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ABSTRACT  
It is important to fit count data with suitable model(s), models such as Poisson Regression, 

Quassi Poisson, Negative Binomial, to mention but a few have been adopted by researchers 

to fit zero truncated count data in the past. In recent times, dedicated models for fitting zero 

truncated count data have been developed, and they are considered sufficient. This study 

proposed Bayesian multi-level Poisson and Bayesian multi-level Geometric model, Bayesian 

Monte Carlo Markov Chain Generalized linear Mixed Models (MCMCglmms) of zero 

truncated Poisson and MCMCglmms Poisson regression model to fit health count data that 

is truncated at zero. Suitable model selection criteria were used to determine preferred 

models for fitting zero truncated data. Results obtained showed that Bayesian multi-level 

Poisson outperformed Bayesian multi-level Poisson Geometric model; also MCMCglmms of 

zero truncated Poisson outperformed MCMCglmms Poisson.  
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1. INTRODUCTION 

Count data are type of data obtained by counting, and observations taken within a fixed 

period of time. Count data include zero and positive integers only. Example of studies where 

count data was modeled include the field of insurance [1], telecommunications [2], 

academics [3-4], medicine [5-9]. Other areas of study include but not limited to agriculture, 

sports, biology and transportation. 

 

Count data can be equi-dispersed, over-dispersed or under-dispersed. Over-dispersion is a 

problem when conditional variance is larger than the conditional mean, while under-

dispersion is when the conditional variance is less than the conditional mean. Poisson model 

is assumed to have equal mean and variance, making the model unsuitable to fit under-or 

over-dispersed count data [5]. Therefore, a more robust model relative to Poisson should be 

considered to fit data that is over-or under-dispersed. Apart from observing the conditional 

mean and variance, another way to check for over-dispersion or under-dispersion is to 



 

 

carryout out a dispersion test, and this can be done by fitting quassi-Poisson regression 

model, [6] identified the robustness of quassi-poisson regression model in fitting count data.  

 

Count data with many zeros can be modeled with zero-inflated or hurdle models, while count 

data with no zero count can be effectively modeled with zero truncated models. Studies such 

as [11-13] give details of such analysis. Linear Model (LM), sometimes called Ordinary Least 

Square (OLS) is considered inadequate in modelling count data because OLS cannot 

account for heteroscedasticity in count data [10], hence, the adoption of Generalized Linear 

Model (GLM) in fitting count data. GLM is implemented in such a way that a link function is 

assigned to the response variable, which links the response variable to the predictors, and 

GLM model for count data are members of exponential class of family given in equation (1).  

 

A random variable Y  has a distribution in the exponential family if its probability density 

function (pdf) has the form: 
 

                            ݂ሺߠ|ݕሻ ൌ ܿሺݕ, ߶ሻ exp ሼሺߠݕ െ ܽሺߠሻሻ ߶ሽ⁄ , ݃ሺߤሻ ൌ                 (1)                                        ߚ΄ݔ
 

Where ' 'y  is the value of an observation ܻ, ߠ is a location parameter called the canonical 

parameter, ߶ is a dispersion parameter sometimes called the scale parameter and it 

determines the shape of the distribution, ܿሺݕ, ߶ሻ is a normalizing factor producing unit total 

mass for the distribution. Equation (1) was defined by [14], and the equation for ݂ሺߠ|ݕሻ 

indicates that the distribution of the response is in the exponential family. ݃ሺߤሻ ൌ  identify ߚ΄ݔ

that a transformation of the mean, ݃ሺߤሻ, is linearly related to the explanatory variables 

contained in ܺ. This study is centred on zero truncated data, so zero truncated models are 

itemized in equations (2) to (4).  

 

Let ܲሺݔ;  ሻ be the original Poisson distribution (pdf). Then the pdf of zero-truncated form ofߠ 

ܲሺݔ;  ሻ is given as followsߠ 

                               ܲሺݔ; ሻߠ  ൌ
ܲሺݔ;  ሻߠ 

1 െ ܲሺ0;  ሻߠ 
; ݔ ൌ 1, 2, , … ݊                                                                         ሺ2ሻ 

 

And for zero-truncated binomial we have  

                                                ேܲ൫ݔ; ൯ߠ ൌ
ଵ

ଵିሺଵିሻ
ቀ
݊
݇
ቁ ሺ1 െ    ሻ                                     (3)

                     

Where ߠ=ሺ݊; ݊ ሻ, and ∈ Գ, 0 ൏  ൏ 1,  

 



 

 

While that of Zero truncated geometric distribution is given as  

                            
1( ; ) (1 )xp x      ݔ , ൌ 1, 2, 3…  0 1                  (4)    

 

The link functions for fitting regression resulting from equation (2) and (4) is the log link, 

while that (3) is logit link.  

