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Original Research Article

AnalysisandModellingof ExtremeRainfall: Acasestudyfor Dodoma, Tanzania

Abstract : The analysis of climate change, climate variability and their extremes has become more
important as they clearly affect the human society and ecology. The impact of climate change is
reflected by the change of frequency, duration and intensity of climate extreme events in the environment
and on the economic activities. Climate extreme events, such as extreme rainfall threaten to
environment, agricultural production and loss of people’s lives. Dodoma daily rainfall data exported
from R-Instat software were used after being provided by Tanzania Meteorological Agency. The data
were recorded from 1935 to 201 1. In this essay, we used climate indices of rainfall to analyse changes in
extreme rainfall. We only used 6 rainfall indices related to extremes to describe the change in rainfall
extremes. Extreme rainfall indices did not show statistical evidence of a linear trend in Dodoma rainfall
extremes for 77 years. Apart from the extreme rainfall indices, this essay utilized two techniques in extreme
value theory namely the block maxima approach and peak over threshold approach. The two extreme
value approaches were used for univariate sequences of independent identically distributed (iid) random
variables. Using Dodoma daily rainfall data, this essay illustrated the power of the extreme value
distributions in modelling of extreme rainfall. Annual maxima of Dodoma daily rainfall from 1935 to
2011 were fitted to the Generalized Extreme Value (GEV) model. Gumbel was found to be the best fit of the
data after likelihood ratio test of GEV and Gumbel models. The Gumbel model parameters were considered
to be stationary and non-stationary in two different models. The stationary Gumbel model was found to
be goodfit of Dodoma maximum rainfall. Later, the levels at which maximum Dodoma rainfall is expected
to exceed once, on average, in a given period of time T = 2, 5, 10, 20, 30, 50 and 100 years, were obtained
using stationary Gumbel model. Lastly, the data of exceedances were fittedto the Generalized Pareto
(GP) model under stationary climate assumption.

Keywords - Climate extreme indices, Extreme value theory, Generalized Extreme Value Distribution;
Generalized Pareto Distribution; Block Maxima,; Peak Over Threshold and Tail Distribution; Return level.

INTRODUCTION

Extreme weather causes substantial damage to our lives through events such as extreme rainfall, floods and
ecological disturbances as they affect human activities and the economy (Hasan et al., 2013). In Tanzania,
flooding has been reported in 5 regions since mid January, 2016. At least 400 people have been displaced in Dodoma
municipality after 70 houses were destroyed or damaged after heavy rains between 17 and 18 January 2016. Since
then, flooding has been reported in Morogoro, Katavi, Mtwara and Dar es Salaam (Floods in Tanzania, January 2015).
Some examples of the loss caused by floods in the region are the damage both to life and property
experienced throughout the country during the 1997-1998 El Nino associated with floods, and the 2011
floods that wrecked the coastal city of Dar es Salaam. In recent years (2009-2011), heavy rains accompanied
with strong winds have left thousands of people displaced and without food in Muleba, Kilosa, Same and
Dar es Salaam. The flooding of 2009-2010 in Kilosa proved as serious, that over three quarters of the
farmers reported their households were affected (Mboera,2011). Furthermore, in 2010, floods occurred in
Kilosa (Morogoro), Mpwapwa and Kondoa (Dodoma) where more than 50000 people were affected, 5100
hectares of crops were destroyed and agricultural land was covered with mud and sand; public facilities were
also destroyed (Source: arcjournals,2016).

2.0 METHODOLOGY
Various methods were applied to achieve the objectives of the study. Some of the methods were

2.1.1 Climate Extreme Indices
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Climate indices allow a statistical study of variations of the dependent climatological aspects, such Q@ge 12

analysis and comparison of time series, means, extremes and trends ( , ).

The World Meteorology Organization (WMO) developed the 27 indices which describe the changes in
extremes. Indicesaredriven fromthe daily maximum and minimum temperatures and daily rainfall.
Inthis paper; we only defined some extreme rainfall indices which are related to the objectives of the
study.

2.1.2.1 Extreme Rainfall Indices

Six indices of rainfall extremes were considered. Some of them are percentile based; very wet days
(R95p) and extremely wet days (R99p). Indices which represent maximum value within a year; highest
daily precipitation (RX1day) and highest 5 consecutive days precipitation amount (RX5day) were
analysed. Indices which represent the number of days on which the rainfall value falls above a fixed
threshold; heavy rainy days (R20) and very heavy rainy days (R50) were also analyzed. In Table 2.1
below, each index was shortly defined.

Table 2.1: Definition of extreme rainfall indices

Extreme rainfall indices

Index Indicator name Definition
R20 Heavy rainy days Annual count of days when PRCP = 20mm
R50 Very heavy rainy days Annual count of days when PRCP > 50mm ( threshold)
R95p Very  wet  days Annual total PRCP when RR > 957 percentile
R99p Extr?mely wet days Annual total PRCP when RR > 99" percentile
RX1day | Maximum 1-day rainfall amount . .
3 ] Annual maximum 1-day rainfall
RXS5day | Maximum 5-day rainfall amount Annual maximum 5-day rainfall

2.1.3 Observed change/trend in extreme Rainfall.

Changes in extreme rainfall in Dodoma were analysed through the annual and daily
occurrence of rainfall. Changes in extreme rainfall can be studied by looking at the change
in the frequency of days with precipitation exceeding some threshold; R10mm, R20mm
and Rnnmm where nn represents any fixed threshold ( ). Extreme
rainfall is defined also as the highest daily precipitation (RX1day) or the highest 5
consecutive days precipitation amount (RX5day) per year or again extreme rainfall is a
heavy rainfall event (R95p and R99p). The indices were chosen primarily for the assessment of
many aspects of a changing global climate which include changes in intensity, frequency and duration
of precipitation events. They represent events that occur several times per season or year giving them
more strong statistical properties than measures of extremes which are far enough into the tails of the
distribution so as not to be observed during some years ( ).

This paper used the linear regression model to describe change of extreme rainfall over the time. Let Y
be response variable and 7" be independent variable (Time). So, we fitted the following simple model:

}/: —(}:'{]—F(}:']E—i—zz' t=1...n

where @o is an intercept and @1 is the slope which describes the change of extreme rainfall over time.
After fitting this model to the data, we made the following inference,

Hy:a1 =0 against Hy tap 520
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to check if there is a relationship between the extreme rainfall and time. To test the statistical significance of
relationship between time T and the extreme rainfall ¥, the significance level of 0.01 was used.

