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Abstract 

In regression analysis, it is relatively necessary to have a correlation between the response and explanatory variables, but 

having correlations amongst explanatory variables is something undesired. This paper focuses on five methodologies for 

handling critical multicollinearity, they include: Partial Least Square Regression (PLSR), Ridge Regression (RR), 

Ordinary Least Square Regression (OLS), Least Absolute Shrinkage and Selector Operator (LASSO) Regression, and the 

Principal Component Analysis (PCA). Monte Carlo Simulations comparing the methods was carried out with the sample 

size greater than or equal to the levels ሺ݊   ሻ considered in most cases, the Average Mean Square Error (AMSE) and

Akaike Information Criterion (AIC) values were computed. The result shows that PCR is the most superior and more 

efficient in handling critical multicollinearity problems, having the lowest AMSE and AIC values for all the sample sizes 

and different levels considered. 

Keywords: Multicollinearity, Least Absolute Shrinkage and Selection Operator, Partial Least Square Regression, Akaike 

Information Criterion, Average Mean Square Error, Principal Component Analysis, Ordinary Least Square Regression, 

Ridge Regression. 

 

1. Introduction 

In regression analysis there are many assumptions about the model, namely, multicollinearity, non-consistent variance 

(non-homogeneity), linearity, and autocorrelation. If one or more assumption is violated, then the model in hand is no more 

reliable and also is not acceptable in estimating the population parameters [1]. Multicollinearity (or Collinearity) is a 

statistical phenomenon in multiple linear regression analysis where two (or more) independent or predictor variables are 

highly correlated with each other, or intercorrelated. Presence of multicollinearity violates one of the core assumptions of 

multiple linear regression analysis and as such it is problematic; the predicted regression coefficients are not reliable 

anymore [2]. This problem can create inaccurate estimates of the regression coefficients, inflate the standard errors of the 

regression coefficients, deflate the partial t-tests for the regression coefficients, give false, non-significant, p-values, and 

degrade the predictability of the model [3]. There are a variety of informal and formal methods that have been developed 

for detecting the presence of serious multicollinearity. Begin by studying pairwise scatter plots of pairs of independent 

variables, looking for near-perfect relationships [4]. Then glance at the correlation matrix for high correlations. 

Unfortunately, multicollinearity does not always show up when considering the variables two at a time. Thus, we consider 

the variance inflation factors (VIF), which measures how much the variances of the estimated regression coefficients are 

inflated compared to when the independent variables are not linearly related. VIFs over 10 indicate collinear variables. 



Also, Eigenvalues of the correlation matrix of the independent variables near zero indicate multicollinearity. Instead of 

looking at the numerical size of the eigenvalue, use the condition number. Large condition numbers indicate 

multicollinearity [5]. Investigating the signs of the regression coefficients could as well help in detecting the presence of 

multicollinearity as variables whose regression coefficients are opposite in sign from what you would expect may indicate 

multicollinearity. Correcting multicollinearity would depend on what the source of multicollinearity is, as the solutions will 

vary. If the multicollinearity has been created by the data collection, collect additional data over a wider X-subspace. If the 

choice of the linear model has increased the multicollinearity, simplify the model by using variable selection techniques. If 

an observation or two has induced the multicollinearity, remove those observations. Above all, use care in selecting the 

variables at the outset. When these steps are not possible, you might try Ridge Regression or any other suitable approaches 

such as Principal Component Regression (PCR), Partial Least Squares Regression (PLSR), and Ordinary Least Squares 

Regression (OLS) [6] etc. This paper looks at five different regression methods and explores which performs best as a 

method for handling multicollinearity problem using simulated data sets. 

 

2. Materials and Method 

Various methods have been developed to cope with multicollinearity problems. Among such methods are Ridge 

Regression, Principal Component Regression, Partial Least Squares Regression, Least Absolute Shrinkage and Ordinary 

Least Square. 

