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ABSTRACT  8 
 9 
The combined effects of chemical reaction, radially applied magnetic field and Hall effect on entropy 
generation of a steady third grade magnetohydrodynamic fluid flowing through a uniformly circular 
pipe was studied. The governing equations are presented and the resulting non-linear dimensionless 
equations are solved numerically using Galerkin Weighted Residual Method. The velocity, 
temperature and concentration profile were obtained and utilized in computing the entropy number. A 
parametric study of germane parameters involved are presented graphically and discussed. It was 
observed that irreversibility due to heat transfer dominates the flow compared to fluid friction and Hall 
parameter inhibits the Bejan number while Magnetic parameter enhances the Bejan number. 
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1. INTRODUCTION 14 
 15 
Magnetohydrodynamic (MHD) flows in rectangular and cylindrical system continue to stimulate 16 
significant interest in the field of engineering science and applied mathematics. This interest is owned 17 
to the numerous important applications in biological and engineering industry such as reactive 18 
polymer flows, extraction of crude oil, synthetic fibres, paper production and also in absorption and 19 
filtration processes in chemical engineering. Krishna and Gangadhar Reddy [1] discussed the 20 
unsteady MHD free convection in a boundary layer flow of an electrically conducting fluid through 21 
porous medium subject to uniform transverse magnetic field over a moving infinite vertical plate in the 22 
presence of heat source and chemical reaction. Krishna and Subba Reddy [2] have investigated the 23 
simulation on the MHD forced convective flow through stumpy permeable porous medium (oil sands, 24 
sand) using Lattice Boltzmann method. Krishna and Jyothi [3] discussed the Hall effects on MHD 25 
Rotating flow of a visco-elastic fluid through a porous medium over an infinite oscillating porous plate 26 
with heat source and chemical reaction. Reddy et al.[4] investigated MHD flow of viscous 27 
incompressible nano-fluid through a saturating porous medium. Recently, Krishna et al. [5-8] 28 
discussed the MHD flows of an incompressible and electrically conducting fluid in planar channel. 29 
Veera Krishna et al. [9] discussed heat and mass transfer on unsteady MHD oscillatory flow of blood 30 
through porous arteriole. The effects of radiation and Hall current on an unsteady MHD free 31 
convective flow in a vertical channel filled with a porous medium have been studied by Veera Krishna 32 
et al. [10]. The heat generation/absorption and thermo-diffusion on an unsteady free convective MHD 33 
flow of radiating and chemically reactive second grade fluid near an infinite vertical plate through a 34 
porous medium and taking the Hall current into account have been studied by Veera Krishna and 35 
Chamkha [11]. Taza et al. [12] considered the heat transfer analysis in MHD thin film flow of third 36 
grade fluid on a vertical belt with slip boundary conditions. Veera Krishna et al. [13] investigated the 37 
heat and mass transfer on MHD free convective flow over an infinite non-conducting vertical flat 38 
porous plate. Veera Krishna and Jyothi [14] discussed the effect of heat and mass transfer on free 39 
convective rotating flow of a visco-elastic incompressible electrically conducting fluid past a vertical 40 
porous plate with time dependent oscillatory permeability and suction in presence of a uniform 41 
transverse magnetic field and heat source. Taza et al [15] presented the analysis of a thin film flow in 42 
MHD third grade fluid past a vertical belt with temperature dependent viscosity emploring the ADM 43 
and OHAM.  44 
The steady flow of a reactive variable viscosity fluid in a cylindrical pipe with isothermal wall was 45 
studied by Makinde [16], reporting the dependence of the steady state thermal ignition criticality 46 