All climate extremes indices for rainfall presented in Table 2.1 are calculated using data from Dodoma
and the analysis and results are presented in chapter 3. Climate extremes indices can be used to define
extremes and analyse changes in extremes. However, those indices do not give the answer to the question of
return levels of extreme rainfall. Thus, extreme value distributions are introduced in the next section.

2.1.4 Extreme Value Distributions

In this section we reviewed the model which focuses on the statistical behaviour of

M, = max {X1, Xo, ... Xn},

where X1, X5,..., X is a sequence of independent random variables having a common distribution function

F (Colesetal.,2001). Inapplications, X7 usually represent values of aprocess measured on aregular time-
scale, then we take the maxima over particular blocks of time to extract the upper extreme values from a set

of data. For example, in this essay X1:X2.- ... X, represent Dodoma daily rainfall since 1935 to 2011. If

M is the number of observations in a year, then M, corresponds to the annual maximum of the daily rainfall
over 1935 — 2011 period.

Now, could we derive the distribution for M» for all 7 to answer this question, we used the probability
theory to find the possible limit distributions of the maxima Ma. From probability theory, (X) the
cumulative distribution function of X is defined as

P(X € x) = F (x).

If F is known, the distribution of M. is derived exactly for all values of n as follow:

P[M, = x]=PI[X;, = x]; i =12,...n (2.2.1)
By using the fact of independence Equation 2.2.1 becomes
128

PIX; <z|=P[X; <z|P[X: <zx|..P[X, < x|,
= (P[X < x])".

[\

As the X; are independent identically distributed with a common distribution F
P[M, = x] = F" (x). (2.2.2)

Forunknown distribution F'» we use the limit laws of convergence in distribution to approximate F" for
large M-

Theorem (Fisher-Tippett 1928; Gnedenko, 1943). If the sequence {X:} are iid random variables

with the distribution function ¥ and {a,> 0L {b}are sequences of normalizing constants. Then, ifthere
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then it must be of the same type as one of the following three types of distributions:

Gumbel distribution

G&)=enﬂ—ﬁm(—%;ﬂ,—m < ¥ < oo

Weibull distribution

W(x) = E”’[_ [_(x;b)r]’ fx <b
1, if = b;

Frechet distribution
x—h\1 "
. - . <
F(x) = ‘”p[ [ ( a )l ] fa<b

0, if<b
a,band o> 0

with parameters

namely scale, location and shape parameters respectively.

2.1.1 Remark.TheTheorem 2.2.1 isalsoknownas Extremal type’s theorem while the three max-

stable distributions are Gumbel, Weibull and Fréchet.

Convergence of sample maxima

S,
©w

Simulation from exponential N=20

Probability density function
° °
= o

rate

Sample maxima N =1000

0.0 1

— Weibull
---- Frechet
«=-= Gumbel

TTTA RS T

X

Figure 2.1: The extremal types theorem: the power of this theorem is to approximate the distribution of

samplemaximaasn increasestobe max-stabledistributionregardless of the parentpopulation.X;.

If the Theorem 2.2.1holds for suitable choices of@» and P » then we say that G is an extreme value

cumulative distribution and ¥ is in the domain of attraction of G, written as F € D(G) .However, &
can take the form of the generalized extreme value distribution which unifies three extreme value




172 distributions known as Gumbel, Weibull and Frechet (Coles et al.,2001). The unified extreme VahEeage 15
173 distributions 0 is defined by

174
175
176
-t
x—by\¢
P(X =x)=G(x) =exp|- 1+§( ) , —00 < U, E<+&andag >0
a
177 *
178 (2.2.3)
179 with 2+ = max{z,0}. From Equation 2.2.3. we derive the GEV density function by using the
180 probability theory of cumulative and density function by applying derivative of cumulative distribution
181 asfollows
182
-1 =1
1 x—b\TE ! x—by\ ¢
g(x}=—[1+§( )] + exp |- 1+§( ) , —00 < U, E<+&andag >0
a a a
183 N
184
185  with 2+ = max{z,0}. 186 (2.2.4)
187 (2.2.4)
188 The GEV distribution and its density function have three parameters namely (1.€.7), Jocation, shape and
189 scale parameters respectively. G(X) and 9 (*) can be denoted by G (I §. @) and 9 (1€, 7) respectively.
190 The x are the extreme values from the block maxima.
191 Remark. The shape parameter ¢ governs the tail behaviour of the distribution. When fitting the GEV
192 model to sample data, the sign of the shape parameter ¢ will usually indicate which one of the three
193 models best describes the random process we are dealing with (Coles et al.,2001).
194 « For¢ = 0 light tail (Gumbel type)
195 « For{ < 0 bounded upper tail (Weibull type)
196 « For§ = 0 heavy tail (Frichet type)
197
198
The three tvpes of extreme value distribution: Weibull, Gumbel and Fréchet
05
04 :: . T
_25 o ' 5 - Weibul
£ 02 &
£ / | |
a v :.:f | 2 — Gumbel
4 / e - Fréchet
- :
0.0 = . —t
-4 -2 0 2 4 i3 8 10
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Modelling by Generalized Extreme Value Distributions

The Block Maxima approach description

In ordinary statistics, we describe the main part of the distribution; many ignore outliers. However,
in the statistics of extremes we characterise the tail of the distribution by keeping only the extreme
observations. We do not care about mean and variance, we care only about tails. If we fit the one
distributiontoentire datasets,weshall often missthetail. Therefore, wetake dataand weextractsome data
which are said to be extreme. One of the methods of extracting extreme data is the block maxima method.
In this method, the idea is to break the data into the monthly/annual blocks of equal length then extract
the maximums from each month/year and fit the model to that data (monthly/annual maxima)
(Coles et al.,2001). The right distribution to fit block maxima is the generalised extreme value
(GEV) distribution as shown in Equation 2.2.3. In practice, the implementation of this model for any
particular data, to choose the block size is critical because of the following reasons:

i.By the limit model in Theorem?2.2.1, blocks that are too small are likely to have poor
approximation, which leads to bias in estimation and extrapolation.

ii. Large blocks generate few block maxima, leading to large estimation variance.

a) Maximum likelihood estimation

Let us denote the maximum of a sample X1, X2.....Xn by Y. So, asample Y1, Ya...., ¥, of independent
sample maxima has acommon GEV distribution. The parameters o, 4 and & of GEV distribution can be
estimated by using different methods.Various methods of estimation for fitting GEV model have been
proposed: least squares estimation, maximum likelihood estimation, probability weighted moments and

others. In this essay, we focus on the maximum likelihood (ML) method because of its flexibility to any
model.