 

In this study, we consider the true model as; 

  ܻ ൌ ߚܺ   .ߝ

 

We simulate a set of data with sample size n= 60,100,150,200,400,1000 contain severe multicollinearity among all 

explanatory variables (ρ=0.99) using R package with 100 iterations. Following the explanatory variables are generated by  

ݔ ൌ ሺ1 െ ଶሻଵߩ ଶ⁄ ݑ   ݑߩ

݅ ൌ 1,2, … , ݊  ܽ݊݀   ݆ ൌ 1,2, … ,  .

Where ݑ are independent standard normal pseudo-random numbers and ߩ is specified so that the theoretical correlation 

between any two explanatory variables is given by ߩଶ. Dependent variable ሺܻሻ for each  explanatory variables is from 

ܻ ൌ ߚܺ  ߚparameters vectors are chosen arbitrarily ሺ ߚ with ߝ ൌ 0, ߚ ݀݊ܽ ൌ  ሻ for݁ݏ݅ݓݎ݄݁ݐ 1 ൌ  2,4, 6,

10, 20,50,100 and ߝ~ܰ ሺ0, 1ሻ. To measure the amount of multicollinearity in the data set, variance inflation factor (VIF) is 

examined. The performances of OLS, LASSO, Ridge Regression (RR), PLSR and PCR methods are compared based on 

the value of AMSE and AIC values. Cross-validation is used to find a value for the ߣ value for RR and LASSO.   

 

2.1 Ridge Regression 

Ridge Regression is developed by Hoerl and Kennard and this method is the modification of the least squares method that 

allows biased estimators of the regression coefficients [7]. Although the estimators are biased, the biases are small enough 

for these estimators to be substantially more precise than unbiased estimators. Therefore, these biased estimators are 

preferred over unbiased ones since they will have a larger probability of being close to the true parameter values. The ridge 

regression estimator of the coefficient ߚ is found by solving for ܾோ in the equation [8] 

ሺܺᇱܺ   ሻܾோܫ ߜ   ൌ  ܺ
ᇱܻ 

where δ ≥ 0 is often referred to as a shrinkage parameter. Thus, the solution for ridge estimator is given by  

ܾோ ൌ   ሺܺ
ᇱܺ    ሻିଵܺᇱܻܫ ߜ 

The matrix ሺܺ∗|ܺ∗ሻ considered is replaced by ሺܺ∗|ܺ∗ ܫߜ), where ߜ is a small positive quantity. Since the V matrix 

diagonalizesሺܺ∗|ܺ∗ሻ, it also diagonalizesሺܺ∗|ܺ∗  ,Thus .(ܫߜ



ܸ|ሺܺ∗ᇱܺ ∗   ܫ ߜሻܸ ൌ 

ଵߣ  ߜ 0 0
0 ଶߣ  ߜ 0
0 0 ߣ  ߜ

൩ 

The eigenvalues of the new matrix ሺܺ∗ᇱܺ∗ ܫߜ) are ߣଵ   ݅ for ߜ ൌ  1, 2, . . . , ݇ where adding ߜ to the main diagonal 

effectively replaces ߣଵ by ߣଵ   are revealed in moderating the ߜ From the properties of the ridge estimator, the role of .ߜ

variance of the estimators. The impact of eigenvalues on the variances of the ridge regression coefficients can be illustrated 

as  


൫ܾ,ோ൯ݎܸܽ

ଶߪ


ൌ
ߣ

ሺߣ  ሻଶߜ


 

Therefore, the ߜ in ridge regression moderates the damaging impact of the small eigenvalues that result from Collinearity. 

There are various procedures for choosing the shrinkage parameter ߜ. The ridge trace is a very pragmatic procedure for 

choosing the shrinkage parameter where it allows ߜ increasing until stability is indicated in all coefficients. A plot of the 

coefficients against ߜ that pictorially displays the trace often helps the analyst to make a decision regarding the appropriate 

value of ߜ. However, stability does not imply that the regression coefficients have converged. As ߜ grows, variances reduce 

and the coefficients become more stable[9]. Therefore, the value of ߜ is chosen at the point for which the coefficients no 

longer change rapidly.  

