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1. INTRODUCTION  

The idea of non-Newtonian calculus was firstly acquaintby Grossman and Katz [1]. 

Later, the non-Newtonian calculus is studied by Bashirov et al. [2], Ozyapici et al. [3], 

Cakmak and Basar [4] and others [5-17]. Cakmak and Basar [4] have studied the 

conceptof non-Newtonian metric. Several statements about them are proven in [7]. 

Binbasıoglu et al [18] defined the contractive mapping in non-Newtonian metric space. 

The non-Newtonian calculi are alternatives to the classical calculus of Newton and 

Leibnitz. They confer a wide variety of mathematical tools for usage in technologyand 

mathematics. The non-Newtonian calculus has great applications in various areas 

including fractal geometry, the economics of climate change, image analysis, physics, 

quantum physics, growth/decay analysis, finance, the theory of elasticity in economics, 

marketing and gauge theory, information technology, pathogen counts in treated water, 

actuarial science, tumor therapy and cancer-chemotherapy in medicine, materials 

science/engineering, demographics, finite-difference methods, differential equations, 

averages of functions, calculus of variations, means of two positive numbers, least-

squares methods, multivariable calculus, weighted calculus, meta-calculus, 



approximation theory, probability theory, utility theory, Bayesian analysis, complex 

analysis, functional analysis, stochastics, chaos theory, dimensional spaces, decision 

making, dynamical systems etc. 

The study of expansive maps is a very enthralling research area in fixed point theory. 

Wang et.al [19] deputized the concept of expanding maps and vouched some fixed point 

results in complete metric spaces. Daffer and Kaneko [20] vouched some common fixed 

point results in complete metric spaces for two expansive mappings. For more details, we 

refer the reader to [21-26].  

In this article, we give someproperties of the relevant non-Newtonian metric space and 

non-Newtonian normed space. We alsointroduce the concept of non-Newtonian 

expansive mappings and presentsome fixed point results in non-Newtonian metric space. 

These results also generalize some results obtained previously. 

2. PRELIMINARIES 

Aninjective functionwhose domain isℝ, the set of all real numbers, and whose range is a 

subset of ℝ is called a generator. Eachgenerator generates exactly one type of arithmetic, 

andconversely each type of arithmetic is generated by exactlyone generator. As a 

generator, we choose the function ��� from ℝ to the setℝ� of positive reals, that is to 

say, 

�: ℝ ⟶ ℝ�,  
� ⟼ ��� = �� = � 

and                                    ���: ℝ� ⟶ ℝ, 
� ⟼ ����� = ln � = � 

If ��� = �for all � ∈ ℝ, then� is called identity function and we know that inverse of the 

identity function is itself. If � = �, then�generates the classical arithmetic and if � =���, then �generates geometrical arithmetic.All concepts of �-arithmetic have similar 

properties in classical arithmetic. �-zero, �-one and all �-integers are formed as 



. . . . . . , �−2�, �−1�, �0�, �1�, �2�. . . . . . .. 
The �-positive numbers are the numbers � ∈ � such that 0� <� �and the �-negative 

numbers are those for which � <� 0� . The �-zero, 0� , and the �-one, 1� , turn out to be �0� 

and �1�. The �-integers consist of 0�  and all the numbers that result by successive �-

addition of 1�  and 0�  and by successive �-subtraction of 1�  and 0� . 
We denote by ℝ!� the range of generator�and write ℝ!� = "��� ∶ � ∈ ℝ $. ℝ!� is 

called Non-Newtonian real line. Non-Newtonian arithmetic operations on ℝ!�are 

represented as follows: 

�-addition                   % ∔ � = �'���%� + �����), 
�-subtraction          % ∸ � = �'���%� − �����), 
�-multiplication      % ×� � = �'���%� × �����), 
�-division                   %/� � = ����%� �����⁄ �, 
�-order                   % <� �% ≤� �� ⟺ ���%� < �����'���%� ≤ �����), 
The �-square of a number % ∈ � ⊂ ℝ!� is denoted by % ×� % = %12 . For each �-

nonnegative number 3, the symbol √%5
 will be used to denote 3 = � 67���%�8 which is 

the unique �-square is equal to %, which means that 312 = %. Throughout this paper, %92denotes the �th non-Newtonian exponent. Thus we have 

%12 = % ×� % = �'���%� × ���%�) = �:���%�;1�, 
%<2 = %12 ×� % = �'���%12� × ���%�) 

