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ABSTRACT 
 
Archimedes used the perimeter of inscribed and circumscribed regular polygons to obtain lower and 
upper bounds of π. Starting with two regular hexagons he doubled their side from 6 to 12, 24, 48, and 
96. Using the perimeters of 96 side regular polygons, Archimedes showed that 3+10/71<π<3+1/7. His 
method can be realized as a recurrence formula called the Borchardt-Pfaff-Schwab algorithm. 
Heinrich Dörrie modified this algorithm to produce better approximations to π than these based on 
Archimedes’ scheme. Lower bounds generated by his modified algorithm are the same as from the 
method discovered earlier by the cardinal Nicolaus Cusanus (XV century), and again re-discovered 
two hundred years later by Willebrord Snell (XVII century). Knowledge of Taylor series of the functions 
used in these methods allows to develop new algorithms. Realizing Richardson’s extrapolation, it is 
possible to increase accuracy of the constructed methods by eliminating some terms in their series. 
Two new methods are presented. An approximation of squaring the circle with high accuracy is 
proposed. 
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1. INTRODUCTION 
 
The first known rigours mathematical calculation of π was done by Archimedes. Archimedes’ book ”On the Measurements 
of a Circle”, [1], written in the 3rd century B.C., contains three propositions. Proposition 3. represents the numerical 
computing of the number π. Archimedes used an algorithmic scheme based on doubling the number of sides in inscribed and 
circumscribed regular polygons. He started with the regular hexagons (N	=	6)	and doubled the number of their sides until N	
=	96. Archimedes obtained a series of two approximations, lower and upper, for length of the circumference of the circle 
with diameter equals to one (d	=	1), thus consequently to the number π. Archimedes was able to determine the following 

bounds for the number π:   3 
ଵ

ଵ
൏ ߨ ൏ 3 

ଵ


.	 

It’s often suggested to combine these values to improve the approximation by taking their arithmetic average. Of course, 
it’s correct but it’s possible to realize a better combination (see Table 1) than an arithmetical mean of these two bounds. 
Archimedes’ estimations can be improved using only information already generated by the constructed polygons. Here two 
such improvements are proposed and presented. The proposed algorithms use only values obtained from the traditional and 
well-known methods. New created algorithms produce faster convergence to π than original techniques. Such approach 
already was realized for some other numerical methods. Table 1 shows the results for the regular polygons (N	=	6,	12,	24,	
48,	 and	 96)	 and their combinations proposed in XVII century by Snell and later proved by Huygens [2]. Archimedes’ 
approach is true real algorithm to obtain the value of π. The method is capable to generate an arbitrarily precision of the 
number π. The process is relatively slow in its convergence. It is also difficult to use this algorithm in direct calculations for 
large number of sides. It is a similar situation as with Turing’s machine and a modern computer. Theoretically all 
computable problems can be realized on both types of machines. It’s only a difference and matter of time. There were many 
attempts to improve Archimedes’ method. One such approach resulted in Pfaff-Borchardt-Schwab’s (PBS) method 
developed in XIX century. It’s realized without using trigonometric functions. 

The method PBS is defined by the following formulas: ܽᇱ ൌ ଶ

ା
, ܾᇱ ൌ √ܽᇱܾ, new values a′, b′ are determined by old 

values a, b - the values from the previous step. It’s an iterative process and it’s easy to realize on a computer. Starting 
with a = 2√3 and b = 3; the values for circumscribed and inscribed regular 6-gons, we can generate the sequence of the 
intervals [b, a], b < a. The intervals contain π. It’s π for the circle of the diameter one (d = 1), or for a unit circle (r = 1), 
and in this case it’s half of its perimeter, which, of course, it’s also π. 
Table 1. Approximations of the number pi obtained by Archimedes’ method (values a and b, from the inscribed and 

circumscribed polygons, respectively), their arithmetic average ሺܿ ൌ
ሺାሻ

ଶ
ሻ, and by using Snell’s approach ሺ݀ ൌ

ሺଶାሻ

ଷ
ሻ, 

Here N determines the number of sides in regular polygons and  ݔ ൌ 180/ܰ is the central angle in the circle. 
 