The ܥ-like statistic that is based on the same variance-bias type trade-off is one of the proposed procedures. The use of ܥఋ 

statistic is by a simple plotting of ܥఋ against ߜ, with the use of ߜ-value for which ܥఋ is minimized. The statistic is given as 

[10] 

ఋܥ ൌ
ܵܵோ  ௌ,ఋ
ොଶߪ

െ ݊  2   ఋሿܪሾݎݐ2

where ܪఋ ൌ ܺ∗ሺܺ∗ᇱܺ∗ ܫߜሻ െ ܺ∗ᇱ, ܵܵோ  ௌ,ఋ is the residual sum of squares using ridge regression and ݎݐሾܪఋሿ is the trace of 

 ఋ plays the same role as the HAT matrix in ordinary least squares. In ordinary least squares, residuals areܪ ఋ. Notice thatܪ

helpful in identifying outliers which do not appear to be consistent with the rest of the data while the HAT matrix is used to 

identify “high leverage” points which are outliers among the independent variables. The HAT matrix H is given by 

 ൌ  ܺሺܺᇱܺሻିଵ ܺᇱ . The trace is ݎݐሼܪሽ  ൌ  where p is the m vector of adjustable model parameters to be estimated from , 

the available data set and for all diagonal elements, 0  ൏  ݄ ൏  1. The statistic ߪොଶ comes from the residual mean square 

from ordinary least squares estimation. The other criterion that represents a prediction approach is the generalized cross 

validation (GCV) that is given by [11] 

 ܸܥܩ ൌ  
݁,ఋ
ଶ

ሼ݊ െ ሾ1  ఋሻሿሽܪሺݎݐ
ଶ



ୀଵ

  

ൌ
ܵܵோ  ௌ,

ሼ݊ െ ሾ1  ఋሻሿሽܪሺݎݐ
ଶ
 

where the value of 1 in 1   ఋ. The use of thisܪ ఋሻ accounts for the fact that the role of the constant is not involved inܪሺݎݐ

procedure is to choose ߜ so as to minimize GCV by a simple plotting of GCV against ߜ. 

 

2.2 LASSO Regression 

Lasso was originally introduced in the context of least squares, and it can be instructive to consider this case first, since it 

illustrates many of lasso’s properties in a straightforward setting. 

Consider a sample consisting of ܰ cases, each of which consists of p covariates and a single outcome. Let ݕ  be the 

outcome and ݔ ∶ൌ ൫ݔଵ, …,ଶݔ , ൯ݔ
்
 be the covariate vector for the ݅௧ case. Then the objective of lasso is to solve [12] 

min
ఉబ,ఉ

൜
1

ܰ
ሺݕ െ ߚ െ ݔ

 ሻଶൠߚ்



Subject to ∑ |ߚ| 

ୀଵ  .ݐ

Here ݐ is a prespecified free parameter that determines the amount of regularisation. Letting ܺ  be the covariate matrix, so 

that ܺ ൌ ሺݔሻ and ݔ
் is the ݅௧ row of  ܺ, the expression can be written more compactly as 

min
ఉబ,ఉ

൜
1

ܰ
ݕ‖ െ 1ேߚ െ ଶ‖ߚܺ

ଶൠ 

Subject to ‖ߚ‖ଵ   .ݐ

Where ‖ߚ‖ ൌ ሺ∑ |ߚ|
ே

ୀଵ ሻ
ଵ
ൗ  is the standard ℓ norm, and 1ே is an ܰ ൈ  .ݏ݁݊ ݂ ݎݐܿ݁ݒ 1

Denoting the scalar mean of the data points ݔ by ̅ݔ and the mean of the response variables ݕ by ݕത, the resulting estimate 

for ߚ will end up being ߚመ ൌ തݕ െ  so that [13] ,ߚ்ݔ̅

ݕ െ መߚ െ ݔ
ߚ் ൌ ݕ െ ሺݕത െ ሻߚ்ݔ̅ െ ݔ

ߚ் ൌ ሺݕ െ ݔതሻሺݕ െ  ߚሻ்ݔ̅

and therefore it is standard to work with variables that have been centered (made zero-mean). Additionally, the covariates 

are typically standardized ሺ∑ ݔ
ଶ ൌ 1ே

ୀଵ ሻ so that the solution does not depend on the measurement scale. 