Study by [3] showed sufficiently the superiority of MCMCglmms in fitting count data among 

other models used. However, [4] demonstrated the superiority of Dirichlet Process Mixture 

Prior of GLMMs (DPMglmms) over MCMCglmms and Bayesian Discrete Weibull to fit zero 

inflated data. This study proposed Bayesian multi-level model and MCMCglmms models to 

fit zero truncated count data. Next section is the Materials and Methods, section 3 is the 

Results and Discussion, and section 4 is the conclusion.  

 

2. MATERIALS AND METHODS 

2.1 Multi-Level Modelling 

Multi-Level Modelling has to do with predicting the response variable ( )y  using the linear 

combination   of predictors transformed by the inverse link function ( )lf  . For a given 

distribution ' 'd , it can be written as 

                                                  ,i l iy d f                                          (5) 

where ݀ is called family of the distribution as usually represented in statistical software, then 

the parameter ߠ  represents additional family parameters which naturally do not change as 

data points increases. We consider a general linear predictor that can be written as 

                                                    Α Β                            (6) 

Where   and   (fixed and random effect) are the coefficients at population-level and 

group-level respectively, Α ,Β  are the corresponding design matrices. The response y as 

well asΑ  and Β  makes up the data, while  ,   and   are the model parameters to be 

estimated. Bayesian MCMC methods treat   as a parameter unlike maximum likelihood 

which treats   as error term [15]. Prior selection for Bayesian Multi-level modelling 

corresponds to the use of No-U-Turn Sampler (NUTS) instead of Inverse-Wishart prior 

distribution as discussed by [15].  

 

2.2 Generalized Linear Mixed Models (GLMMs) 

Generalized linear mixed models extension of Generalized Linear Models because as it 

incorporates fixed and random effects. The model can be simply put as follows: 



 

 

                                               i iy X Z e  β γ                            (7) 

Where ݕ is a ܰ ൈ 1 column vector, ࢄ and ࢆ are design matrices for the fixed and random 

predictors of the data respectively. These predictors have connected parameter vectors ࢼ 

and ࢽ, and e is a vector of residuals. For random effects, 1( ,....... )i iq  iγ  explained the 

inclusion of covariates ܼ, the link can be written in extended form as                                             

                                  
 i i i ig X Z e    β γ , 1, 2, ,i n                                      (8)

                             
 

Equation (8) was implemented using Bayesian technique of MCMCglmm, according to [3] 

MCMCglmms can be modelled using the R -and G –structure; G-structure was adopted in 

this study for the random part of the model; and the latent variables were assumed to have 

the multivariate normal distribution and the conjugate prior of the variance structure was 

inverse-Wishart prior distribution which were Gibbs sampled. MCMCglmm allows variance 

structures of the form: 

                       1 1 2 2( ) ( ) .........( )n n     G Λ Κ Λ Κ Λ Κ                                      (9)        

and the inverse structure written as  

                      
1 1 1 1 1 1

1 1 2 2( ) ( ) .........( )n n
          G Λ Κ Λ Κ Λ Κ        

                        (10) 

Where ( )Λ and ( )Κ are matrices, ( )Λ is estimated, while ( )Κ are generally high dimensional 

and treated as known. Each component term is formed through the Kronecker product   

which allows for possible dependence between random effects within a component term 

[16], while   is the direct sum. Expanded form of equation (9) gives 

                                            
2 2

0

0 ( )

 
   

1 1Λ Κ
G

Λ Κ
                                           (11) 

The zero off-diagonals signify independence between component term, which can be written 

in simplest form of Identity matrices as 

                                                      2
1 1 1( ) I Λ Κ                            (12)         

According to [16], equation (12) is on the premise that random effects within a component 

term are independent but have a common variance. The G  component may have the form: 

    1 1 2

2 1 2
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Λ Κ                            (13) 

 

 

2.3 Parameter Estimation and Model Selection  



 

 

Quassi-Poisson regression analysis was carried out to identify the dispersion type of the 

data following the procedure by [17], further analysis was carried on the data with Bayesian 

multi-level analysis and MCMCglmms. Bayesian MCMC is such that for Monte Carlo, the 

first (MC) part has to do with generating pseudo-random numbers and the Markov Chain, the 

second (MC) is a sequence of number where each number is dependent on the previous 

number on the sequence. 
 

