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ABSTRACT  
 
Aims: The main aim of this paper is to propose a new boundary element method (BEM) algorithm for 
cancer modeling of cardiac anisotropy on the electrocardiogram (ECG) Simulation.  
Study design:  Original research paper. 
Place and Duration of Study: Jamoum laboratory, June 2018, Makkah, Saudi Arabia. 
Methodology: a new boundary element algorithm was proposed and implemented for solving the 
governing equations of new cancer mathematical modeling in conjunction with the governing 
equations of ECG simulation. 
Results: The effect of cardiac anisotropy on the ECG. Also, the effect of anisotropy on the relation 
between healthy and infected tissues. 
Conclusion: For a known set of conductivities, numerical results show that the boundary element 
algorithm, for cancer modeling of cardiac anisotropy on the ECG simulation is very accurate, due to 
the excellent agreement of our results with the corresponding finite difference results, effects of 
anisotropic tissues that relate between people and (plants, insects and animals) are also studied as a 
new advantage for the proposed model.
 
Keywords: Boundary Element Algorithm; Cardiac Anisotropy; cancer mathematical modeling; 
electrocardiogram (ECG). 
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1. INTRODUCTION 
 
In the present paper, our cancer mathematical modeling investigates the interaction between 
tumour and immune cells. Also, it establishes the importance of combining immuno-
oncology (IO) with ionizing radiation (IR) [1-4]. An understanding of behaviour of 
electrocardiographic resulted in computer models of ECG which is an important role that has 
been filled the knowledge gaps [5, 6]. 
One of the important anti-cancer treatments is that which enable the immune system to attack 
the tumour and kill tumour cells [57], where CD4 T-cells, have been used for discover the 



 

 

tumour and CD8 cytotoxic T-cells have been used to seek out and destroy the cancer. Our 
cancer mathematical modeling investigates the relation between a growing cancer cells and 
the immune T-cells, we assumed that cancer cells are a homogeneous population, where the 
radiation therapy is the same on each cell, the T-cell population is unlimited, but its ability to 
kill tumour cells is limited. Also Immunotherapy supports the ability of the immune system 
to recognise and kill the tumour. Also, analytic solution of our considered problem for both 
intracellular isotropy and extracellular isotropy was studied by Roberts and. Scher [58]. 
Stenroos and Haueisen [59] studied boundary element computations in the forward and 
inverse problems of electrocardiography and they focus on comparison of collocation and 
Galerking weightings Thivierge [60] studied intracellular anisotropy and neglecting 
extracellular anisotropy effects, which we are taken it into consideration in the present paper. 
 
 
 

 
 

Fig. 1. Boundary element anatomic model. 
 
 
2. BEM formulation and implementation 
Recently, the BEM [7-55] and BEM software [56] have been used as very important 
tools for ECG simulation to describe the torso, muscle layer, lungs and ventricular 
blood masses with thousand triangles as in the anatomic model shown in Fig. 1. For 
real simulations, the torso surface has been replaced by the skeletal muscle layer's 
inner and outer surfaces, where electrodes are placed on the the outer layer. 
we consider the anisotropic bidomain model of cardiac tissue [1] 

 ∙ ሺܩΨሻ ൌ െ ∙ ሺܩΨሻ                                                                                                 ሺ1ሻ 



 

 

where Ψ and Ψ are potential fields related to ܬ ൌ ܬ  Ψ andܩ ൌ  .Ψ, respectivelyܩ
Making use of the following membrane potential V ൌ Ψ െ Ψ, we can write Eq. (1) as  

 ∙ ሺሾܩ  Ψሻሿܩ ൌ െ ∙ ሺܩVሻ                                                                                  ሺ2ሻ 
In the current ECG study, the boundary element model of membrane and finite difference 
(FD) model of human torso are simulated. 
where current density and conductivity tensor are given by 

ܬ ൌ െܩV, ܩ ൌ ݂ܩሺܴߪ்,  ்ሻ                                                                         ሺ3ሻߪ
The governing equation of reaction-diffusion model can be expressed as 
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where σ୫ and σ୫ are equivalent conductivities [4], β, C୫ and I୧୭୬ are membrane surface, 
capacitance and ionic currents summation, respectively.  
The boundary integral equation corresponding to (4) can be written as 
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where ܵ, ,ߪ ℓߪ
ି, ℓߪ