It can be helpful to rewrite [14] 

min
ఉఢ࣬ು

൜
1

ܰ
ݕ‖ െ ଶ‖ߚܺ

ଶൠ 

Subject to ‖ߚ‖ଵ   .ݐ

in the so-called Lagrangian form  

min
ఉఢ࣬ು

൜
1

ܰ
ݕ‖ െ ଶ‖ߚܺ

ଶ   β‖ଵൠ‖ߣ

where the exact relationship between t and ߣ is data dependent. 

 

2.3 Principal Component Analysis 

Let ܸ ൌ ሾ ଵܸ, . . . , ܸሽ be the matrix of size  ݔ  whose columns are the normalized eigenvectors of ࢄ′ࢄ, and let ߣଵ, . . . ,  ߣ

be the corresponding eigenvalues. Let ܹ ൌ ሾ ଵܹ, . . . , ܹሿ ൌ  ܸܺ. Then ܹ ൌ  ܺ ܸ is the ݆ െ  sample principal ݄ݐ

components of X. The regression model can be written as ܻ=ߛࢃ=߫+ߚ′ࢂࢂࢄ=߫+ߚࢄ where  =ߚ′ࢂ. Under this formulation, 

the least estimator of ߛ is [15] 

ොߛ ൌ ሺܹ′ܹሻ െ 1ܹ′ܻ ൌ  .ܻ′ଵܹି߉

And hence, the principal component estimator of β is defined by  

መߚ  ൌ ොߛܸ  ൌ  .ܻ′ଵܹି߉ܸ

Calculation of OLS estimates via principal component regression may be numerically more stable than direct calculation. 

Critical multicollinearity will be detected as very small eigenvalues. To rid the data of the multicollinearity, principal 

component omit the components associated with small Eigen values.  

 

2.4 Ordinary Least Square Regression 

Ordinary least-squares (OLS) regression is a generalized linear modelling technique that may be used to model a single 

response variable which has been recorded on at least an interval scale. The technique may be applied to single or multiple 

explanatory variables and also categorical explanatory variables that have been appropriately coded [16]. The OLS 

regression model can be extended to include multiple explanatory variables by simply adding additional variables to the 

equation. The form of the model is the same as above with a single response variable ሺܻሻ, but this time ܻ is predicted by 

multiple explanatory variables ሺ ଵܺݐ ܺଷ ሻ.  

ܻ  ൌ  ߙ   ߚଵ ଵܺ   ଶܺଶߚ   ߚଷܺଷ  



The interpretation of the parameters ሺߚ ݀݊ܽ ߙሻ from the above model is basically the same as for the simple regression 

model above, but the relationship cannot now be graphed on a single scatter plot. α indicates the value of ܻ when all vales 

of the explanatory variables are zero. Each ߚ parameter indicates the average change in ܻ that is associated with a unit 

change in ܺ, whilst controlling for the other explanatory variables in the model. Model-fit can be assessed through 

comparing deviance measures of nested models. For example, the effect of variable ܺଷ on ܻ in the model above can be 

calculated by comparing the nested models [17] 

ܻ  ൌ  ߙ   ߚଵ ଵܺ   ଶܺଶߚ   ߚଷܺଷ  

ܻ  ൌ  ߙ   ߚଵ ଵܺ     ଶܺଶߚ

The change in deviance between these models indicates the effect that ܺଷ has on the prediction of Y when the effects of ଵܺ 

and ܺଶ have been accounted for (it is, therefore, the unique effect that ܺଷ has on ܻ after taking into account ଵܺ  and ܺଶ). 