 

conditions on both Frank-Kamenetskii and viscous heating parameters. Makinde et al [17], numerical 47 
investigation for the entropy generation rates in an unsteady flow of a variable viscosity 48 
incompressible fluid through a porous pipe with uniform suction at the surface were examined. In 49 
Ajadi [18], closed-form solution using Homotopy Analysis method on the effect of variable viscosity 50 
and viscous dissipation on the thermal stability of a one-step exothermic reactive non-Newtonian flow 51 
in a cylindrical pipe assuming negligible reactant consumption were obtained.  In [19], Aiyesimi et al 52 
considered a mathematical model for a dusty viscoelastic fluid flow in a circular channel was 53 
considered, observing that an increase in the value of magnetic field and viscoelastic parameter 54 
reduces the horizontal velocity of the fluid and particles, thereby reducing the boundary layer 55 
thickness, hence inducing an increase in the absolute value of the velocity gradient at the surface.  56 
The thermodynamics second law analysis and its design-related concept of entropy generation 57 
minimization has been a cornerstone in the field transfer and thermal design. Several researchers 58 
were motivated to study fundamental and applied engineering problem based on second law 59 
analyses, due to the production of entropy resulting from combined effects of velocity and 60 
temperature gradient. Generating entropy is tied to thermodynamic irreversibility, which is common in 61 
all heat transfer process. Eegunjobi & Makinde [20] investigated the combined effects of buoyancy 62 
force and Navier slip on the entropy generation rate in a vertical porous channel with wall 63 
suction/injection. The combined effects of Navier slip, convective cooling, variable viscosity and 64 
suction/injection on the entropy  generation rate in an unsteady flow of an incompressible viscous fluid 65 
flowing through a channel with permeable wall was studied by Chinyoka & Makinde [21]. 66 
In this paper, the motivation comes from a desire to gain more understanding into the combined effect 67 
of radially applied magnetic field and Hall current on the flow of chemically reactive third grade fluid. 68 
The relevant governing equation have been solved numerically by Galerkin Weighted Residual 69 
Method [22, 23]. The effects of the various apposite parameters on the velocity, temperature and 70 
concentration are presented. In this work, entropy generation rate of a laminar MHD flow of a reactive 71 
third grade fluid is considered in a circular pipe, which is assumed electrically conducting and 72 
incompressible in the presence of an externally applied radially exponential magnetic field. 73 
 74 
2. MATHEMATICAL FORMULATION 75 
 76 
Considering a steady flow of electrically conducting, incompressible, third grade fluid in a non-77 
conducting circular pipe in the absence of gravitational force. The z-axis is taken along the axis of 78 

flow. Radially exponential varying magnetic field 0
2 r

r

RB B e  is applied (Bartella, et al [24]) and no 79 

electric field is applied. The flow is induced due to constant applied pressure gradient in the z-80 
direction and electron atom collision frequency is assumed to be relatively high compared to the 81 
collision frequency of ions. The equations which govern the MHD flow are the continuity, momentum 82 
and Maxwell equations. In fluid dynamics studies, it is assumed that the flows meet the Clausius-83 
Duhem inequality and the specific Helmholtz free energy of fluid has a minimum at equilibrium 84 
(Rajagopal, [25]). Using the velocity field (0,  0, w( )),V r  the incompressibility condition is satisfied 85 

identically and momentum and Maxwell equations after the constitutive equations 86 
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   (2.1) 87 

(Makinde [16], Chinyoka & Makinde [26]) and under stated assumptions the governing equations may 88 
be written as given by Makinde et al [17], Ellahi [27, 28] 89 
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where 

2
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 are fluid velocity, fluid 93 

temperature, applied magnetic field strength, modified pressure, electrical conductivity, Hall 94 
parameter, thermal conductivity, thermal radiation, molecular diffusivity, thermal diffusivity, specific 95 
heat capacity, chemical reaction rate constant, reference temperature, wall temperature, reference 96 
concentration and wall concentration. 97 
Introducing the following non-dimensional quantities by Ellahi [28] into (2.2) to (2.5) and the boundary 98 
conditions 99 
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and using Rosselands approximation  101 
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* * * , , ,  , , ,  ,  , ,S , , ,r c H u p c RM c P E Q D R K    denotes third grade parameter, magnetic parameter, 103 

pressure drop, Prandtl number, Eckert number, heat source/sink parameter, material constant 104 
parameter, Dufour number, radiation parameter, Schmidt number, chemical reaction parameter, 105 
Stefan-Boltzmann constant and mean absorption coefficient. For steady flow, the time dependent 106 
terms are set to zero and the following are equations were obtained respectively with the boundary 107 
conditions 108 
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Equations (2.8), (2.9), (2.10) and (2.11) comprise the boundary value problem to now be solved. 113 
 114 
3. METHODS 115 