ା ܽ݊݀ ܬ are set of surfaces ݇, continuous isotropic conductivity, 
conductivity inside surface ℓ, conductivity outside surface and source current density field, 
respectively.According to [4] and using equation (2), the current model can be simulated as in 
the BEM model. 
The mathematical cancer modeling of the considered problem (see Fig. 2) can be expressed 
as follows 
ݏ݀
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Where ܵ is the tumour volume, ܶ െ cells is the tumour density which are only considered 
active against the cancer in our considered modeling, ܫ is the concentration of immune-agent, 
 ,is the radioactivity administred, ଵ݃, ݃ଶ, ݃ଷ, ݃ସ, ݃ହ, ݃ and ݃ are tumour logistic growth ܥ
tumour death, T-cell activation, T-cell death, immunotherapy decrease, radiotherapy decrease 
and new function that contains anisotropic effects that relate between people and (plants, 
insects and animals), respectively and can be written as follows 
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where Ψ is the control function of healthy anisotropic tissue of people when eating plants or 
insects or animals with tumour. 
Also, we used the following constants to obtain the numerical results [5] 
ݎ ൌ 0.2 dିଵ, ܵ௫ ൌ 3000 mmଷ, ଵߜ ൌ 15 dିଵ, ଶߜ ൌ 0.07dିଵିݕܩଵ, ଷߜ ൌ 0 dିଵ, ସߜ ൌ
0.05dିଵG yିଵ, ହߜ ൌ 0.05dିଵ, ଵߚ ൌ 0.1 ൈ 10ଽcells/ሺL d mmଷሻ, ߚଶ ൌ 0.3 ൈ 10ଽcells/
ሺL d mmଷܯߤሻ, ߮ଵ ൌ 12.13 mmିଷ, ߮ଶ ൌ 30 ൈ 10ଽcells/ሺL mmଷሻ, ߮ଷ ൌ /ܯߤ 0.0001
ሺ10ଽcells/Lሻ, ߮ସ ൌ 0.0001 Gy/mmଷ, ݇ଵ ൌ 10ଽcells, ݇ଶ/ܮ 0 ൌ 0.001 mmିଷG yିଵ, ହܶ ൌ
100 ൈ 10ଽ cells/L. 
We developed the matlab code of Chappell et al. [5] for the solution and simulation of our BEM 
model 
 
3. Numerical algorithm, results and discussion 
The numerical modeling considered in the current paper based on the following algorithm 

1) Solving the governing equation of monodomain reaction-diffusion which is replaced by the 
boundary integral equation (5) following the boundary element technique of Fahmy [12-15] 

2) Solving the mathematical cancer modeling system (6) - (9) using the technique of Fahmy [8-
11] and Houbolt's algorithm 

3) Find the solution that satisfy steps (1) and (2) simultaneously 
4) Find the effect of anisotropy 

 
 

 
Fig. 2 Model scheme representation. 

 
 
where tumour cells, T-cells and therapies are in black, blue and red colours, respectively. T-cells in 
blue colour and therapies in red. Straight lines show direct interactions while dotted lines refer to 
indirect interactions 
 



 

 

 
Fig. 3. Variation of the tumour volume with time. 

 
 
 
 
 

 
Fig 4. Variation of the activated T-cells with time. 

 
 
It can be noticed from Fig. 3 that the IR and IO when used as a single agents can't reduce the 
tumour mass, but when they are used in a combination, the number of activated T-cells is 
higher than the single agents using of them as shown in Fig. 4. Stability of the considered 
model was established by Chappell et al. [5]. 
 



 

 

 

Also, from Fig. 5, it can be seen that our model results excellent agreement with results of [5] 
for anisotropic but at RD ൌ 0.12, because at RD ൌ 0.13 there are significant differences due 
to the solution of ECG equations and Cancer modeling equations simultaneously. 

 

 

 

Fig. 6. Effects of IR and PD-L1 on tumour growth of Deng et al. [6] 

 

A review of two promising classes of antibodies, antiCTLA-4 and 
antiProgrammed Death-Ligand 1 (antiPD-L1), used as monotherapy and in combination with 
cancer therapies can be found in [16]. 
 



 

 

It can be seen from Fig. 6. that the PD-L1 and IR through T-cell dependent mechanism are 
reducing the tumour growth. 

Initial conditions used through our model are introduced in table 1. as suggested by [5] as a 
future work, we have seen from numerical results that the difference can be neglected 
between the two initial conditions cases. Also, we recommend to change ܥሺ0ሻ to be 1.6 as a 
future work from our study. 

 

Table 1. Initial conditions used in the proposed model. 

 

 

 

4. CONCLUSION 

The boundary element algorithm for cancer modeling of cardiac anisotropy on the 
electrocardiogram (ECG) simulation. For a known set of conductivities, our results are in a 
very good agreement with the corresponding finite difference results. A lot of clinical 
applications neglect the effects of heart anisotropy, as an important result of our study, we 
analyse the new function ݃ሺܵ,  ሻ that contains anisotropic effects that relate between peopleܥ
and (plants, insects and animals), we concluded that the cardiac anisotropy has a strong effect 
on ECG simulation in comparison with considered isotropy effect. Also, if we considered the 
anisotropy effects, we can detect the heart cancer in people infected with it. The peoples 
eating plants, insects and animals. When they are eating plants such as vegetables and fruit 
with cancer can easily transmit it to humans when he takes it. When we make a sauce from 
rotten tomatoes, this sauce also can infect humans with heart cancer. Early detection of heart 
cancer can be difficult when we do not take into consideration cardiac anisotropy effect. It 
moves from infected tissues of organisms to healthy tissues of humans. For these reasons the 
anisotropy effect should be taken into consideration in clinical applications. 
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