= � =��� 6�'���%� × ���%�)8 × ���%�> = �:���%�;<�, 
:: 



%92 = %9��2 ×� % = �:���%�;9� 

:: 
The �-absolute value of a number % ∈ � ⊂ ℝ!� is defined as �|���%�|� and is 

denoted by |%|5. For each number % ∈ � ⊂ ℝ!�, √%12 5 = |%|5 = �|���%�|�. In this 

case, 

|%|5 = @ %, if % >� 0�0,� if % = 0�0� −� %,  if % <� 0� D 
Also ℝ�!� denotes non-Newtonian positive real numbers and ℝ�!� denotes non-

Newtonian negative real numbers.�-intervals are represented by 

Closed�-interval:�%, �;� = :%, �;5 = "� ∈ ℝ!� ∶   % ≤� � ≤� �$ 

= "� ∈ ℝ!� ∶  ���%� ≤ ����� ≤ �����$ 

Open �-interval�%, ��� = %, ��5 = "� ∈ ℝ!� ∶   % <� � <� �$ 

= "� ∈ ℝ!� ∶  ���%� < ����� < �����$ 

Likewise semi-closed and semi-open �-intervals can be represented. For the set ℝ!� of 

non-Newtonianreal numbers, the binary operations ∔�addition and ×� � multiplication 

are defined by 

∔   ∶   ℝ × ℝ ⟶ ℝ 

%, �� ⟼ % ∔ � = �'���%� + �����) 

×�    ∶   ℝ × ℝ ⟶ ℝ 

%, �� ⟼ % ×� � = �'���%� × �����). 



The fundamental properties provided in the classical calculus is provided in non-

Newtonian calculus, too. 

Lemma 2.1 (see[4]). ℝ!�,∔,×� � is a topologicallycomplete field. 

Lemma 2.2(see[4])|% ×� �|5 = |%|5 ×� |�|5∀ %, � ∈ ℝ!�. 

Lemma 2.3(see [4])|%+� �|5 ≤� |%|5+� |�|5, ∀ %, � ∈ ℝ!� 

The non-Newtonian metric spaces provide an alternative to the metricspaces introduced 

in [4]. 

Definition 2.4(see [4]). Let F be a non-empty set and G5: F × F ⟶ ℝ�!�be a 

function such that for all %, �, H ∈ F; 
(NNM1). G5%, �� = 0� ⟺ % = � 

(NNM2). G5%, �� = G5�, H� 

(NNM3). G5%, �� ≤� G5%, H�+� G5H, ��. 

Then, the map G5 is called non-Newtonian metric and the pair F, G5�is called non-

Newtonian metric space. 

Definition 2.5(see [4]). Let Fbe a vector space on ℝ!�. If a function ‖ . ‖5 ∶  F ⟶ℝ�!� satisfies the following axioms for all %, � ∈ F and K ∈ ℝ!�: 

(NNN1). ‖%‖5 = 0� ⟺ % = 0�  
(NNN2). ‖K ×� %‖5 = |K|5 ×� ‖%‖5 

(NNN3). ‖%+� �‖5 ≤� ‖%‖5+� ‖�‖5. 
then it is called a non-Newtonian norm on Fand the pair F, ‖ . ‖5� is called a non-

Newtonian normed space. 

Remark 2.6(see [4]). Here it is easily seen that every non-Newtonian norm ‖ . ‖5on Fproduces a non-Newtonian metric G5on Fgiven by 

G5%, �� = ‖%−� �‖5 , ∀ %, � ∈ F 



Definition 2.7(see [4]). (non-Newtonian convergentsequence)A sequence "�L$ina non-

Newtonian metric spaceF, G5�is said to be non-Newtonian convergent if for every 

given M >� 0� ,there exists an NO = NOM� ∈ ℕ and � ∈ F such that G5�L, �� <� M for all 

N > NOand is denoted by 
NlimL⟶�R �L = � or �L       5     STTTU � as N ⟶ ∞. 

Definition 2.8 (see [4]). (non-Newtonian Cauchysequence) A sequence "�L$ ina non-

Newtonian metric spaceF, G5� is said to be non-Newtonian Cauchy if for every given M >� 0� ,there exists an NO = NOM� ∈ ℕsuch that G5�L, �W� <� M for all X, N > NO. 