 

 116 
3.1 Galerkin Weighted Residual Methods 117 
 118 
Suppose an approximate solution is to be determined for the differential equation of the form 119 

  0   L f            (3.1) 120 

where ( )x   is an unknown dependent variable,  L  is a differential operator and  ( )f x  is a known 121 

function. Let 
1

( ) ( )
N

i i
i

x c u x


   be an approximate solution to (2.8). On substituting ( )x   into (2.8), it 122 

is unlikely that (2.8) is satisfied i.e.   0L f    therefore        123 

  L f R           (3.2) 124 

where ( )R x   is a measure of error called the Residual [23, 29]. Multiplying (3.2) by an arbitrary weight 125 

function ( )u x  and integrating over the domain to obtain 126 

 ( ) ( ) ( ) ( ) 0
D D
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Galerkin Weighted Residual method ensures equation (3.3) vanishes over the solution domain and 128 

the weight function is choosing from the basis functions  ( ) ( )   ( 0,..., )iu x u x i N    hence  129 
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These are a set of n-order linear equations to be solved to obtain all the ic  coefficients. The trial 131 

functions can be polynomials, trigonometric functions etc. The trial functions are usually chosen in 132 
such that the assumed function ( )x  satisfies the global boundary conditions for ( )x though this is 133 

not strictly necessary and certainly not always possible [22].  134 
To apply the method to (2.8)-(2.10), we select an approximate solutions of the form 135 

2

0 1 2( )  ,w a a a      2

0 1 2( )  ,b b b      2

0 1 2( )  c c c       for the velocity, 136 

temperature and concentration respectively, which satisfies the boundary conditions (2.11). Applying 137 
the boundary conditions on the approximate solution we obtain the following: 138 

2

0( )  (1 ),w a   2 2

1( )  ( ),b       2 2

1( )  ( )c         and 139 
2
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3 ( )u     are the weighting functions iu , where 0 1 1, ,a b c  are the 140 

coefficients to be determined. 141 
The residue R  for (2.7)-(2.9) respectively are given by 142 
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Taking into account of orthogonality of the residues above, we have 146 
2

1 2 3 20 0 0
1 0 2 20

4
, (1 )(1 32 ) 0

1 1
a

e

a Me a Me a
u R a d

R m m

 
         

 

 
 
 

  147 



 

2 2 2

* * 1 1 * 0

1 4 4 2 2

2 * 0 * 1 *0

* 1
* 1 * 1 *

1
( )(2(1 ) ( 2) 2 4

, 16 0

4 4 )

r c

b r c e H r e H r e

u r e
H r e u r e u r e

R R b b P E P a

u R P E R P a Q P R P b Q P R P d

D P R Pc
Q P R P b D P R Pc D P R P

  


   




     

     

   

 
 
 
 
 
 
  

  148 

2 3 3 21
1 1 0 1 0 0 1

3 0
2 2

0 1 0 0 1 1 1

( 4(1 ) 2 2 2
, 0

+2 2 )

)( c c c

c

c c c R R R

c
c S a c S a S a c

u R d

S a c S a S a c K c K K c

    
 

    

     
 

    

 
 
 
  