Consider Y1- Y.+ ¥ independent random variables such that

Y. ~ G(y; o,&,p0),i = 1,2,...,m.

The GEV log-likelihood function is:

o (1 ™ 1oe vi — 1Y)~ vi —p\\ *
—m log o €3 —l—l);lon (1+£(—a )) ;(l—l—f(—ﬂ )) 5

log (Lo, &, 1)) =

- .
,mbgﬂ,z:&p{,(&;ﬁ)},E:(ggﬁ)‘
o o
i—1 i=1

defined when {1+ (%57) > 0, i=12,.....m.] (22.5)

The ML estimates with respect to the entire GEV family are obtained by maximisingthe Equation2.2.5 with

respect to the parameter vector CRADE I possible to obtain the maximum likelihood estimator explicitly,
usually by differentiating the log-likelihood and equating to zero.

b) Inference for return levels

Definition. A return period, also known as a recurrence interval is defined as an estimate of the
likelihood of an event, such as extreme rainfall, flood or a river discharge flow to occur.

In simple terms, the return level is associated with the corresponding return period and indicates the
maxima can reach within such a return period. We used the annual block maxima approach which
consists of fitting the GEV model to a series of annual maximum data with n taken to be the number of

iid events in a year. The T-year return value is formally defined by setting Equation 2.2.3 to

if £ £ 0,

if £ = 0;
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1
1 —
T
*p is then the solution to the resulting equation. We need to choose an optimal threshold *» such that

- 1 -
the probability that an observed value exceeds *» is equal to P» where P = 7 = P [Mn > lp] is
the

upper tail probability.
L Ep—H _? g1
exp [ {e (=) l -1-2 (2.2.6)
Solving Equation 2.2.6 for *», we obtain
p-g(1--log—p)]€), for ££0 (2.2.7)
Tp =
pn— olog[—log (1 — p)], for £ =0.

265 In terms of extreme value

terminology, *» is the return level associated with the return period p and it is common to extrapolate the
relationship (2.2.7) to obtain estimates of return levels considerably beyond the end of the data to which
the model is fitted. After estimating the GEV parameters by maximum likelihood method, we obtain

the maximum likelihood estimates of, *» by substituting estimated GEV parameters into Equation 2.2.7

"IN

) i — (1 — yp—é) , for & # 0; (2.2.8)

]9

jt — & log yp, for £ =0;

The p—year return level, ¥z , is the level an extreme is expected to exceed once every n time-units.

Modelling by Generalised Pareto Distributions.

The Peak Over Threshold approach description

Modelling by generalized extreme value distribution is based on the block maxima approach. However,
the block maxima approach does not consider all maximums. It considers only the highest value in all
maximum values. Therefore, sometimes using only the block maxima can be wasteful if it ignores much of
the data. It is often more useful to look at exceedances over a fixed high threshold instead of simply the
maximum or minimum of the data. Consider values of X: to be extreme if they are above (below) a
high (low) threshold «. In peak over threshold method, we fix the threshold and we extract the data
exceeding the threshold. Let {£:} be the sequence of independent random variables with common
distribution function ¥ and M» be the sample maxima of the sequence {X i} (Colesetal.,2001).

Theorem. Denote an arbitrary term in the X; sequence by X and suppose that F satisfies Theorem
2.2.1.

By Theorem 2.2.1, for a large ™,

where

-1

G(x) = exp !— (1 +¢& (%b)) ¢ +], for some HT >0 404 ¢

Then, for large enough # the distribution of Y =X — L conditional on (X = n)’ is approximately

pl¥ =y)=p(y)=1- (1 + %F;U‘f =0 (2.2.9)

g+Elu—
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Defined on 07:Y > 0 and (0 +&(u—p) > 0.}
For§ = 0 which is interpreted as limit §— 0y (2.2.9), leading to

p(y) = 1-exp(- ), (2.2.10)

u

Where 9u = @ + {[:u - ﬂ)

As Y =* ~ U the two Equation 2.2.10 and (2.2.9) can be written as

-1

1—(1+§(H’))?, if &£ +0

Ty

p(x) =

1—exp (-2, if £ =0, 2.2.11)

Ty

The family of distributions defined by Equation 2.2.9 is known as generalised Pareto family. There-

fore, if block maxima have approximating distribution G, then threshold excesses have a corresponding
approximate distribution within the generalised Pareto family (Coles et al.,2001).nFrom Equation

2.2.11, we derive the density function of the generalised Pareto distribution
-1

o Sl
Jiexp (_ ﬂ:_u) if&E=0, (22.12)

Remark. There are three types of generalised Pareto distribution which are:

Exponential (§ = 0). Pareto (¢ > 0) and Beta (¢ < 0).
a) Threshold selection

One consideration for POT modelling is the right choice of threshold. In practice, theimplementation of
thismodel forany particular datasetto choose theright thresholdis critical because of the following
reasons: the threshold that is too low is likely to violate the asymptotic basis of the threshold model,
which leads tobiasinestimation and extrapolation (Colesetal.,2001). Toohigh threshold generates few
excesses, leading to high estimation variance. To handle this challenge, two methods are available: the first
method is an exploratory technique carried out prior to model estimation. The second is to assess the
stability of parameter estimates, based on the fitting of models across arange of different thresholds.
There are twocommon graphical tools that can help in choice of the threshold. The firstis the mean
excess plot.

Remark. Above a threshold u, at which the generalised Pareto distribution provides a valid
approximation to excess distribution, the mean residual life plot should be approximately linearin u.

In the second method, we plot the parameter estimates and confidence intervals at different thresholds. The
estimated parameters remain constant above the threshold at which the asymptotic approximation is valid.

Above a level u, at which the asymptotic motivation for the generalised Pareto distribution is valid,
estimates of the shape parameter £ should be approximately constant, while estimates of ¢, should be
linear in u.
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329 b) Maximum likelihood estimation
330 After determining the threshold, the generalised Pareto distribution parameters can be estimated by using the
331 maximum likelihood method. Let Y1, Y. -+, Y& be K excesses of a threshold &. The log-likelihood is

332 derived from (2.2.12) as

—klogo, — (2+1)T 10g(1+f = ) for & # 0
-] s (e )1 c2)
333 kloga, ——X24((x; — 1), forg=o, (2.2.13)

2= . -~ P
334  defined 1+¢ ( ay ) L= L2,....k We obtain the ML estimates (Jw f)for (0. €) by

335  maximizing numerically Equation 2.2.13.