Definition 2.9 (see [4]). (non-Newtonian complete metric space) The space F is said to 

be non-Newtonian complete if every non-Newtonian Cauchy sequencein Fconverges. 

Definition 2.10(see [4]). (non-Newtonian bounded)Let F, G5� be a non-Newtonian 

metric space. The space F is said to benon-Newtonian bounded if there is a non-

Newtonian constant Y >� 0�  such that G5%, �� ≤� Y for all %, � ∈ F. The space F is said to 

be non-Newtonian unbounded if it is not non-Newtonian bounded. 

Proposition 2.11(see [4]). Suppose that the non-Newtonian metric G5 onℝ!�is such 

that G5%, �� = |%−� �|5 for all %, � ∈ ℝ!�, then ℝ!�, G5�is a non-Newtonian metric 

space. 

Lemma 2.12 (see[18]). Let F, G5� be a non-Newtonian metric space. Then, 

(1). A non-Newtonian convergent sequence in F is non-Newtonian bounded and its 

non-Newtonian limit is unique. 

(2). A non-Newtonian convergent sequence in F is a non-Newtonian Cauchy 

sequence in F. 

From the definition of non-Newtonian Cauchy sequence and Lemma 2.12, we can give 

the following corollary: 

Corollary 2.13(see [18])Anon-Newtonian Cauchy sequence is non-Newtonian bounded. 



Lemma 2.14(see [18])Suppose F, G5� is a non-Newtonian metric spaceand %, �, H ∈ F. 

Then 

|G5%. ��−� G5�, H�|5 ≤� G5%, H� 

Definition 2.15 Let Fbe a set and Za map from Fto F. A fixed point of Zis asolution of 

the functional equation Z�� = �, � ∈ F. A point � ∈ F is called common fixed point of 

two self-mappings Z and [ on F if Z�� = [�� = �. 

Definition 2.16(see [18])Suppose F, G5� is a non-Newtonian complete metric space. A 

mapping Z: F → Fis called non-Newtonian Lipschitzian if there exists a non-Newtonian 

number ] ∈ ℝ!� such that 

G5'Z%�, Z��) ≤� ] ×� G5%, ��, ∀ %, � ∈ F. 

The mapping Zis called non-Newtoniancontractive if ] <� 1� . 
Binbasıoglu et al [18] establishedfollowing result in non-Newtonian metric space. 

Theorem 2.17Let Z be a non-Newtonian contraction mapping on a non-Newtonian 

complete metric space F. Then Z has a unique fixed point. 

3. Main Results 

Now, we give some properties related to non-Newtonian metricspaces and non-

Newtonian normedspaces. 

Proposition 3.1 The non-Newtonian distance is commutative. 

Proof Let % and � be any two non-Newtonian numbers. Then 

|%−� �|5 = �|���%� − �����|� 

= �|����� − ���%�|� 

= |�−� %|5                                                                     (3.1) 



This shows that non-Newtonian distance is commutative. 

Proposition 3.2LetF, G5� be a non-Newtonian metric space and let %, �, H, ^ ∈ F. Then 

|G5%, ��−� G5H, ^�|5 ≤� G5%, H�+� G5�, ^�                 (3.2) 

Proof The triangle inequality with the NNM axioms yields first 

G5%, �� ≤� G5�, H�+� G5H, �� 

≤� G5�, H�+� G5H, ^�+� G5^, �� 

Usingthe symmetry axiom, rearrangement of the above inequalitygives 

G5%, ��−� G5H, ^� ≤� G5%, H�+� G5�, ^� (3.3) 

Similarly, we have 

G5H, ^� ≤� G5H, %�+� G5%, ^� 

≤� G5H, %�+� G5%, ��+� G5�, ^� 

= G5%, H�+� G5%, ��+� G5�, ^� 

Therefore  

G5H, ^�−� G5%, H� ≤� G5%, H�+� G5�, ^�                                          (3.4) 

Thus from (3.3) and (3.4) it follows that (3.2). 

Proposition 3.3LetF, ‖ . ‖5� be a non-Newtonian normed space. Then 

|‖%‖5−� ‖�‖5|5 ≤� ‖% −� �‖5 , ∀%, � ∈ F                                        (3.5) 

ProofObserve that 

‖%‖5 = ‖%−� �+� �‖5 ≤� ‖%−� �‖5+� ‖�‖5 



Therefore ‖%‖5−� ‖�‖5 ≤� ‖%−� �‖5. Swapping the role of % and�, we also obtain ‖�‖5−� ‖%‖5 ≤� ‖%−� �‖5.This implies (3.5). 