Considering a Gaussian proposal ߠ௧ ൌ ܰሺߤ,  ሻ for instance, the proposal shifts to the rightߪ

each time a sample is drawn from the distribution and plot generated from  ߠ௧ is called trace 

plot, the density plot represents the sample generated, and can be expressed as  

,௧ିଶߠ௧ିଵ~ܰሺߠ                                                       ,ሻߪ ,௧ିଵߠ௧~ܰሺߠ  ሻ                                                    ሺ14ሻߪ
 

As a default with Bayesian multi-level analysis, normal prior was adopted, using No-U-Turn 

Sampler (NUTS) to sample from the posterior distribution fitted with ‘brms’ package in R by 

[18], the ‘brms’ package does not work in isolation but with stan processor. In order to 

determine the model with a better fit between Poisson and Geometric models in the context 

of Bayesian multi-level modeling, the Watanabe-Akaike Information Criteria (WAIC), [19] and 

Leave-one-out cross validation LOO-CV proposed by [20-21] were used. Model with lower 

WAIC and LOO indicates a better fit for the data. On the other hand, model selection criteria 

such as Aikaike Information Criteria (AIC), Bayesian Information Criteria (BIC), and 

Deviance Information Criteria (DIC) were used, for MCMCglmms.  

 

The trace and density plots of the predictors can be found under results and discussion. For 

Bayesian Multi-level models, Pareto ݇ analysis was carried out to determine if any 

observation was left out in the process of the analysis. Any observation with ݇  0.7 

indicated a bad observation; consequently, the observation would be left out during analysis.  

Software package by [22] was used for the analysis, and “package AER” by [17] was used to 

carry out the dispersion test.  

 

2.4 Data Description 

The dataset used for this study was obtained from health facility in Ota, Ogun State, Nigeria, 

comprising of National Health Insurance Scheme (NHIS) data with no zero count.. A sample 

of 1647 patients under National Health Insurance Scheme was obtained from July 2016 to 

July 2017. Response variable (Nencounter) that is, number of encounter (visit to the doctor). 

The class (Eclass) indicated whether a patient was ever on admission for the period, that is, 

(in-patient=1, out-patient= 0). Another predictor is (follow-up), indicating whether a patient 

was on regular check-up or not, (follow-up=1, no follow-up=0). Gender (sex) of patients; 



 

 

(male=1, female=0). Another predictor was Ndiagnosis, which represented the number of 

diagnosis a patient had for the period of encounter. The last predictor included is biological 

age of patient. Following the dispersion test, the data is under-dispersed with dispersion 

parameter ߶ ൌ0.7806. Table 1, Table 2, Figure 1 to Figure 4 was further used to describe 

the data.    

 

The classification of gender according to the number of times patients had Encounter(s) at 

the health facility is presented in Table 1. 

 
Table 1: Classification of gender according to Number of Encounter 

Number of Encounter                   Sex Total 
 Female Male  
1-5 745 630 1375 
6-10 105 91 196 
11-15 31 21 52 
16-21 6 9 15 
21-27 7 2 9 
Total 894 753 1647 

Source: Authors’ Computation 
 
From Table 1, there is an indication that females had more encounter as compared to their 

male counterpart.  
 

 

 
                          Figure 1: Scatter plot of Nencounter 

 
 

Figure 2: Box and Whisker plot of Encounter 
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Figure 3: Quantile plot of encounter 
 
 

 
Figure 4: Density trace plot of Nencounter 

 

Information about patients on follow-up by gender is represented in Table 2. 

          
Table 2: Information on follow-up status 
NEncounter               Follow-up Total 
 Female                     Male  
No Follow-up 737 633 1370 
Follow-up 157 120 277 
Total 894 753 1647 
                       Source: Authors’ Computation 
 

Figure 1 represents scatter plot, the plot shows that patients that had regular encounters 

were fewer as compared to those who had encounters occasionally. This was further 

explained with Box-plot in Figure 2, Quantile plot in Figure 3, and Density trace plot in Figure 

4. The Plots were made with use of STATGRAPHICS software.  

 

 
3. RESULTS AND DISCUSSION 
 

The result for the Quassi-Poisson regression analysis is presented in Table 3. 
 
   Table 3: Quassi-Poisson Regression Analysis  

 Estimate Std. Error t value Pr(>|t|)     
(Intercept) 0.2941138 0.0295171 9.964 <2e-16 *** 
Sex 0.0111539 0.0239250 0.466 0.64113     
Age 0.0018506 0.0006451 2.869 0.00417 **  
followup -0.1534049 0.0324182 -4.732 2.41e-06 *** 
Eclass 0.1700727 0.0955086 1.781 0.07515 .   
Ndiagnosis 0.2677050 0.0037693 71.023 <2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Source: Authors’ Computation 
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From the dispersion test carried out using quasi Poisson regression, dispersion parameter, 

ൌ ߶ 0.7806, indicating that the data was under-dispersed since ߶ ൏ 1, also z = -3.0491, (P= 

0.9989). 