336 c) Inference on the return levels

337 The more convenient way of interpreting extreme value models is using the quantiles or return levels,
338 rather than individual parameter values. So, we suppose that a generalized Pareto distribution with
339 parameters @ and ¢ is a suitable model for exceedances of a threshold U by a variable X. For X > U,
340

-1

341 PIX=x|X =u]= (1 +f(?))?

342 It means that

-1

P[X = x|X = u] =Tu(1+cf(x_u)>E

ad

343

344  where Ty = P[X > U] Thus, for § # 0 the level *m that is exceeded on average once every " observations is the
345  solution of

-1
(1Y) =

347 248

346

(2.2.14)
i +% [{m?'u)‘E — 1] ,  for £F#0
T =
u+olog(mr,), for & =10,

oo provided M is sufficiently large to ensure
354 that X m = U,

355 To estimate the return levels, we substitute the parameters by their corresponding maximum likelihood

356 estimates. However, the probability of an individual observation exceeding the threshold u has a natural
_k

357 estimator of L= n

358  the sample proportion of points exceeding U (Coles et al.,2001).

359
360
361

362
363  Stationary and non-stationary model.

364 Most of the time when one deals with real life data some assumptions are violated. Therefore, in this
365  essay we considered both assumptions, stationarity and non-stationarity of climate extremes data. Climate
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is.change over period and the reliable future projections of extreme rainfall cannot rely only on stationgffge

assumption. Under the assumption of non-stationarity, we have non-stationary model with a linear trend in
location parameter. Using the notation GEV (1. 0.¢) to denote the GEV distribution with parameters

GEV (1. 9.£) it follows that a suitable model for X. t, the annual maximum Dodoma rainfall in year €,
might be

Xy ~ GEV (u.0.¢).

where
He = Hgt Hig

with parameters £o0and £1. In this way, variations through time in the observed process are modelled as
alinear trend in the location parameter of the appropriate extreme value model, which in this case is the

GEV model. The parameter #1 corresponds to the annual rate of change in annual maximum rainfall.
Non-stationarity can be expressed in terms of the location parameter as follow:

GEV (i, 00,4¢) = exp [‘ (1 e (; ;))_} | (22.15)

SO where

He = Mot Hyg

o, = d,

$e

I
‘u"r\r

Foré{ = 0,

G(p,0) = expi—exp {—%} .
(2.2.16)

The advantage of maximum likelihood over other techniques of parameter estimation is its adaptability to
the changes in model structure (Coles etal.,2001). That is why for this non-stationary model, we did not
change our previous model. We maximised the Equation 2.2.5 by considering a linear trend in location
parameter. Note that, for stationarity, the GEV and GP models assume that the parameter location,
scale and shape are time-independent (parameters are constants).

Likelihood Ratio (LR) Test and Model Diagnostics or goodness-of-fit checks.

As in any statistical model, after fitting model, we check the good of fit of the model. The Likelihood
Ratio (LR) test is used to compare the fit of two models where the null model, Hy is a special case of
the other (alternative model, H; ) (Hasan et al.,2013). The best model is determined by deriving
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H
the probability or p-value of the difference in ¥, the LR test statistic, defined as ¥ = —2In (H_O)

where ¥ has a chi-square distribution. However, LR test is applied to nested models, which means that
comparison can only be made between one complex model and one simpler model (Hasan et al.,2013). In
the model checking we are comparing the observed data to GEV or GP estimates. We use probability

Plots, quantile plots, return level plots and density plots to assess the quality of a fitted GEV or GP
Model. The probability plot compares the empirical and fitted distribution functions.

i. The probability plot should lie close to the unit diagonal. In probability plot, we Look for linearity
and deviations in tails.

ii. Quantile plot compares observed quantiles in data to quantiles estimated by the GEV. In quantile
plot, we also Look for linearity and deviations in tails.

iii. The return level plot.

iv.The density function of fitted GEV or GP model is compared to histogram of block maxima
(histogram of exceedances for GP model).

Data preparation.

The daily rainfall data obtained for Dodoma starts in January 1935 and lasts in December 2013. The data had
no missing values apart from the last two years. The data were supplied by Tanzania Meteorological Agency
in 2013.Table 3.1 below details the information of the missing values.

Table 3.1: Missing values in Dodoma daily rainfall data

Variable | Period | Month Number of missing values
Rain 2013 | November 30
December 31
2012 November 30

As shown in Table 3.1, all years had values except the last two years. Hence, we chose to use the data to
2011. We shifted years so that we obtain all extreme rainfall in the same season for Dodoma. Then, the
daily rainfall data starts from August 1935 and ends in July 2011 (see Figure 3.4). The number of
observations did not change because we brought half of the data for 1935 to 1934 and the last year ends in
July 2011.

Data description.

We put our data into two main groups; rainy days and dry days to get rainy season data for extreme
rainfall. As we were interested in studying the behaviour of maximum rainfall in Dodoma, we considered
rainy days (Rain > 10.0mm in our data). The Dodoma data has 4 variables; Year, Month, Date and Rain.
The statistical summaries for rainy days between 1935 and 2011 are presented in a table below.

Table 3.2: Statistical summaries of Dodoma rainy days.

