter. 739 

 740 

f) Annual maximum rainfall with a fitted line of a linear trend in location parameter 741 

 742 

 743 

 744 

Figure 3.16: Fitted estimates for µ in linear trend Gumbel model of Dodoma annual maximum rainfall. 745 

The red line represents location parameter with a linear trend µ = 61.4 − 0.001t. 746 

 747 

1.1.1 Remark. The location parameter is analogous to the mean of a normal distribution, so increase in 748 

µ uniformly shifts the distribution to higher values, increasing all extremes equally. Whereas σ and ξ 749 
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 752 

g) Diagnostic plots for Gumbel with and without trend model 753  754 

 755 

 756 

Figure 3.17: Gumbel without any trend. 757 

 758 

 759 

 760 

Figure 3.18: Gumbel with linear trend in location parameter.761 
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  Return levels and their (1 − α)% confidence limits 763 

After estimating the Gumbel parameters, we estimated the return levels of extreme rainfall in Dodoma 764 

and we extrapolated to obtain estimates of return levels beyond the end of the data we have. Under the 765 

ideal of stationarity, the return level calculated from one period of the data should be approximately the 766 

same value if it was calculated from any other period of the same data. However, this is not the case if 767 

climate is changing. We were able to predict the estimate of the daily rainfall we would expect to see in 768 

Dodoma, 769 

◊ Once in T = 2 years, 770 

     ◊ Once in T  = 5 years, 771 

◊ Once in T = 10 years, so on. 772 

We used our fitted stationary Gumbel model to extrapolate beyond the range of our data to estimate 773 

such return levels. The results are presented in Table 3.7 below. 774 

 775 

Table 3.7: Gumbel return level estimates with their 99% confidence intervals 776 

 777 

 

Return period T 

T-year return level in mm 

Estimated return level (x̂T ) in mm CI (99%) 

2-year return level 66.6 ( 60.5,72.6) 

5-year return level 86.6 ( 77.5, 95.7) 

10-year return level 99.9 (88.3, 111.5) 

20-year return level 112.6 (98.5, 126.7) 

50-year return level 129.1 ( 111.6, 146.6) 

100-year return level 141.5 (121.4,161.5) 

 778 

In this table above, the 5−year return level, 86.6, is the level extreme rainfall is expected to occur once in a 779 

period of 5 years. We would say that extreme rainfall of 86.6mm in Dodoma has 20% chance of being 780 

exceeded in any one year. According to estimated return levels in Table 3.7, there is a probability of 1% in 781 

Dodoma extreme rainfall to exceed 141.5mm in any one year. The results presented in the above 782 

Table 3.7 were obtained under a stationary Gumbel model. 783 

1.1.2 Fitting the model to the data by POT Approach . 784 

After BM approach, we turned to another alternative approach to the extreme value statistics based on 785 

exceedances over a threshold. The basic idea is to pick a high threshold u and to study all the 786 

exceedances of u. Those selected exceedances are said to follow the generalised Pareto distribution 787 

(Check : Equation 2.2.9). However, the main challenge of this approach is the selection of proper 788 

threshold. In subsection 2.2.6, we discussed POT approach and in this subsection we used the Dodoma 789 

daily rainfall data for the application. 790 

 791 

 792 

 793 

 794 

 795 

 796 

 797 

 798 

 799 

 800 
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The two plots were used for this selection of threshold: the mean residual life plot and the threshold 802 

range plot for parameters. We finally chose the best indicated threshold by two plots to estimate the 803 

GPD parameters. 804 

                              Figure 3.19: The threshold selection plots 805 

 806 

 807 

 808 

The above plots were used before making a final decision. We selected a threshold such that the mean 809 

residue life plot is approximately linear above the selected proper threshold u0. The 30mm was found to 810 

be a reasonable threshold. 811 

h) Fitting the Dodoma daily rainfall data to a GP model with stationary parameters 812  813 

After selecting the threshold, the Dodoma daily rainfall data were fitted to GP with a threshold of 814 

30mm and we estimated GP parameters using MLE. The results are represented in the table below. 815 

 816 

Table 3.8: Parameter estimates with their 99.5% confidence intervals of the GP fitted to the daily 817 

Dodoma rainfall exceeding the threshold u0 = 30mm. 818 

 819 

 Threshold uo = 30mm 

Parameter Estimate Standard Error CI (99.5%) 

Shape(ξˆ) -0.13 0.05 (−0.26, 0.01) 

Scale(σˆ) 21.24 1.47 (17.11, 25.37) 

 820 

After estimating the generalised Pareto model parameters, we tested the shape parameter to know the best 821 

model of exceedances. 822 

 823 

H0 : exponential model (ξ = 0),  824 

H1 : Beta or Pareto model (ξ ≠ 825 

0). 826 

A likelihood ratio test gave us a big p-value ≈ 0.02 (α = 0.005) for two models ( H0 and H1). 827 