Table 4 shows that only follow-up have significantly negative effect on Encounter, so 

whether a patient was on follow-up or not did not necessarily mean that encounter would 

increase. With quasi-Poisson, [6] identified that the inadequacy inherent in Poisson model is 

being taken care of. Model selection for Bayesian multi-level shown in Table 4, and * is 

indicates model with lower value between Bayesian multi-level Geometric and Bayesian 

multi-level Poisson. 
 

Table 4: Bayesian Multi-level Model Selection  
Model elpd_waic   p_waic      Waic elpd_loo   p_loo       Looic Waic=LOO 
Geometric 
Est. 
SE 

 
-3534 
30 

 
0.9   
0.1 

 
7069.1 
60.1 

 
-3534 
30 

 
0.9   
0.1 

 
7069.1 
60.1 

 
     Yes 

Poisson 
Est. 
SE 

 
-2862.0  
56.3 

 
18.2   
7.2 

 
5724.4* 
112.5 

 
-2862.0  
56.4 

 
18.6   
7.4 

 
5724.8* 
112.8 

 
     No 

Source: Authors’ Computation 
 
All Pareto k estimates are good (k < 0.5) in the case of Geometric, but for Poisson model, 

two observations are bad with estimate of k>0.7. From Table 4, it can be seen that Bayesian 

Multi-level model with Poisson outperformed Geometric based on the WAIC and LOO 

criteria, contrary to maximum likelihood estimates (classical model) for Poisson. The results 

for population-level effects model for Geometric and Poisson models are presented in 

Tables 5 and 6. 
 

Table 5: Population-Level Effects model for Bayesian Multi-level Geometric: 
 Est. Error l-95% CI u-95% CI Eff.Sample Rhat 
Int. -.03 .08 -.18 .22 4244 1.00 
Eclass .05 .25 -.41 .54 3908 1.00 
Followup .01 .08 -.14 .16 4260 1.00 
Sex .00 .06 -.11 .11 3868 1.00 
Age .00 .00 -.00 .00 5059 1.00 
Ndiagnosis .37 .02  .34 .43 4109 1.00 

Source: Authors’ Computation 
 
Table 6: Population-Level Effects model for Bayesian Multi-level Poisson 
 Est. Error l-95% CI u-95% CI Eff.Samp Rhat 
Intercept 0.29 0.03 -0.22 0.36 3624 1.00 
Eclass 0.16 0.11 -0.05 0.37 2606 1.00 
followup -0.15 0.04 -0.23 -0.08 3283 1.00 
Sex 0.01 0.03 -0.04 0.07 3159 1.00 
Age 0.00 0.00 0.00 0.00 4203 1.00 
Ndiagnosis 0.27 0.00 0.26 0.28 3586 1.00 
Source: Authors’ Computation 



 

 

Table 7: Bayesian MCMCglmm Zero truncated Poisson and Ordinary Poisson regression 
Model 
Model selection     Bayesian ZT Poisson Bayesian Poisson 
AIC     4709.586 5463.467 
BIC     4747.433 5501.314 
DIC     5027.495 5630.394 
Source: Authors’ Computation 
 
 
For multi-level models, samples were drawn using sampling (NUTS). Scale reduction factor 

on split chains (at convergence, Rhat = 1). Log link was used for both Bayesian multi-level 

Geometric and Bayesian multi-level Poisson models, the ‘Est.’ in column 2 of Table 5 and 

Table 6 represents the posterior mean, while ‘Error’ stands for standard deviation of the 

posterior mean, ‘CI’ stands for the Confidence Interval, while ‘Eff.Samp’ stands for Efficient 

Sampling. All the parameters have positive relationship with “NEncounter” showing that 

number of Encounter can be determined by each of the predictor. By implication, patients on 

admission (inpatients) have more encounter than outpatients, since it was coded (0, 1), 

patients on follow-up had more encounters than patients that were not on follow-up, since it 

was coded (0, 1). Also, female patients had more encounters than male, coded as (male=0, 

Female=1). Biological age does not significantly have impact on encounter rate. From Table 

5, Ndiagnosis (0.37) account for number of Encounter than Eclass, Follow-up, Sex, and Age. 

Table 5 relates to Figure 5, From Figure 5 the estimates falls within the two tails of the 

density plot, same with l-95%, and u-95%.  