Now, we introduce some definitions in non-Newtonian metric spaces. 

Definition 3.4Suppose F, G5� is a non-Newtonian complete metric space. A mapping Z: F → Fis called non-Newtonianexpansive if there exists a non-Newtoniannumber ] >� 1�  such that 

G5Z�, Z_� ≥� ] ×� G5�, _�, ∀ �, _ ∈ F.(3.6) 

Definition 3.5 Let F, G5� be a non-Newtonian metric space and Zbe a self-mapping of F: (NN1) There exist non-Newtoniannumbers a, b, c satisfying b ≥� 0� , c ≥� 0�  and a >� 1�  
such that 

G5'Z%�, Z��) ≥� a ×� G5%, ��+� b ×� G5'%, Z%�)+� c ×� G5'�, Z��)                (3.7) 

for each %, � ∈ F. In this caseZ is called non-Newtonianexpansive type mapping. 

Now,we give a simple but a useful Lemma. 

Lemma 3.6 Let "�L$ be a sequence in a non-Newtonian metric space such that  

G5�L, �L��� ≤ ] ×� G5�L��, �L�(3.8) 

where ] <� 1�  and N ∈ ℕ.Then "�L$ is a non-Newtonian Cauchy sequence in F. 
Proof By the simple induction with the condition (3.8), we have 

G5�L, �L��� ≤� ] ×� G5�L��, �L� 

≤� ]12 ×� G5�L�1, �L��� 

≤� ]L��2 ×� G5�O, ���(3.9) 

Now, if X < N, we have 



G5�L, �W� ≤� G5�L, �L���+� G5�L��, �L�1�+� . . . . +� G5�W��, �W� 

≤� ]L��2 ×� G5�O, ���+� ]L�12 ×� G5�O, ���+� . . . . +� ]W2 ×� G5�O, ��� 

≤� ]W2 ×� '1� +� ]+� ]12+� . . . . . . . . +� ]L�W��2) ×� G5�O, ��� 

≤� de2×� f2gh,gi��� �� d (3.10) 

Since ]W2 <� 1�  and G5�O, ��� ∈ ℝ!� is fixed, we can make
de2×� f2gh,gi��� �� d as small as we 

want by taking Xsufficiently large. This shows that "�L$is anon-Newtonian Cauchy 

sequence. 

Now, we give some fixed-point results for expansive mappings in a non-Newtonian 

complete metric space.Our first main result as follows. 

Theorem 3.7 Let Z: F → F be a surjection and non-Newtonian expansive mapping on a 

non-Newtonian complete metric space F. Then Z has a unique fixed point. 

Proof: Let �O ∈ F be arbitrary. Since Z is surjection, then there exists �� ∈ F such that �O = Z���. By continuing this process, we get 

�L = Z�L���, N = 0, 1, 2, . . . ..                                                   (3.11) 

In case �Lh = �Lh�� for some NO, then it is clear that �Lhis a fixed point of Z. Now assume 

that  �L ≠ �L�� for all N. Since Znon-Newtonian expansive mapping 

G5�L��, �L� = G5'Z�L�, Z�L���) ≥� ] ×� G5�L, �L��� 

Consequently           

G5�L, �L��� ≤� '1� /� ]) ×� G5�L��, �L� = Y ×� G5�L��, �L�(3.12) 

where Y = 1� /� ] <� 1� . 



Then by Lemma 3.6,"�L$is anNN-Cauchy sequence. Since F, G5� is non-Newtonian 

complete,there exists a point �in Fsuch that �L       5     STTTU �.Since Z is surjection on F, there 

exists k ∈ F such that � = Zk�.We now show that �is a fixedpoint of the mapping Z. It 

follows from (3.6) and (3.11) that  

G5�L, �� = G5'Z�L���, Zk�) ≥� ] ×� G5�L��, k� 

Since �L       5     STTTU �, it follows that G5�L��, k�       5     STTTU 0�  and hence �L��       5     STTTU k. By 

uniqueness of non-Newtonian limit, we have � = k. This shows that �is a fixed point of Z. 

We conclude the proof by showing that �isthe only fixed point. Suppose that H is also a 

fixed point, that is, suppose ZH� = H, then  

G5�, H� = G5'Z��, ZH�) ≥� ] ×� G5�, H� 

Since ] >� 1� , this implies that G5�, H� = 0�  and hence � = H.  