N a=N*sin(x) b=N*tan(x) c=a+(b-a)/2 d=a+(b-a)/3 
6 3.00000 3.46410 3.23205 3.15470 
12 3.10583 3.21539 3.16061 3.14235 
24 3.12567 3.17389 3.14978 3.14174 
48 3.13263 3.15966 3.14614 3.14164 



 

 

 

Ludolph van Ceulen (1540-1610) was the last person who performed great Archimedean calculations. He used 262-gons and 

obtained 39 places with 35 correct digits. The number is still called Ludolph’s number in some parts of Europe. For example, 

in Poland it is called in Polish ”liczba ludolfina”. Archimedes’ method may be interpreted as a rectification problem. Its goal 

is to find the length of the arc of the considered circle. In this case, the method estimates the circumference of the circle (i.e. 

full arc for the angle 2π). Very simple and beautiful rectification method was developed by the Polish mathematician Adam 

Adamandy Kochański [3]. His construction results with π	 estimation equals to 3.141533. Kochański’s geometrical 

construction can be done with only one opening of a compass. In this case the process is not iterative. It is one-time 

construction. 

 
2. MATERIAL AND METHODS  
 
For our purpose we here consider two basic methods, Snells’ rectification method and Dörrie’s method [2, 4]. Both methods 
were developed to accelerate Archimedes’ process. Here, we are doing the next step further. Our two approaches use the 
values generated by Snell’s and Dörrie’s method to construct better approximations for the number π. We listed all used 
methods in this work in Table 2. In our notation we added X (after M) to indicate that the method (M) is the result of 
combinations. We assumed that combination occurred, when the composite method is defined by elements already 
calculated in its components, [5-7]. Consider three of the following methods: MX4: Snell-P based on perimeter (P) of the 
circle, MX5: Snell-A based on area (A) of the circle, (Huygens, 1654)) and MX6: Ch-H based on the methods M1, M2 and 
M3, [5]. Table 2 represents the applied methods, their short descriptions, and the results for using them with N=3 and 6. 
(π=3.14159265358979...). The method M8 was invented by Cusanus (XV), Snell-Huygens (XVII), and again by Dörrie (XX 
century). One of the results of this presentation is detection that one Dörrie’s formula (for B) was already known in XV and 
XVII centuries.  

Table 2. Methods, their descriptions and the results for pi using N=3 and 6. Method M8 was invented by Cusanus, Snell-
Huygens, and Dörrie. 

Method (X combined) Description N=3 N=6 

M1, side, inscribed sin(x) 2.598076 3.000000 

M2, side, area circumscribed tan(x) 5.196152 3.464101 

M3, area, inscribed sin(2x)/2 1.299038 2.598076 

MX4=M1+(M2-M1)/3 Snell-P 3.464101 3.154700 

MX5=M2+(M3-M2)/3 Snell-A 3.897114 3.175426 

MX6=(32M1+4M2-6M3)/30 Ch-H 3.204293 3.142264 

M7=(2 cos (x/3)+1) tan (x/3) Snell-ArcU 3.144031 3.141740 

M8=3 sin(x)/(2+cos (x)) Snell-ArcL 3.117691 3.140237 

MX9=(M2*M1*M1)1/3 A- Dörrie 3.273370 3.147345 

MX10=M8+(MX9-M8)/5 Szysz-Dörrie 3.148827 3.141658 

MX11=M7+(M8-M7)/10 Szyszkowicz 3.141397 3.141589 

 
 

2.1 Snell’s rectification 

Cardinal Nicolaus Cusanus (1401-1464) has elaborated the following rectification of the arc in the circle for the 
corresponding angle x: arc = 3sin(x)/(2 + cos(x)). It corresponds to the first convergent of the continued fraction for sin(x)/x. 
This formula was once again proposed two hundred years later by the Dutch mathematician and physicist Snell (Willebrord 
Snellius, 1580-1626). We don’t know it was an original invention or using the known result obtained by the cardinal. Snell 
developed two approximations for the length of the arc, lower (M8: Snell-ArcL) and upper (M7: Snell-ArcU), Huygens 
(1654). We combine these two methods to define better approximation (MX11; Szyszkowicz, 2015, [6]). To develop such 
approach, we used Taylor series for the corresponding methods (Table 3 and 4), in this case M7 and M8, and generated the 
new method as MX11=u*M7+v*M8. The coefficients u and v are determined by the following system of the equations (see 
Table 4) to improve its accuracy: ݑ  ݒ ൌ 1, 1620/ݑ െ  The solution allows us to define better method of the .0=180/ݒ
form MX11=M7+(M8-M7)/10. Table 4 shows that in its Taylor series the next term after x is x to power 7. We keep the 
element x (x to power one) but eliminate x to power 5. Here x = π/N and as N is growing N*MX11 goes to π. 

96 3.13585 3.15313 3.14449 3.14161 



 

 

.Table 3. Taylor series of the methods related to Archimedes’ algorithm. 