1st Qu. Mean(mm) é‘;‘d Min Max  Std(mm) Median  observations(days)
14.3 27.1 335 10.2 119.8 17.6 21.1 1337

444
Table 3.2 shows that in our Dodoma daily rainfall data approximately 5% of the daily rainfall exceeds
10mm, and this was 1337 out of 28124 days. In total, we have 1337 rainy days for Dodoma from 1935 to
2011 and the data for rainfall were recorded in millimetre (7m). The maximum rainfall in our data was
119.8mm which occurred on 02 Feb 1964. The average daily rainfall was 27.1mm. The table below
describes the Dodoma daily rainfall on the monthly basis.
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Table 3.3: Statistical monthly summaries of rainfall from 1935 to 2011
R10(days) | R10  per | chance to | Mean Max(mm) Std(mm) Month
year(days) | rain each | (mm)
year ( %)

315 4 13 27.2 113.00 18.3 Jan
274 4 13 259 119.8 16.3 Feb
259 3 11 28.2 102.5 18.9 Mar
117 2 5 26.7 92.5 16.9 Apr

7 0 0 19.1 41.7 11.8 May

2 0 0 10.8 11.4 0.8 Jun

0 0 0 - 0.6 - Jul

0 0 0 - 0.8 - Aug

0 0 0 - 22 - Sep

9 0 0 30.7 54.4 12.9 Oct
60 1 2 24.5 90.4 16.7 Nov
294 4 12 27.8 107.0 17.4 Dec

In Table 3.3, the column with R10 represents the number of days in each month with daily rainfall
greater than 10mm for 77 years. Mean column is the average monthly rainfall for 77 years. The chance to
rain was calculated taking R10 per year divided by days of the month. The Table 3.3above shows, for
example, July, August and September were found to be months with almost no rain, while January,
February, March and December were the wettest months with some possibility of the daily rainfall being
greater than 10mm. To better understand the behaviour of the daily maximum rainfall for Dodoma,
methods.
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analyses
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investigated

using

graphical
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d) Different graphical Description of Dodoma daily rainfall data
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Figure 3.2: Histogram of Dodoma daily rainfall
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Figure 3.3: Daily rainfall scatter plot

Figure 3.3 above shows the daily rainfall. We observe that all years had rainfall above 27. 1mm, which is
the average rainfall of rainy days for 77 years (seeTable 3.2) . The red line represents the average
rainfall in Dodoma for 77 years. This scatter plot can give us an idea about the extreme rainfall by
studying the behaviour (distribution) of rainfall exceeding the average rainfall. We defined the year
to start in August and end in July as shown in a monthly boxplot in Figure 3.4 below.



479 Section 3.2. Data preparation anddescription Page 19
480

481
)
Q B Aug
a0 = i g g ﬂ Sep
o o B ° o =%
o g 2 E: Mov
oz ¥ o 8§ © 8 * Dec
= 8 o 8 o]
= g E : E Jan
T s i § £ Feb
o 4] o * Mar
g 8 = Apr
25 - 2 T = May
8 E 5 = Jun
§ o U s o - .
I | I | | | | I 1 I
Aug Sep Oct MNov Dec Jan Feb Mar Apr May Jun Jul
482 Month
483
484 Figure 3.4: Monthly boxplot of Dodoma daily rainfall.
485
486
487 This box plot is showing the variability in the daily rainfall on monthly basis across the years for the
488 Dodoma station. The daily rainfall rises during the wet season (from November to December and again
489 from January to April) and declines during the dry period (from May to September). Several periods
490 of heavy rainfall in Tanzania since 14 January 2016 have caused flooding in the regions of Mwanza and
491 Dodoma. The Tanzania Meteorological Agency issued a warning of severe weather in most parts of the
492 country, with possible rainfall of 50mm in 24 hours expected in many areas until 16 April (Rainfall and
493 forecasts, 14 January 2016). We used records of extreme rainfall causing floods in some regions, to fix
494 the threshold to describe extreme rainfall in our Dodoma data. The plots below show the daily rainfall

495 of Dodoma from 1935 to 2011 exceeding some heavy rainfall causing floods in Dodoma.
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497
498

Rain

499 Year
500

501 Figure 3.5: Daily rainfall for Dodoma with rain exceeding 50mm

502

503

504 The blue points represent the daily rainfall in Dodoma exceeding 50mm each year for 77 years. Data
505 with rainfall greater than 50mm is much scattered compared to others.

506

Rain

507
508

509 Figure 3.6: Daily rainfall for Dodoma with rain exceeding 30mm

510

511

512 The blue points represent daily rainfall in Dodoma exceeding 30mm each year since 1935. Data with
513  rainfall greater than 30mm is scattered compared to others. This scatter plot does not show obvious trend
514  indailyrainfall greater than 30mm. Evenifthe above scatter plots did not show an obvious trend in rainfall
515  exceeding some maximum rainfall, we need some statistical evidences to confirm this. In the next section
516  weusedprecipitationindicestosee whether there wasalineartrendin

517  Extreme rainfall or not.

518

519

520
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Analysis of a linear trend in extreme rainfall over time using rainfall indices

Changes in extreme rainfall in Dodoma were analysed through the annual and daily occurrence of rainfall. In
Table 2.1, we described some useful indices to analyse extreme rainfall. Changes in extreme rainfall can
be studied by looking at the change in the frequency of days with precipitation exceeding some
threshold; R10mm, R20mm and Rnnmm where nn represents any fixed threshold (

). Extreme rainfall is defined also as the highest daily precipitation (RX1day) or the highest 5
consecutive days precipitation amount (RX5day) per year or again extreme rainfall is a heavy rainfall
event (R95p and R99p) ( , ). As extremes are defined based on the occurrence,
frequency and intensity, the plots below are based on some threshold of exceedance, intensity and
frequency of rainfall in Dodoma. To study the trend in rainfall extremes over period of 77 years, linear
regression model was used and the fitted line (in red) indicates linear trend in occurrence, frequency and
intensity of extreme rainfall. How often does extreme rainfall in Dodoma occur? Is there any statistical
evidence of change in extreme rainfall in Dodoma over a period of 77 years?

Using the indices described inTable 2.1, we can answer those questions. In this essay, 7 precipitation
indices related to exceedances, frequency and duration of rainfall were analysed. To determine whether
there exist a linear trend, a linear regression of rainfall indices against year was fitted. The slopes of the
annual trends of extreme rainfall indices were calculated based on a least square linear fitting. Trends
were obtained for each index and the statistical significance of the trends were assessed using a p-value. The
trends were considered to be statistically significant at 99% confidence level.

The observed linear trend of extreme rainfall indices are presented below

Table 3.4: Summary of linear regression model

index p-value(slope) R-squared Trend line

R20 0.79 0.00 Y=-0.01x T+18.59
R50 0.18 0.01 Y=0.01 xT-15.71
R95p 0.20 0.01 Y=0.59 x T-1038.52
R99p 0.74 0.00 Y =0.11 xT-175.36
RXl1day 0.16 0.01 Y=0.13 x T—195.39
RX5day 0.14 0.02 Y =0.28xT -442.84

The line in red is a trend-line computed by least square fit and the corresponding regression equation is
presented for each index in Table 3.4.