Theorem 3.8Let F, G5�be a non-Newtonian complete metric space and let Zbe a 

surjective self-mapping of F. If Zsatisfies condition !!1�, then Zhas a unique fixed 

point in F. 

Proof.Using the hypothesis, it can be easily seen that Zisinjective. Indeed, if we take Z%� = Z��, then, using (3.7), we get 

0� = G5'Z%�, Z��) ≥� a ×� G5%, ��+� b ×� G5'%, Z%�)+� c ×� G5'�, Z��) 

And so G5%, �� = 0� ; that is, we have % = �, since a >� 1� .  
Let us denote the inverse mapping of Zby l. Let �O ∈ Fand define the sequence "�L$as 

follows: 

�� = l�O�, �1 = l��� = l1�O�,  
�< = l�1� = ll1�O� = l<�O�, . . . . . . . , �L�� = l�L� = lL���O�,(3.13) 

Suppose that �L ≠ �L��for all N. Using (3.7) and (3.13), we have 



G5�L��, �L� = G5'ZZ���L���, ZZ���L�) 

≥� a ×� G5'Z���L���, Z���L�)+� b ×� G5'Z���L���, ZZ���L���) 

+� c ×� G5'Z���L�, ZZ���L�) 

≥� a ×� G5'l�L���, l�L�)+� b ×� G5l�L���, �L���+� c ×� G5l�L�, �L� 

≥� a ×� G5�L, �L���+� b ×� G5�L, �L���+� c ×� G5�L��, �L� 

= a+� c� ×� G5�L, �L���+� b ×� G5�L, �L��� 

which implies that  

'1� −� b) ×� G5�L��, �L� ≥� a+� c� ×� G5�L, �L���(3.14) 

Clearly, we have a+� c ≠ 0� . Hence, we obtain 

G5�L, �L��� ≤� '1� −� b)/� a+� c� ×� G5�L��, �L� = ] ×� G5�L��, �L�(3.15) 

Where ] = '1� −� b)/� a+� c�, then we get ] <� 1� , since a+� b+� c >� 1. Repeating this process 

in condition (3.15), wefind 

G5�L, �L��� ≤� ]L2 ×� G5�O, ��� 

and by Lemma 3.6,"�L$is an NN-Cauchy sequence. SinceF, G5� is non-Newtonian 

complete,there exists a point �in Fsuch that �L       5     STTTU �and therefore 

G5�L, ��       5     STTTU 0� ,   G5�L��, �L�       5     STTTU 0� . 
Using the subjectivity of hypothesis, there exists k ∈ F such that � = Zk�.From (3.7) 

and (3.13), we have 

G5�L, �� = G5'Z�L���, Zk�) 

≥� a ×� G5�L��, ��+� b ×� G5'�L��, Z�L���)+� c ×� G5'k, Zk�) 



= a ×� G5�L��, ��+� b ×� G5�L��, �L�+� c ×� G5'k, Zk�) 

If we take limit for N       5     STTTU ∞, we obtain 

0� ≥� a+� c� ×� G5k, �� 

which implies that G5k, �� = 0� ; that is, we have � = k, since a+� c >� 1� . This shows that �is a fixed point of Z.  

Now we show the uniqueness of �. Let Hbe another fixed point of Zwith � ≠ H. Using 

(3.7),we get 

G5�, H� = G5'Z��, ZH�) 

≥� a ×� G5�, H�+� b ×� G5'�, Z��)+� c ×� G5'H, ZH�) 

= a ×� G5�, H�+� b ×� G5�, ��+� c ×� G5H, H� 

= a ×� G5�, H�(3.16) 

which implies that � = H, since a >� 1� . Consequently, Zhas aunique fixed point �. 

If we take b = c in condition !!1�, then we obtain the following corollary.  

Corollary 3.9Let F, G5�be a non-Newtonian complete metric space and let Zbe a 

surjective self-mapping of F. If there exist real numbers a, b satisfying b ≥� 0� and a >� 1�  
such that 

G5'Z%�, Z��) ≥� a ×� G5%, ��+� b ×� Xa�mG5'%, Z%�), G5'�, Z��)n(3.17) 

for each%, � ∈ F, then Zhas a unique fixed point in F. 

Now, we prove following common fixed point result. 