Consequently, this implies there is no evidence of rejecting the null hypothesis. Then, the exponential 828 

model is the appropriate model for the data of exceedances.829 
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 831 

 832 

 833 

Figure 3.20: The Diagnostic plots from the GP fitted to Dodoma daily rainfall. Quantile-quantile plot 834 

(top right), quantiles from a sample drawn from the fitted GP against the empirical data quantiles (top 835 

left), density plots of empirical data and fitted GP (bottom right), and return level plot with pointwise 836 

normal approximation confidence intervals (bottom left). 837 

 838 

 839 

We have already estimated the GP parameters, therefore we can estimate the return levels by using 840 

Equation 2.2.13. Table 3.9describes the return level estimates with their 99.5% CI at different return 841 

periods of daily exceedances over 30mm. 842 

Table 3.9: GP return level estimates with their 99.5% confidence intervals 843 

 844 

 

Return Period T 

T-year return level in mm 

Estimated Return level CI (99.5%) 

2 72.9 ( 66.4,79.5) 

5 86.5 ( 77.87, 95.3) 

10 95.8 ( 84.6, 106.9) 

20 104.3 ( 89.9, 118.6) 

50 114.4 (95.0, 133.676) 

100 121.2 ( 97.7,144.8) 



 

2. Conclusion and Recommendations 845 

 846 

2.1 Conclusion 847 

 848 

In this essay we used three approaches to analyse and model rainfall extremes in Dodoma. Using 6 rainfall 849 

extremes indices, we analysed trends in change in extreme rainfall. We used the least square method to 850 

estimate the parameters(slope and intercept) of a linear regression line. All estimated parameters were 851 

statistically insignificant at 0.01 level of significance. Then, there was no statistical evidence of the 852 

linear change in rainfall extremes in Dodoma. 853 

Apart from the rainfall extremes indices to analyse change in extreme rainfall over the time, this essay 854 

used the annual block maxima approach, a method which fitted GEV model to the maximum rainfall. 855 

Using this approach we extracted the sample data and we fitted it to GEV model. After the likelihood 856 

ratio test of GEV model and Gumbel model, the Gumbel model was found to be appropriate model to 857 

describe the annual maximum Dodoma rainfall. The Gumbel model with a linear trend was not showing 858 

any statistical evidence of a linear trend in Dodoma rainfall extremes. However, more research is needed 859 

especially about cyclic variations because of seasonality. 860 

We estimated the return levels of extreme rainfall under Gumbel model with stationary parameters. But we 861 

did not estimate the return levels for extreme rainfall under a changing climate. We were able to 862 

predict the estimate of the daily rainfall we would expect to see in Dodoma once in T = 2, 5, 10, 20, 50 863 

and 100 years. However, this essay did not extend the concept of return level to non-stationary climate. 864 

As block maxima approach ignores other important extreme rainfall data, especially those greater than the 865 

annual maximum. The peak over threshold (POT) approach were also used, where we focused on the 866 

distribution of values that have exceeded a threshold of 30mm. Using the likelihood ratio test, we tested 867 

the shape parameter and exponential model was found to be the extreme value model which can describe 868 

Dodoma rainfall exceeding 30mm. We have modelled exceedances data under the stationary climate only. 869 

For the GPD, it is not always clear how to interpret some parameters, such as return levels because the 870 

rate of exceeding the threshold may vary seasonally. The choice of an appropriated threshold in this 871 

approach remains a challenge. 872 

As shown with Dodoma daily rainfall data analysis, BM and POT approaches can be used for stationary 873 

and non-stationary extreme data. But still there is work to be done on the general theory to be extended for 874 

non-stationary series especially in describing the trend variation in the data of exceedances using the fitted 875 

GP parameters. 876 

 877 

 878 

2.2 Recommendations 879 

 880 

In this essay, we used extRemes package in R software. If this package can be incorparated in R-Instat 881 

software,  882 

this could be easy for some people especially those who want to analyse extremes in R-Instat software. 883 

Analysis and modelling of climate extremes need reliable and long period data. However, the data may 884 

have  885 

some missing values and this can provide the wrong predictions. It is always difficult to find a well 886 

detailed historic climate data. There is often a percentage of data missing, which if not well handled, 887 

can  888 

give wrong analysis.Thus, better ways of handling missing information should be considered. In this 889 

essay, 890 

we used only Dodoma station data. However, other stations in Tanzania or elsewhere can be used to study 891 

the distribution and change in extreme rainfall using the same theory applied in this essay. 892 

 893 

 894 

2.3 Further work 895 

 896 

More research is needed to learn which model would be preferable to convey uncertainty about extreme 897 

events under climate change. To have more experience in this field of climate extremes, this essay will be 898 

extended as my future work to modelling non-stationary extreme rainfall and temperatures in Rwanda 899 

using extreme value distributions. Apart from considering a linear trend, in this work the cyclic variations 900 

of extremes will be taken into account. 901 

 902 
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