RX1day

Figure 3.7: Annual daily maximum rainfall with a regression line y = 0.13# — 195.39.
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564
565 Figure 3.8: Annual maximum of 5-day consecutive rainfall with a regression line y = 0.287 — 442.83.
566
567
568 Year
569
570 Figure3.9: Theexceedance of 95 percentile threshold witharegressionliney=0.59s-1038.51.
571
572
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576
Year
577
578 Figure 3.10: Theexceedance of 99 percentile threshold witharegressionliney=0.117-175.36.
579
580 Figure 3.10 and Figure 3.9above represent very wet days and extremely wet days: The 95™ and 99”
581 percentiles describe the annual precipitation amount accumulated on days when daily precipitation is

582 greater than the (95™) and (99™) percentiles threshold of the wet-day precipitation (Rain> 1mm).
583

R20mm

584 Year

585

586 Figure 3.11: Annual counts of days with daily rainfall exceeding 20mm with a regression line y =
587 —0.017 + 18.59.

588

589
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591

592 Figure 3.12: Annual counts of days with daily rainfall exceeding 50mm with a regression line y =
593 0.017-15.71.

594

595 Figure 3.11and Figure 3.12above represent the heavy rainfall days (Rain > 20, 50mm). An increase
596 shown in annual counts of days with rainfall exceeding 50mm could indicate an increase of extreme
597 rainfall in Dodoma for 77 years. We observed a positive slope of the trend line to all indices except
598 R20, which means that the rainfall extremes increased over time. However, we need statistical test to
599 confirm this change in extreme rainfall. From Table 3.4, all the p-values were greater than 0.01 level of
600 significance. We therefore did nothave enough evidence toreject the null hypothesis, since our test was
601 not significant. In addition, the value of the R-squared is very small. This implies there is a very small
602 (for example 1 % for R50) variability in extreme rainfall that can be explained by the change in time.
603 Then, we concluded that the rainfall indices showed that there is no statistical evidence of the change in

604 rainfall extremes in Dodoma between 1935 and 2011.

605 One of the unanswered questions clearly by the above indices is the distribution of observed extreme
606 rainfall in Dodoma since 1935. As extreme events are also defined as those in the tail of the distribution, to
607 accurately assess potential changes in the shape of the distribution of rainfall observations requires
608 additional rigorous analysis rather than using the rainfall indices. To study the distribution of extreme
609 rainfall over period in Dodoma, extreme value distributions were used. In the next section, extreme value
610 distributions with stationary and non-stationary parameters were fitted to observations of Dodoma daily
611 rainfall to model trends in extreme rainfall and to determine return levels.

612

613

614 Modelling of Extreme Rainfall using Extreme Value Distributions

615

616  This modelling is based on the time series of daily rainfall for Dodoma recorded from 1935 up to 2011 as
617  described in section 3.1. In this section, we applied the theory of extreme value distributions presented in
618  section 2.2. At the first, we used block maxima (BM) approach. Secondly, we considered model with
619  stationary and non-stationary extreme value distribution parameters. We finally used the peak over a
620  threshold (POT) approach to model the data of exceedances.

621  Fitting the model to the data by BM Approach.

622  One of the most important things to do before applying GEV model is to obtain Yz. 7.t = 1,...,m

623  the maximum observations in m blocks of length 7 related to the period [(t — Dn + 1, t,] por this,
624  weneed to choose a block of equal length n, and discard all values, remaining with only the maximum
625  value in each block. First, we have extracted the block maxima of annual maximum from Dodoma daily

626 rainfall. Therefore, for Dodoma rainfall ™ = 77,m = 365, 366 for annual blocks of maxima.
627
628
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Thereis aneed to know the risks of extreme events in agriculture, especially those that are damaging, such
as heavy rainfall. Too much rainfall can affect the quality and productivity of crops. Figure 3.13 shows
the extreme daily rainfall in a year. In 1964 we had the highest rainfall amount of 119.8mm whereas,
the lowest extreme amount of rainfall was 29.0mm.

e) The figure below represents the annual block maxima for Dodoma daily rainfall
& (o}
Annual maxima
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Figure 3.13: The extreme rainfall in Dodoma since 1935 to 2011

Fitting the data to a GEV model with stationary parameters

Weassumed thatthe pattern of variation of extreme rainfall has stayed constant over the period 1935- 2011,
so we modelled the daily Dodoma rainfall as independent observations from the GEV distribution. After
filtering 77 blocks of maximum, we fitted the annual block maxima to GEV model and we estimated the

parameters u, ¢ and & by maximum likelihood method. The GEV log-likelihood of annual maxima L (@)
with @ = (IL0.&) is given by

-1

L) =-Tlogo - +D T log 1+ (1)) -T2 1+ (2]
(3.4.1)

If £ =0, we have Gumbel model. The log-likelihood of annual maxima L(p) with ¢ = (i, o) is given
by

77 77
L(g) =-77logo - Z (%) —Z exp| - (vlgj)
i=1 i=1

(3.4.2)

Maximisation of the log-likelihood (Equation 3.4.1 and Equation 3.4.2) numerically using R, leads to the
estimates presented in Table 3.5.
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Table 3.5: GEV and Gumbel parameter estimates with their 99% confidence intervals

Parameter | Estimate | Standard Error CI (99%)
Shape(¢) -0.19 0.08 (—=0.39, 0.01)
Location(f) 6191 2.29 (56.00, 67.83)

Scale(s) 18.23 1.61 (14.08, 22.37)
Gumbel parameters
Parameter | Estimate | Standard Error CI (99%)
Location(f) 60.08 2.12 (54.62, 65.54)
Scale(5) 17.69 1.48 (13.87, 21.51)

Maximization of Equation 3.4.1for Dodoma annual maxima rainfall data leads to the estimate (f & é) =

(61.91, 18.23, —0.19), for which the only one parameter &) was statistically insignificant. But all
parameters were statistically significant (& o) = (60.08, 17.69) when we maximised the Equation 3.4.2.

3 parameter (GEV) versus 2 parameter (Gumbel) model

The shape parameter ¢ is the only parameter which governs the tail behaviour of the distribution. After
fitting the GEV model to annual maxima data, £ indicates which one of the three models best describe the
Dodoma annual maxima rainfall. We used likelihood ratio-test to test GEV and Gumbel models with
the following hypothesis

Hy: Gumbel model (¢ =
0), H:GEV model (¢
#0).