  149 

The symbolic calculation software MAPLE 2016 is used to compute the values of 0 1 1, ,a b c  and the 150 

approximate solutions. 151 
 152 
3.2 Entropy Generation 153 
 154 
Inherent irreversibility in a pipe flow occurs owing to exchange of energy and momentum within the 155 
fluid and the solid boundaries. The entropy generation is owed to heat transfer and the effects of fluid 156 
friction. The equation for rate of entropy generation per unit volume [17, 21] is given 157 
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where the first term in (4.1) is the irreversibility due to heat transfer, the second and third term are 159 
entropy generation due to viscous dissipation. Introducing the dimensionless quantities in (2.6) to 160 
(4.1), we have 161 
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Brickman number and third grade parameter and 164 
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where 1N  is irreversibility due to heat transfer and 2N gives entropy generation due to viscous 166 

dissipation. The Bejan number is defined as 167 

1
e

s

N
B

N
          (4.4) 168 

such that 0 1eB   denoting 1eB   is the limit at which heat transfer irreversibility dominates, 0eB   169 

is the limit at which total irreversibility dominates, and 1
2eB  connotes equal contribution [30]. 170 

 171 
3. RESULTS AND DISCUSSION 172 
 173 
In this section, results are presented and discussed. Fig. 1 depicts the influence of magnetic 174 
parameter, increasing the magnetic parameter decreases the flow profile of the system owning to the 175 
Lorentz force acting in contradiction of the flow. Fig. 2 shows the Hall parameter enhancing the flow 176 
profile with increasing Hall values. Increasing the Reynolds number enhances the velocity profile as 177 
shown in Fig. 3. In Fig. 4, the thickening effect of the fluid in regard to increasing thirdgrade parameter 178 
inhibits the flow field. 179 
Fig. 5-7 portrays the effect of Eckert, Prandtl and Reynolds number on the temperature profile. 180 
Considerable increase in the Eckert number slightly increases the temperature profile then increasing 181 
the Prandtl number and Reynolds number decreases the temperature field of the system. Since 182 



 

Prandtl number is the ratio of kinematic viscosity to thermal diffusivity so as rP  increases, the 183 

kinematic viscosity dominate thermal diffusivity causing the velocity flow field to decrease. The 184 
temperature field in Fig. 8 is enhanced with increasing the radiation parameter. 185 
 186 

 187 
Fig. 1. Effect of varying magnetic parameter (M=1, M=10, M=20) on velocity profile. 188 
 189 

 190 
Fig. 2. Effect of varying Hall parameter (m=0.1, m=1, m=10) on velocity profile. 191 
 192 



 

 193 
Fig. 3. Effect of varying Reynolds number (Re=4, Re=8, Re=12) on velocity profile. 194 
 195 

 196 
Fig. 4. Effect of varying Thirdgrade parameter ( =1, =50, =100) on velocity profile. 197 
 198 



 

 199 
Fig. 5. Effect of varying Eckert number (Ec=0.1, Ec=100, Ec=500) on velocity profile. 200 
 201 

 202 
Fig. 6. Effect of varying Prandtl number (Pr=0.07, Pr=25, Pr=50) on temperature profile. 203 
 204 



 

 205 
Fig. 7. Effect of varying Reynolds number (Re=4, Re=8, Re=12) on temperature profile. 206 
 207 

 208 
Fig. 8. Effect of varying Radiation parameter (Rp=0.1, Rp=0.2, Rp=0.4) on temperature profile. 209 
 210 
Figures 9-10 depicts the influence of Dufour and Schmidt numbers on the concentration profile. 211 
Increasing the Dufour number increases the concentration field while the concentration profile 212 
decreases with increasing values of Schmidt number. This shows that heavier diffusing species have 213 
a greater retarding effect on the concentration distribution. The entropy generation profile is portrayed 214 
in Fig. 11-14 with influences of Reynolds, Prandtl, Eckert numbers and radiation parameter. 215 
Increasing the Reynolds number enhances the entropy generation while increasing Eckert number 216 
inhibits entropy generation. Increasing the Prandtl number decreases the entropy generation firstly 217 
around the pipe centreline then it enhances entropy rapidly towards the pipe wall while increasing the 218 
radiation parameter enhances the entropy generation around the centreline firstly then it inhibits it 219 
rapidly towards the pipe wall. 220 
 221 