 

From Table 6, for Bayesian multi-level Poisson model, All the parameters have positive 

relationship with Encounter, except ‘follow-up’, showing that number of encounters can be 

determined by each of the predictor but not in the case of follow-up; “follow-up” had 

significantly negative effect on “encounter” as identified in Table 3 in the case of classical 

Quassi Poisson regression analysis, therefore, whether a patient is on follow-up or not did 

not necessarily mean that Encounter would increase. The trace and density plots for 

Bayesian multi-level Poisson for each of the predictors is represented in Figure 5. 

 
 



 

 

 
Figure 5: Trace and Density plots of all relevant parameters for Bayesian Multi-level with 

Geometric model 

 

 
 
 



 

 

Table 8: Posterior Mean for Bayesian MCMC glmm for Zero Truncated Poisson Model 
 post.mean l-95% CI u-95% CI eff.samp pMCMC     

(Intercept) 
Sex 
Age 
Ndiagnosis 
followup 
Eclass 

-0.2365188 
0.0042738 
0.0014956 
0.3638062 
-0.0947547 
0.1145752 

-0.3428029 
-0.0675917 
-0.0004543 
0.3455116 
-0.1988362 
-0.1929133 

-0.1292316 
0.0813161 
0.0037423 
0.3798459 
0.0025938 
0.4219337 

678.7 
1020.5 
1281.2 
638.7 
1159.1 
1283.6 

<3e-04 *** 
0.9137     
0.1545     
<3e-04 *** 
0.0669 .   
0.4341     

Source: Authors’ Computation 
 
 
In this study Bayesian multi-level and Bayesian MCMCglmms have been employed to fit 

zero truncated count data from health and insurance domain, basic descriptive analysis was 

carried out on the data and quassi-Poisson regression analysis was equally performed, first 

to determine the dispersion type and second, to determine the relationship the predictors 

had with the response variable. The quassi-Poisson analysis showed that it was only follow-

up that did not necessarily have relationship with ‘Nencounter’, among all the variables. 

Bayesian Multi-level regression analysis was implemented and the result showed that 

Bayesian Multi-level Poisson regression outperformed Geometric model using “waic” and 

“looic” as presented in Table 4. In the class of Bayesian MCMCglmms, Bayesian Zero 

truncated Poisson model outperformed Ordinary Poisson regression Model using AIC, BIC 

and DIC as presented in Table 7.  

 

For the Bayesian multi-level model based Geometric distribution, all the predictors have 

positive relationships with “Encounter”, while Bayesian multi-level model based Poisson 

distribution showed the same relationship with that of quassi-Poisson model, indicating that 

follow-up was negative. That further showed how reliable quassi-Poisson is in fitting count 

data. The posterior mean (estimate) for MCMCglmm Zero truncated Poisson model (-

0.0947547) and that of ordinary Poisson regression Model (-0.0903413) also have all 

estimates to be positive except that of follow-up, as shown in Table 8. The result of 

MCMCglmms Poisson was not tabulated but reported. The result agreed with that of the 

Multi-level Poisson model. Comparing the results obtained in this study with previous 

studies, the result obtained agreed with that of [3] and [23], although [4] demonstrated the 

superiority of Diritchlet Prior Mixture Model over MCMCglmms.  

 

Other deductions from the study showed that more females were on hospital admission than 

their male counterpart, also patients on follow-up were significantly more than patients that 



 

 

were not on follow-up, and this might indicate that more people were aware of the need to 

follow-up on their treatments and health status.  

 

4. CONCLUSION 

From the results obtained, it can be deduced that when comparing Bayesian Multi-level 

Poisson with Geometric model, Poisson outperformed the Geometric.  On the other hand, 

when comparing Bayesian zero truncated family of MCMCglmms with MCMCglmms 

Poisson, the zero truncated family outperformed the Poisson family. The four models cannot 

be compared altogether because WAIC and LOO ([19-21]) was adopted for Bayesian Multi-

level models which are considered an improvement on DIC, while AIC, BIC and DIC were 

used as model selection criteria for MCMCglmms Models. Therefore, when a researcher is 

considering a suitable multi-level model to fit under-dispersed count data that is truncated at 

zero, Poisson family should be considered, the problem associated with classical Poisson 

model has being taken care of when using Bayesian multi-level models because Bayesian 

multi-level models have unique sampler and unique prior selection procedure ([24-25]) and 

this strength makes the model suitable for any type of count data. Zero truncated Poisson 

family of MCMCglmms model should be considered relative to MCMCglmms Poisson.   
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