The smaller the p-value, the stronger the evidence against H, provided by the data. Using function
Ir.test() in extRemes package for likelihood ratio-test, we got the p-value 0.024 at alpha (a = 0.01),
therefore, we failed to reject the null hypothesis. The zero belongs to the shape parameter’s confidence
interval (0 €99%CI(<)) (see Table 3.5). Thus, we did not reject the null hypothesis H, which means
that the suitable model for our Dodoma extreme rainfall belongs to Gumbelmodel.

Diagnostic plots of GEV and Gumbel model

fevd(x = Rain, data = BLM1, type = "GEV", methoed = "MLE", units = "mm")
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Figure 3.14: GEV model
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On top, there are two plots; probability and quantile plots and at the bottom we have plot of the fitted
GEV density superimposed onto the empirical density of the actual data (bottom left) and retun level
plot.

fevd(x = Rain, data = BLM1, type = "Gumbel")
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Figure 3.15: Gumbel model

The above plots are four diagnostic plots; probability plot, quantile plot, return level plot and density
plot of Gumbel model.

Modelling a linear trend in extreme rainfall using Gumbel with non-stationary parameters

After finding that Gumbel model is the best fit of Dodoma maximum rainfall, we modelled linear trend in
extreme rainfall using Gumbel model. In the context of environmental processes, non-stationarity is often
apparent because of seasonal effects, perhaps due to different climate patterns in different months, or in the
form of trends, possibly due to long-term climate changes. Due to climate change, the trend in frequency
and intensity of extreme weather events occurs through time. To model change in extreme rainfall, extreme
value distributions with non-stationary parameters could be used. Non-stationarity can be expressed in terms
of location parameter with trend. Thus, we used Gumbel with two parameters as follow:

He = Hp T Hig =

1,2. % = 0@

The classical Gumbel; Gu(x, u, 6) model assumes that the two parameters of location and scale are time
independent (stationary parameters). However, if trends are detected in the data sample, the non-
stationarity case where parameters are no longer constants but expressed as covariates (e.g.time), should be
considered. To study linear trend checking whether there exist a trend in change of extreme rainfall, two
models were considered; stationary modell (classical Gumbel), and non stationary model2 (Gumbel with
time as covariates).

Model 1 without trend: W9  are constants

Model 2 with trend: M+ = Wo T Wie g js constant,
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rainfall data).

We fitted Gumbel without trend in model 1 to compare with model 2 including trend. The second
model is Gumbel fitted with linear trend in location parameter. The detail result of each model is shown
below:

Table 3.6: Gumbel parameter estimates for Modell and Model2 with their 99% confidence intervals

Modell
Parameter Estimate | Standard Error CI (99%)
Location(f) 60.1 2.1 (54.6, 65.5)
Scale(o) 17.7 1.5 (13.9, 21.5)
Model2
Parameter Estimate | Standard Error CI (99%)
Location(u") 614 201.8 (—458.3, 581.2)
Location(u™;) | -0.001 0.1 (-0.3, 0.3)
Scale(o) 17.7 1.5 (13.7, 21.6)

Fitting the model without a trend in location parameter, we got that all two parameters are statistically
significant at 99 %. The second model is Gumbel fitted with linear trend in only location parameter
and we got only one parameter statistically significant (&) but location parameters were not.

Writing a location parameter with linear trend y, = 61.4 — 0.0017, where ¢ is an index for year, with 7 = 1
correspondingto 1935. The parameter t//= —0.001 corresponds to the annual rate of change in yearly maximum rainfall
in Dodoma. However, all estimates of location parameter in model2 were not statistically significant at 99%. We used
the likelihood-ratio test to test two models. We got a big p-value (= 1) indicating that the stationary model
(Modell) should be accepted. This implies there is no evidence of a linear trend in location parameter.

Jil Annual maximum rainfall with a fitted line of a linear trend in location parameter
w
]
» ]
— L
o 1 - * . ® -
k= o .
o ; . .
% . ¢ . . *
-
E 75 ‘e c .
= » » » . =
< S < . ’ » * *s
E Y - & - - . L Ll
ol — - - ol L.
= * . - - o
c | |
= ol ] * * -
=T - - '- S . I
a
& - -
25 - 3 I i
Year

Figure 3.16: Fitted estimates for ¢ in linear trend Gumbel model of Dodoma annual maximum rainfall.
The red line represents location parameter with a linear trend u = 61.4 —0.001z

1.1.1 Remark. Thelocation parameter is analogous to the mean of anormal distribution, so increase in
u uniformly shifts the distribution to higher values, increasing all extremes equally. Whereas ¢ and ¢
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g)

Diagnostic plots for Gumbel with and without trend model
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Figure 3.17: Gumbel without any trend.

fevd(x = Rain, data = BLM1, location.fun = ~BLM1$Year, type = "Gumbel")
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Figure 3.18: Gumbel with linear trend in location parameter.
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_Return levels and their (1 — @)% confidence limits

After estimating the Gumbel parameters, we estimated the return levels of extreme rainfall in Dodoma
and we extrapolated to obtain estimates of return levels beyond the end of the data we have. Under the
ideal of stationarity, the return level calculated from one period of the data should be approximately the
same value if it was calculated from any other period of the same data. However, this is not the case if
climate is changing. We were able to predict the estimate of the daily rainfall we would expect to see in
Dodoma,

¢ Once in T =2 years,
¢ Once in T = Syears,
¢ Once in T = 10 years, so on.

We used our fitted stationary Gumbel model to extrapolate beyond the range of our data to estimate
such return levels. The results are presented in Table 3.7 below.

Table 3.7: Gumbel return level estimates with their 99% confidence intervals

T-year return level in mm
Return period T Estimated return level (3 ) in mm CI (99%)

2-year return level 66.6 (60.5,72.6)
5-year return level | 86.6 (77.5,95.7)
10-year return level | 99.9 (88.3,111.5)
20-year return level | 112.6 (98.5, 126.7)
50-year return level | 129.1 (111.6,146.6)
100-year return level | 141.5 (121.4,161.5)

Inthistableabove, the 5S—yearreturnlevel, 86.6, isthelevel extremerainfallisexpected to occuronce in a
period of 5 years. We would say that extreme rainfall of 86.6mm in Dodoma has 20% chance of being
exceededinanyoneyear. Accordingtoestimatedreturnlevelsin Table3.7, thereisaprobability of 1% in
Dodoma extreme rainfall to exceed 141.5mm in any one year. The results presented in the above
Table 3.7 were obtained under a stationary Gumbel model.