Theorem 3.10Let Z, [: F → F be two surjective mappings of a non-Newtonian 

complete metric space F, G5�. Suppose that Z and [ satisfying inequalities  



G5 6Z'[��), [��8 +� Y ×� G5'Z'[��), �) ≥� a ×� G5[��, ��(3.18) 

G5 6['Z��), Z��8 +� Y ×� G5'['Z��), �) ≥� b ×� G5Z��, ��(3.19) 

for � ∈ F and some non-Newtonian real numbers a, b and Y with a−� Y >� 1� +� H and b−� Y >� 1� +� Y. If Z or [ is non-Newtoniancontinuous, then Zand [ have a common fixed 

point in F. 
Proof Let �O be an arbitrary point in F. Since Z is surjective, there exists �� ∈ F such 

that �O = Z���. Also, since [ is surjective, there exists �1 ∈ F such that�1 = [���. 

Continuing this process, we construct a sequence "�L$ in F such that �1L = Z�1L��� and �1L�� = [�1L�1� for all N ∈ ℕ. Now for N ∈ ℕ, by (3.18) we have 

G5 6Z'[�1L�1�), [�1L�1�8 +�  Y ×� G5'Z'[�1L�1�), �1L�1) ≥� a ×� G5[�1L�1�, �1L�1� 

Thus 

G5�1L, �1L���+� Y ×� G5�1L, �1L�1� ≥� a ×� G5�1L��, �1L�1� 

which implies that 

G5�1L, �1L���+� Y ×� :G5�1L, �1L���+� G5�1L��, �1L�1�; ≥� a ×� G5�1L��, �1L�1� 

Hence  

G5�1L��, �1L�1� ≤� o'1� +� Y)/� a−� Y�p ×� G5�1L, �1L���(3.20) 

On other hand, from (3.19), we have   

G5 6['Z�1L���), Z�1L���8 +� Y ×� G5'['Z�1L���), �1L��) ≥� b ×� G5Z�1L���, �1L��� 

Thus  

G5�1L��, �1L�+� Y ×� G5�1L��, �1L��� ≥� b ×� G5�1L, �1L��� 



which implies that  

G5�1L��, �1L�+� Y ×� :G5�1L��, �1L�+� G5�1L, �1L���; ≥� b ×� G5�1L, �1L��� 

Hence  

G5�1L, �1L��� ≤� o'1� +� Y)/� b−� Y�p ×� G5�1L��, �1L�(3.21) 

Let ] = Xa�mo'1� +� Y)/� a−� Y�p, o'1� +� 3)/� b−� Y�pn <� 1�  
Then by combining (3.20) and (3.21), we have 

G5�L, �L��� ≤ ] ×� G5�L��, �L�(3.22) 

where ] ∈ :�0,1�� , ∀ N ∈ ℕ. Then by Lemma 3.6, the sequence "�L$ is an NN-Cauchy 

sequence. Since F, G5� is non-Newtonian complete,there exists a point �in Fsuch that 

�L       5     STTTU �. Therefore �1L��       5     STTTU � and �1L�1       5     STTTU � as N → +∞. Without loss of 

generality, we may assume that Z is continuous, then Z�1L���       5     STTTU Z��as N → +∞. But 

Z�1L��� = �1L       5     STTTU �  as N → +∞. Thus, we have Z�� = �. Since [ is surjection on F, 

there exists k ∈ F such that � = [k�.We now show that �is a common fixedpoint of the 

mapping Z and [. It follows from (3.18) that  

G5 6Z'[k�), [k�8 +� Y ×� G5'Z'[k�), k) ≥� a ×� G5[k�, k� 

⟹                                0� +� Y ×� G5�, k� ≥� a ×� G5�, k� 

⟹                                0� ≥� a−� Y� ×� G5�, k� 

Since a−� Y >� 1� +� Y, we conclude that G5�, k� = 0�  and consequently � = k. Hence Z�� = [�� = �. Therefore � is a common fixed point of Zand [. 

By taking Z = [ in Corollary 3.9we have the following Corollary. 

Corollary 3.10Let Z: F → F be two surjective mappings of a non-Newtonian complete 

metric space F, G5�. Suppose that Z satisfying inequality  



G5'Z1��, Z��)+� Y ×� G5Z1��, �� ≥� a ×� G5Z��, ��                               (3.24) 

for � ∈ F and some nonnegative real numbers a, b and k with a−� Y >� 1� +� Y. If Z is 

continuous, then Zhas a fixed point in F. 
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