Method Taylor series 
M1: sinሺݔሻ 

ݔ െ
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ହݔ
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െ

ݔ
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ଽݔ
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െ

ଵଵݔ
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M2: tanሺݔሻ 
ݔ 

ଷݔ

3

ହݔ2
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ݔ17
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2835

ଵଵݔ1382
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M3: sinሺ2ݔሻ/2 
ݔ െ
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3
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15
െ
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The Ch-H (MX6, [5]) method can be developed differently than originally presented by its authors. The method can be 
determined (Richardson’s approach) as the results of a linear combination MX6 = a ∗ M1 + b ∗ M2 + c ∗ M3. Here we 
use all methods related to Archimedes’ technique. We are able to improve the accuracy without additional calculations 
(increasing N). Using their Taylor representation, it’s possible to keep the term with x (we need to satisfy the condition 
a+b+c=1) and to eliminate the terms with x in power 3 and 5. This request produces the following conditions on the 

coefficients ܽ  ܾ  ܿ ൌ 1,െ
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ܿ ൌ 0. The obtained linear system is easy to solve. The 

system results in the following formula MX6 = (32M1 + 4M2 − 6M3)/30. With new set of the parameters a and b, the 

method is also defined as MX6 = a ∗ MX2 + b ∗ MX4, with the following conditions: ܽ  ܾ ൌ 1, 
ଶ
 ଶ

ଵହ
ൌ 0 (see Tables 

3 and 4). 

Table 4. Taylor series of the presented methods. 

Method Taylor series or analytic formula 
M7 

ݔ 
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MX9 ܣ ൌ ඥܾܽଶ
య
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ݔ 

ହݔ

45

ݔ4

567


ଽݔ

405

ଵଵݔ248

280665
 ܱሺݔଵଷሻ 

MX10 
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2.2 Dörrie’s sequence 

In his book ("100 Great Problems of Elementary Mathematics") the German mathematician Heinrich Dörrie in the problem 
No. 38 presented another approach to improve Archimedes method, [4]. He constructed two new series B and A, ([B, A] 
interval) which give better approximation for the length of the circumference (C) of the circle. For a given values b, a (the [b, 

a] interval) are generated ܤ ൌ
ଷ

ଶା
ܣ	݀݊ܽ	 ൌ √ܾܽଶ

య
	. He proved that the following inequalities hold b < B < C < A < a. The 

sequence of Bs increases to C, and the sequence of As decreases to C. Always the interval [b, a] contains the interval [B, A]. 
For example, starting with a regular hexagon d = 1, a = 2√3, b = 3 we have the following values from Dörrie’s method B = 
3.140237343, A = 3.14734519, a precision achieved by the Archimedes method first with a 96-gon. It’s interesting that the 
method used to generate the sequence B is the same formula as proposed by the cardinal Cusanus and Snell (M8), also see 
Tables 2 and 4, and Figure 1. In a similar way as the method MX11 was obtained the method MX10 was determined. The 
method is constructed as follows MX10=M8+(MX9-M8)/5. 
 

 
 

3. RESULTS AND DISCUSSION 
Below is presented the program in R. It realizes some of the discussed methods. In its bottom the results are given for N=64. 

The listing of this program allows better understand the presented material and the realized formulae. The program can start 

with a square (N=4) or hexagon (N=6). 

#Program realizes the following methods: M1, M2, M8, MX9, and MX10. 
options(digits=15) 
N=4; b=2*sqrt(2); a=4 #square 
N=6; b=3; a=2*sqrt(3) #hexagon 



 

 

for (k in 1:5){ 
cn=c(k-1,N); print(cn) 
arch = c(b,a) #Archimedes' results 
# Dörrie: 
B=3*a*b/(2*a + b) 
A=(a*b*b)^(1/3) 
dor = c(B,A) # Dörrie's results 
#Szyszkowicz 
S=B+(A-B)/5 # Szyszkowicz's method 
res=c(arch,dor,S) 
print(res) 
#Next Archimedes: 
a=2*a*b/(a+b) 
b=sqrt(a*b) 
N=N+N} 
method=c("M1","M2","M8","MX9","MX10") 
print(method) 
print(pi); #The end   

#The results for 96-gon 

M1: 3.14103195089051; M2: 3.14271459964537; M8: 3.14159263357057 

MX9: 3.14159273368372; MX10: 3.14159265359320; pi: 3.14159265358979 

The main results of this paper are two methods (MX10 and MX11), where we used Taylor series to justify their correctness 
and accuracy. The methods are very easy to program. Some calculations were executed (see the program). Table 5 shows the 
results for the Pfaff-Borchardt-Schwab algorithm (a, b values), Dörrie’s method (A, B values) and the method MX10 
proposed in this paper.  
 