The overall effect of all three explanatory variables on Y can be assessed by comparing the models  

ܻ  ൌ  ߙ   ߚଵ ଵܺ   ଶܺଶߚ   ߚଷܺଷ 

ܻ  ൌ   .ߙ 

The significance of the change in the deviance scores can be assessed through the calculation of the F-Statistic using the 

equation provided above (these are, however, provided as a matter of course by most software packages). As with the 

simple OLS regression, it is a simple matter to compute the R-square statistics. 

 

2.5 Partial Least Square Regression 

Partial least squares (PLS) regression is a technique that reduces the predictors to a smaller set of uncorrelated components 

and performs least squares regression on these components, instead of on the original data. PLS regression is especially 

useful when your predictors are highly collinear, or when you have more predictors than observations and ordinary least-

squares regression either produces coefficients with high standard errors or fails completely [18]. PLS does not assume that 

the predictors are fixed, unlike multiple regression. This means that the predictors can be measured with error, making PLS 

more robust to measurement uncertainty. 

PLS regression is primarily used in the chemical, drug, food, and plastic industries. A common application is to model the 

relationship between spectral measurements (NIR, IR, UV), which include many variables that are often correlated with 

each other, and chemical composition or other physio-chemical properties. In PLS regression, the emphasis is on 

developing predictive models. Therefore, it is not usually used to screen out variables that are not useful in explaining the 

response. 

Unlike least squares regression, PLS can fit multiple response variables in a single model. PLS regression fits multiple 

response variables in a single model. Because PLS regression models the response variables in a multivariate way, the 

results can differ significantly from those calculated for the response variables individually. You should model multiple 

responses separately only if the responses are uncorrelated. 

As in multiple linear regression, the main purpose of partial least squares regression is to build a linear model,  

ܻ ൌ ܤܺ  ݁, 

where Y is an n cases by m variables response matrix, X is an n cases by p variables predictor matrix, B is p by m regression 

coefficient matrix, and E is a noise term for the model which has the same dimensions as Y. Usually, the variables 

in X and Y are centered by subtracting their means and scaled by dividing by their standard deviations.  

Both principal components regression and partial least squares regression produce factor scores as linear combinations of 

the original predictor variables, so that there is no correlation between the factor score variables used in the predictive 

regression model. For example, suppose we have a data set with response variables Y (in matrix form) and a large number 

of predictor variables X (in matrix form), some of which are highly correlated. A regression using factor extraction for this 

type of data computes the factor score matrix T=XW for an appropriate weight matrix W, and then considers the linear 



regression model Y=TQ+E, where Q is a matrix of regression coefficients (loadings) for T, and E is an error (noise) term. 

Once the loadings Q are computed, the above regression model is equivalent to Y=XB+E, where B=WQ, which can be used 

as a predictive regression model [19]. 

Principal components regression and partial least squares regression differ in the methods used in extracting factor scores. 

In short, principal components regression produces the weight matrix W reflecting the covariance structure between the 

predictor variables, while partial least squares regression produces the weight matrix W reflecting the covariance structure 

between the predictor and response variables. 

For establishing the model, partial least squares regression produces a p by c weight matrix W for X such that T=XW, i.e., 

the columns of W are weight vectors for the X columns producing the corresponding n by c factor score matrix T. These 

weights are computed so that each of them maximizes the covariance between responses and the corresponding factor 

scores. Ordinary least squares procedures for the regression of Y on T are then performed to produce Q, the loadings 

for Y (or weights for Y) such that Y=TQ+E. Once Q is computed, we have Y=XB+E, where B=WQ, and the prediction model 

is complete. 

One additional matrix necessary for a complete description of partial least squares regression procedures is the p by c factor 

loading matrix P which gives a factor model X=TP+F, where F is the unexplained part of the X scores [20]. We now can 

describe the algorithms for computing partial least squares regression. 