1.1.2 Fitting the model to the data by POT Approach .

After BM approach, we turned to another alternative approach to the extreme value statistics based on
exceedances over a threshold. The basic idea is to pick a high threshold u and to study all the
exceedances of u. Those selected exceedances are said to follow the generalised Pareto distribution
(Check : Equation 2.2.9). However, the main challenge of this approach is the selection of proper
threshold. In subsection 2.2.6, we discussed POT approach and in this subsection we used the Dodoma
daily rainfall data for the application.
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The two plots were used for this selection of threshold: the mean residual life plot and the threshold
range plot for parameters. We finally chose the best indicated threshold by two plots to estimate the
GPD parameters.

Figure 3.19: The threshold selection plots

threshrange.plot(x = Dodoma.data$Rain, r = c(0, 120), type = "GP",
set.panels = F)
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The above plots were used before making a final decision. We selected a threshold such that the mean
residue life plotis approximately linear above the selected proper threshold u,. The 30mm was found to
be a reasonable threshold.

h) Fitting the Dodoma daily rainfall data to a GP model with stationary parameters

After selecting the threshold, the Dodoma daily rainfall data were fitted to GP with a threshold of
30mm and we estimated GP parameters using MLE. The results are represented in the table below.

Table 3.8: Parameter estimates with their 99.5% confidence intervals of the GP fitted to the daily
Dodoma rainfall exceeding the threshold uy = 30mm.

Threshold u, = 30mm
Parameter | Estimate | Standard Error CI (99.5%)
Shape(¢) -0.13 0.05 (—=0.26, 0.01)
Scale(c") 21.24 1.47 (17.11, 25.37)

After estimating the generalised Pareto model parameters, we tested the shape parameter to know the best
model of exceedances.

H, : exponential model (& = 0),

H, : Beta or Paretomodel (& #
0)

A likelihood ratio test gave us a big p-value = 0.02 (a = 0.005) for two models ( Hy and H)).
Consequently, this implies there is no evidence of rejecting the null hypothesis. Then, the exponential
model is the appropriate model for the data of exceedances.
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Section 3.4. Modelling of Extreme Rainfall using Extreme Value Distributions
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Figure 3.20: The Diagnostic plots from the GP fitted to Dodoma daily rainfall. Quantile-quantile plot
(top right), quantiles from a sample drawn from the fitted GP against the empirical data quantiles (top
left), density plots of empirical data and fitted GP (bottom right), and return level plot with pointwise

normal approximation confidence intervals (bottom left).

We have already estimated the GP parameters, therefore we can estimate the return levels by using
Equation 2.2.13. Table 3.9describes the return level estimates with their 99.5% CI at different return
periods of daily exceedances over 30mm.

Table 3.9: GP return level estimates with their 99.5% confidence intervals

T-year return level in mm
Return Period T | Estimated Return level CI (99.5%)
2 72.9 (66.4,79.5)
5 86.5 (77.87,95.3)
10 95.8 (84.6, 106.9)
20 104.3 (89.9,118.6)
50 114.4 (95.0, 133.676)
100 121.2 (97.7,144.8)
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2 x  Conclusion and Recommendations

2.1 Conclusion

In this essay we used three approaches to analyse and model rainfall extremes in Dodoma. Using 6 rainfall
extremes indices, we analysed trends in change in extreme rainfall. We used the least square method to
estimate the parameters(slope and intercept) of a linear regression line. All estimated parameters were
statistically insignificant at 0.01 level of significance. Then, there was no statistical evidence of the
linear change in rainfall extremes in Dodoma.

Apart from the rainfall extremes indices to analyse change in extreme rainfall over the time, this essay
used the annual block maxima approach, a method which fitted GEV model to the maximum rainfall.
Using this approach we extracted the sample data and we fitted it to GEV model. After the likelihood
ratio test of GEV model and Gumbel model, the Gumbel model was found to be appropriate model to
describe the annual maximum Dodoma rainfall. The Gumbel model with a linear trend was not showing
any statistical evidence of a linear trend in Dodoma rainfall extremes. However, more research is needed
especially about cyclic variations because of seasonality.

We estimated the return levels of extreme rainfall under Gumbel model with stationary parameters. But we
did not estimate the return levels for extreme rainfall under a changing climate. We were able to
predict the estimate of the daily rainfall we would expect to see in Dodoma oncein 7 =2, 5, 10, 20, 50
and 100 years. However, this essay did not extend the concept of return level to non-stationary climate.

As block maxima approach ignores other important extreme rainfall data, especially those greater than the
annual maximum. The peak over threshold (POT) approach were also used, where we focused on the
distribution of values that have exceeded a threshold of 30mm. Using the likelihood ratio test, we tested
the shape parameter and exponential model was found to be the extreme value model which can describe
Dodoma rainfall exceeding 30mm. We have modelled exceedances data under the stationary climate only.
For the GPD, it is not always clear how to interpret some parameters, such as return levels because the
rate of exceeding the threshold may vary seasonally. The choice of an appropriated threshold in this
approach remains a challenge.

As shown with Dodoma daily rainfall data analysis, BM and POT approaches can be used for stationary
and non-stationary extreme data. Butstill thereis workto be done on the general theory tobe extended for
non-stationary series especially in describing the trend variation in the data of exceedances using the fitted
GP parameters.

2.2  Recommendations

In this essay, we used extRemes package in R software. If this package can be incorparated in R-Instat
software,

this could be easy for some people especially those who want to analyse extremes in R-Instat software.
Analysis and modelling of climate extremes need reliable and long period data. However, the data may
have

some missing values and this can provide the wrong predictions. It is always difficult to find a well
detailed historic climate data. There is often a percentage of data missing, which if not well handled,
can

give wrong analysis.Thus, better ways of handling missing information should be considered. In this
essay,

we used only Dodoma station data. However, other stations in Tanzania or elsewhere can be used to study
the distribution and change in extreme rainfall using the same theory appliedin this essay.

2.3  Further work

More research is needed to learn which model would be preferable to convey uncertainty about extreme
events under climate change. To have more experience in this field of climate extremes, this essay will be
extended as my future work to modelling non-stationary extreme rainfall and temperatures in Rwanda
using extreme value distributions. Apart from considering a linear trend, in this work the cyclic variations
of extremes will be taken into account.
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