Table 5. The approximations generated by Archimedes, Dörrie’s method, and Szyszkowicz’s method(MX10). 
Size Archimedes Dörrie Szyszkowicz 
N M1 (b) M2 (a) M8 (B) MX9 (A) M10 (B+(A-B)/5) 
6 3.0000000 3.4641016 3.1402373 3.1473452 3.1416589 
12 3.1058285 3.2153903 3.1415100 3.1419279 3.1415936 
24 3.1326286 3.1596599 3.1415875 3.1416133 3.1415927 
48 3.1393502 3.1460862 3.1415923 3.1415939 3.1415927 
96 3.1410320 3.1427146 3.1415926 3.1415927 3.1415927 
Table 6 presents the obtained results for the method MX11 and a few other methods already known in literature. 
 
Table 6. Estimated value of pi from various methods and N. 

Size MX5 MX6 M7 M8 MX11 

N Snell-A Ch-H Snell-ArcU Snell-ArcL Szyszkowicz 

6 3.89711432 3.20429399 3.14403156 3.11769145 3.14139755 

8 3.33333333 3.15032227 3.14234913 3.13444650 3.14155887 

10 3.21435552 3.14368811 3.14189972 3.13874170 3.14158392 

12 3.17542648 3.14226497 3.14174002 3.14023734 3.14158975 

14 3.15948495 3.14185286 3.14167196 3.14086739 3.14159151 

16 3.15194804 3.14170766 3.14163906 3.14116990 3.14159214 

18 3.14800282 3.14164881 3.14162159 3.14132974 3.14159240 

20 3.14577340 3.14162228 3.14161162 3.14142063 3.14159252 

22 3.14443578 3.14160929 3.14160560 3.14147540 3.14159258 

24 3.14359354 3.14160249 3.14160179 3.14150999 3.14159261 



 

Method MX11 has interesting geometrical interpretation and one example is here presented. Figure 1 shows the rectification 
process for the arc corresponding to the angle x = 135 degree. It’s relatively large angle and by a consequence the estimation 
is not very accurate. In this approach we have to realize two methods, M7 and M8, to obtain lower and upper estimations for 
the length of the arc. Their arithmetic average is less accurate than this generated by MX11 method. We have already as pi 

the value 3.11582354. The exact value for the length of this arc is 
ଷ

ସ
 It allows us to determine our accuracy obtained for the .ߨ

angle x=135 degrees using MX11 method. 

  

Figure 1: Rectification of the arc - Szyszkowicz’s method (MX11). 

As the method needs also the angle x/3, we should be able to do trisection of a given angle x. In this case it is possible to do 
this by a pure geometrical construction. It’s easy to obtain the angle x/3. It’s by using a half of the right angle (90/2 = 45 = 
125/3). The lower (L) and upper (U) estimations are generated by the methods M8 and M7, respectively. They have 
geometrical interpretations: the angle’s vertex has the distance r (radius) to the circle for L, and to the cutting point on the 
circumference for the angle x. We are using the method MX11 to obtained better approximation for the number π.  
 



 

 
Figure 2. Quadrature based on the rectification of the arc - Szyszkowicz’s method (MX11). 
 
Figure 2 shows more difficult situation. The angle of 120 degrees can’t be trisected. We need the angel of 40 degrees. We 
may use other sources of such angle, but not from pure geometrical construction process. In this case a used graphic software 
was asked to rotate horizontal segment by 40 degrees. The method MX11 is applied and determines the segment S = U + (L 
− U)/10. Here, the main problem (mainly constructional) is to determine the segment (U-L)/10. On Fig. 2 we a series of 
small circle used to realize the division in 10 equal parts. Thales’ approach to divide a segment in a proportion is applied. 
The obtained segment (2/3πr) is extended by 1/3πr and r. It allows us to perform the squaring of the rectangle (interpreted as 
such) of the side πr and r. By the consequence we did approximated quadrature of our circle with estimated value of the 
number π. In the geometrical process Thales theorem on proportion is applied to divide the segment U-L into 10 equal parts. 

 
4. CONCLUSION 
The illustrative results summarize obtained approximations by various methods. As the values show the best 
approximation is produced by the MX10 method. The method is the result of the combination of two sequences 
generated by Dörrie’s algorithm. 
Well know methods to approximate the number pi are realized. Taylor series of these method (and Richardson’s 
extrapolation) allow to produce new methods with better convergence properties. As the main results two 
methods are proposed: (i) combined Dörrie’s sequence (MX10 method), (ii) combined Snell’s sequence 
(MX11). 
Two methods presented here improve Archimedes' technique. The method MX11 can be used geometrically for 
an angle x, if x/3 can be constructed to execute an approximate quadrature of the circle. In addition, the 
presented methodology has an educational aspect. 
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