 

3. Formal Method of Detecting Multicollinearity  

 

3.1 Tolerance and Variance Inflation Factor (VIF)  

Suppose we have a regression model with  െ 1 regressors and an intercept, then the variance of the ݆݄ݐ partial regression 

coefficient is given by [21] 

 ሻߚሺݎܸܽ  ൌ  
ଵߪ

ݔ∑
ଶ ቆ

1

1 െ ܴ
ଶቇ 

 ሻߚሺݎܸܽ  ൌ  
ଵߪ

ݔ∑
ଶ  ܨܫܸ

Where ߚ is the (partial) regression coefficient of the regressor ܺ , ܴ
ଶis the ܴଶin the (auxilliary) regression of ܺ on the 

remaining ሺ  െ  2ሻ predictors. Rule of thumb:  

The criterion for using ܸܨܫ as a detection method is that the higher the VIF more certain we are that multicollinearity is 

present [22-24]. But how high ܸܨܫ  will be considered high? We can use the rule of thumb that if ܸܨܫ  is greater than 10 

that variable is considered highly collinear [25]. Some statisticians also use the Tolerance to detect multicollinearity where  

ܮܱܶ  ൌ   ൫1  െ  ܴ
ଶ ൯ ൌ   ቀ1 ܨܫܸ

ൗ  ቁ 

3.2 Comparing the Performance 

To evaluate the performances at the methods studied, Average Mean Square Error (AMSE) of regression coefficient ߚመ   is 

measured. The AMSE is defined by  [26] 

 

መ൯ߚ൫ܧܵܯܣ ൌ
1

݊
‖ߚመሺሻ െ ଶ‖ߚ


ୀଵ

 

 



where ߚመሺሻ denotes the estimated parameter in the ݈ െ  simulation. AMSE value close to zero indicates that the slope and ݄ݐ

intercept are correctly estimated. In addition, Akaike Information Criterion (AIC) is also used as the performance criterion 

with formula [27]: 

ܥܫܣ ൌ 2݇ െ 2 ln൫ܮ൯ 

where ൫ܮ൯ ൌ ,൯ܯ,ߠ|ݔ൫   are the parameter values that maximize the likelihood function, x = the observed data, n = theߠ

number of data points in x, and k = the number of parameters estimated by the model. The best model is indicated by the 

lowest values of AIC and AMSE. 

 

Table 1: Factors and Level of the Simulated Dataset 

Factors  

Number of Regressors ሺܲሻ 2,4,6,10,20,50,100 

Number of Observations in the 

dataset ሺ݊ሻ 

60,100,150,200,400,1000 

 

4. Results and Discussion 

 