 

 222 
Fig. 9. Effect of varying Dufour number (Duf=2, Duf=3, Duf=4) on concentration profile. 223 
 224 

 225 
Fig. 10. Effect of varying Schmidt number (Sc=0.5, Sc=10, Sc=25) on concentration profile. 226 
 227 



 

 228 
Fig. 11. Effect of varying Reynolds number (Re=4, Re=8, Re=12) on entropy generation profile. 229 
 230 

 231 
Fig. 12. Effect of varying Prandtl number (Pr=0.07, Pr=25, Pr=50) on entropy generation profile. 232 
 233 



 

 234 
Fig. 13. Effect of varying Eckert number (Ec=0.1, Ec=100, Ec=500) on entropy generation 235 
profile. 236 
 237 

 238 
Fig. 14. Effect of varying Radiation parameter (Rp=0.1, Rp=0.2, Rp=0.4) on entropy generation 239 
profile. 240 
 241 
Figures 15-22 presents the influence of Hall parameter, magnetic parameter, Prandtl number, Eckert 242 
number Reynolds number, thirdgrade parameter, Dufour number and reaction parameter on Bejan 243 
number. Increasing the Hall parameter, Eckert number and Reynolds number inhibits the Bejan 244 
number and the irreversibility due to heat transfer dominates over total irreversibility from the pipe 245 
centreline to pipe wall except for Reynolds number where irreversibility due to total dominates 246 
gradually towards the pipe wall. On increasing the magnetic parameter, thirdgrade parameter, Dufour 247 



 

number and reaction parameter enhances the Bejan number and the irreversibility due to heat 248 
transfer dominates over total irreversibility. Increasing the Prandtl number firstly inhibits the Bejan 249 
number around the pipe centreline then it enhances Bejan number towards the wall of the pipe and 250 
the flow is dominated by heat transfer irreversibility. 251 
 252 

 253 
Fig. 15. Effect of varying Hall parameter (m=0.1, m=1, m=10) on Bejan number. 254 
 255 

 256 
Fig. 16. Effect of varying Magnetic parameter (M=1, M=10, M=20) on Bejan number. 257 
 258 



 

 259 
Fig. 17. Effect of varying Prandtl number (Pr=0.07, Pr=25, Pr=50) on Bejan number. 260 
 261 

 262 
Fig. 18. Effect of varying Eckert number (Ec=0.1, Ec=100, Ec=500) on Bejan number. 263 
 264 



 

 265 
Fig. 19. Effect of varying Reynolds number (Re=4, Re=8, Re=12) on Bejan number. 266 
 267 

 268 
Fig. 20. Effect of varying Thirdgrade parameter ( =1, =50, =12) on Bejan number. 269 



 

 270 
Fig. 21. Effect of varying Dufour number (Duf=2, Duf=3, Duf=4) on Bejan number. 271 
 272 

 273 
Fig. 22. Effect of varying reaction parameter (Kr=1, Kr=2, Kr=4) on Bejan number. 274 
 275 
 276 
4. CONCLUSION 277 
 278 
In this numerical investigation, the entropy generation rate of steady reactive magnetohydrodynamic 279 
third grade fluid flow in a circular pipe is presented using the Galerkin method. Numerical expression 280 



 

for the velocity, temperature and concentration was obtained which were used to compute the entropy 281 
generation number. Special emphasis has been focused on the variations of pertinent parameter of 282 
physical significance on the entropy generation rate and Bejan. The main findings of the present 283 
analysis are: 284 

 The velocity is enhanced for increasing values of , Rem  and inhibited for ,M    285 

 The temperature is enhanced for values of ,Ec Rp  and inhibited for P , Re  and r Du   286 

 The concentration is enhanced values of ,
R

Du K  and inhibited for and ReSc  287 

 Re,
R

K and Du  have enhancing effects on the entropy generation rate. 288 

 , ,
R

M Du K  and   enhances the entropy generation rate while it is inhibited for  Re  and Ec  . 289 
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