Table 2:  Average Mean Square Error of PLSR, RR, OLS, LASSO, and PCR 

P n 
AMSE 

PLSR RR OLS LASSO PCR 

2 

60 13.551 4.564 19.285 14.301 4.304 

100 13.052 4.058 19.017 11.987 4.008 

150 11.995 3.958 16.987 10.784 3.096 

200 9.795 2.147 14.218 9.741 2.107 

400 7.115 1.998 11.914 9.876 1.198 

1000 5.310 0.915 9.995 6.124 0.987 

4 

60 33.501 9.764 49.178 44.695 3.904 

100 31.059 8.098 45.709 41.784 2.608 

150 29.989 7.059 36.749 36.652 2.096 

200 25.825 6.487 29.098 26.741 1.975 

400 17.191 5.908 24.778 19.876 1.462 

1000 16.880 4.919 19.691 16.124 1.228 

6 

60 53.158 13.015 75.985 60.185 2.775 

100 51.852 10.495 72.745 58.254 1.658 

150 47.258 8.158 69.087 52.054 1.405 

200 44.895 7.958 65.954 47.951 1.207 

400 42.105 6.584 62.015 44.055 1.409 

1000 40.052 5.915 58.114 41.360 1.202 

10 60 72.154 15.047 97.412 80.119 1.689 



100 61.518 14.020 92.415 77.020 1.299 

150 60.224 13.250 90.325 70.505 1.104 

200 50.256 12.132 87.451 65.512 0.925 

400 48.225 9.080 82.150 62.125 0.760 

1000 47.112 7.012 77.047 58.770 0.481 

20 

60 118.562 29.456 141.051 129.805 1.495 

100 107.521 28.009 138.705 119.852 1.091 

150 97.025 22.097 130.598 103.451 0.678 

200 92.097 17.963 122.215 97.856 0.475 

400 87.059 14.852 109.546 92.542 0.155 

1000 79.752 11.100 107.025 87.054 0.090 

50 

60 149.523 57.592 235.215 201.526 0.940 

100 147.001 48.526 231.954 198.751 0.759 

150 134.971 43.189 221.325 178.025 0.625 

200 126.594 35.054 211.259 154.978 0.452 

400 123.045 32.029 209.879 148.741 0.352 

1000 111.019 29.898 204.065 135.099 0.071 

100 

60 231.012 78.597 325.251 313.215 0.159 

100 217.942 69.457 321.985 303.124 0.090 

150 209.347 52.976 312.256 287.973 0.045 

200 198.245 48.237 307.152 269.125 0.033 

400 175.054 44.562 303.125 245.781 0.015 

1000 158.256 41.056 299.015 231.251 0.009 

 

 

Figure 1: AMSE of PLSR, RR, OLS, LASSO, and PCR for p=2 

 



 

Figure 2: AMSE of PLSR, RR, OLS, LASSO, and PCR for p=4 

 

 

Figure 3: AMSE of PLSR, RR, OLS, LASSO, and PCR for p=6 

 

Figure 4: AMSE of PLSR, RR, OLS, LASSO, and PCR for p=10 



 

Figure 5: AMSE of PLSR, RR, OLS, LASSO, and PCR for p=20 

 

Figure 6: AMSE of PLSR, RR, OLS, LASSO, and PCR for p=50 

 

Figure 7: AMSE of PLSR, RR, OLS, LASSO, and PCR for p=100 

 



From the simulation study, the AMSE values of the estimated regression parameters ߚመ for each specified  ܽ݊݀ ݊ cases are 

calculated. These AMSE values indicate to what extent the slope and intercept are correctly estimated. So, the goal is to 

obtain an AMSE value close to zero. Figure 1-7 show the values for each method used. From Table 2 where p = 

2,4,6,10,20,50, and 100, and the specified n = 60, 100, 150, 200, 400, 1000 observations, PCR performed best compared to 

the other methods, having the lowest AMSE values. 

 

Table 3:  AIC values for PLSR, RR, OLS, LASSO, and PCR with different number of explanatory variables and sample 

sizes 

 

P n 
METHODS 

PLSR RR OLS LASSO PCR 

2 

60 14.12 12.91 31.98 35.71 12.09 

100 14.01 12.76 31.92 35.47 12.05 

150 13.92 12.57 31.84 35.33 12.01 

200 13.61 12.48 31.80 35.21 11.74 

400 13.43 12.30 31.74 35.19 11.37 

1000 13.30 12.07 31.72 35.09 11.08 

4 

60 14.85 12.96 31.65 35.97 12.31 

100 14.80 12.78 31.60 35.81 12.19 

150 14.69 12.65 31.54 35.79 12.07 

200 14.51 12.43 31.35 35.62 12.04 

400 14.43 12.31 31.30 35.59 12.03 

1000 14.28 12.19 31.27 35.47 11.89 

6 

60 14.65 12.71 31.40 35.70 12.64 

100 14.55 12.70 31.28 32.56 12.65 

150 14.39 12.68 31.22 35.45 12.54 

200 14.27 12.60 31.18 35.33 12.30 

400 14.21 12.59 31.10 35.30 12.14 

1000 14.09 12.30 31.04 35.21 12.11 

10 

60 14.93 12.97 31.90 35.98 12.90 

100 14.79 12.91 31.81 35.87 12.74 

150 14.69 12.78 31.74 35.74 12.62 

200 14.59 12.67 31.65 35.71 12.50 

400 14.53 12.59 31.50 35.49 12.38 

1000 14.49 12.40 31.40 35.33 12.27 

20 

60 14.79 12.69 31.48 35.62 12.54 

100 14.74 12.60 31.41 35.45 12.41 

150 14.71 12.49 31.37 35.41 12.34 



200 14.63 12.41 31.32 35.33 12.30 

400 14.59 12.37 31.30 35.23 12.22 

1000 14.41 12.25 31.27 35.09 12.09 

50 

60 14.38 12.99 31.89 35.82 12.71 

100 14.33 12.81 31.84 35.80 12.69 

150 14.26 12.77 31.82 35.74 12.62 

200 14.21 12.70 31.71 35.70 12.42 

400 14.13 12.60 31.70 35.65 12.31 

1000 14.09 12.49 31.65 35.60 12.19 

100 

60 14.70 12.74 31.81 35.53 12.40 

100 14.56 12.69 31.74 35.50 12.37 

150 14.41 12.47 31.65 35.47 12.30 

200 14.29 12.39 31.50 35.41 12.27 

400 14.19 12.31 31.43 35.23 12.25 

1000 14.01 12.28 31.40 35.12 12.22 

 

 

 

Figure 8: AIC of PLSR, RR, OLS, LASSO, and PCR for p=2 

 

 

Figure 9: AIC of PLSR, RR, OLS, LASSO, and PCR for p=4 
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Figure 10: AIC of PLSR, RR, OLS, LASSO, and PCR for p=6 

 

 

Figure 11: AIC of PLSR, RR, OLS, LASSO, and PCR for p=10 

 

 

Figure 12: AIC of PLSR, RR, OLS, LASSO, and PCR for p=20 

 

 

Figure 13: AIC of PLSR, RR, OLS, LASSO, and PCR for p=50 
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Figure 14: AIC of PLSR, RR, OLS, LASSO, and PCR for p=100 

 

To choose the most ideal model, we use AIC of the models obtained using the five methods under review [28-30]. The 

Akaike Information Criterion values for all methods with different number of independent variables and sample sizes is 

presented in Table 3 and displayed as bars-graphs in Figure 8 – Figure 14. Figure 8 –Figure 14 show that the greater the 

sample sizes are the lower the values of Akaike Information Criterion and in contrary to sample sizes, number of 

explanatory variables does not seem to affect the value of Akaike Information Criterion. LASSO has the highest AIC 

values in every level of explanatory variables and sample sizes. LASSO as one of the regularized method has the highest 

AIC values compare to RR and PCR. The differences of AIC values between the PCR performances from RR are small. 

PCR is the most ideal methods among the selected methods including based on the value of Akaike Information Criterion. 

It is consistent with the result in Table 1 where PCR has the smallest AMSE value among all the methods applied in the 

study. PCR is approximately effective and efficient for a small and high number of regressors.  

 

Conclusion  

Based on the simulation results at   ൌ  2, 4, 8, 10, 20,50,100 and the number of data 

݊  ൌ  60, 100, 150, 200, 400, ܽ݊݀ 1000 containing severe multicollinearity among all explanatory variables, it can be 

concluded that RR and PCR method are capable of overcoming severe multicollinearity problem. In contrary, the LASSO 

method does not resolve the problem very well when all variables are severely correlated even though LASSO do better 

than OLS. In Overall PCR performs best to estimate the regression coefficients on data containing severe multicollinearity 

among all explanatory variables.   

 

Future Research 

The performance of the five methods can also be done by comparing the use of all methods for high-dimensional regressors 

where     ݊. It is known that the problem of multicollinearity is present in the data set where the number of variables is 

high compared to the number of observations. 
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