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1. INTRODUCTION

The idea of non-Newtonian calculus was firstly acquaintby Grossman and Katz [1].
Later, the non-Newtonian calculus is studied by Bashirov et al. [2], Ozyapici et al. [3],
Cakmak and Basar [4] and others [5-17]. Cakmak and Basar [4] have studied the
conceptof non-Newtonian metric. Several statements about them are proven in [7].
Binbasioglu et al [18] defined the contractive mapping in non-Newtonian metric space.
The non-Newtonian calculi are alternatives to the classical calculus of Newton and
Leibnitz. They confer a wide variety of mathematical tools for usage in technologyand
mathematics. The non-Newtonian calculus has great applications in various areas
including fractal geometry, the economics of climate change, image analysis, physics,
quantum physics, growth/decay analysis, finance, the theory of elasticity in economics,
marketing and gauge theory, information technology, pathogen counts in treated water,
actuarial science, tumor therapy and cancer-chemotherapy in medicine, materials
science/engineering, demographics, finite-difference methods, differential equations,
averages of functions, calculus of variations, means of two positive numbers, least-

squares methods, multivariable calculus, weighted calculus, meta-calculus,



approximation theory, probability theory, utility theory, Bayesian analysis, complex
analysis, functional analysis, stochastics, chaos theory, dimensional spaces, decision
making, dynamical systems etc.

The study of expansive maps is a very enthralling research area in fixed point theory.
Wang et.al [19] deputized the concept of expanding maps and vouched some fixed point
results in complete metric spaces. Daffer and Kaneko [20] vouched some common fixed
point results in complete metric spaces for two expansive mappings. For more details, we

refer the reader to [21-26].

In this article, we give someproperties of the relevant non-Newtonian metric space and
non-Newtonian normed space. We alsointroduce the concept of non-Newtonian
expansive mappings and presentsome fixed point results in non-Newtonian metric space.

These results also generalize some results obtained previously.
2. PRELIMINARIES

Aninjective functionwhose domain isR, the set of all real numbers, and whose range is a
subset of R is called a generator. Eachgenerator generates exactly one type of arithmetic,
andconversely each type of arithmetic is generated by exactlyone generator. As a

generator, we choose the function exp from R to the setR* of positive reals, that is to

say,
a:R — R,
r—alr)=e" =s
and a l:RY" - R,

s—al(s)=Ins=r

If I(r) = rfor all r € R, thenl is called identity function and we know that inverse of the
identity function is itself. If a = I, thenagenerates the classical arithmetic and if ¢ =
exp, then agenerates geometrical arithmetic.All concepts of a-arithmetic have similar

properties in classical arithmetic. a-zero, a-one and all a-integers are formed as



The a-positive numbers are the numbers j € A such that 0 < jand the a-negative
numbers are those for which j < 0. The a-zero, 0, and the a-one, 1, turn out to be a(0)
and a(1). The a-integers consist of 0 and all the numbers that result by successive a-

addition of 1 and 0 and by successive a-subtraction of 1 and 0.

We denote by R(N) the range of generatoraand write R(N) = {a(r) : r € R}. R(N) is
called Non-Newtonian real line. Non-Newtonian arithmetic operations on R(N)are

represented as follows:

a-addition i+j=alat@)+a1()),

a-subtraction i~j=ala @) —a (),

a-multiplication i X j = a(a”(i) X a~1())),

a-division i/j = ala ' (@)/a"*()),

a-order i<ji<jpeali< a_l(f)(a_l(i) < 05_1(])):

The a-square of a number i € A € R(N) is denoted by i Xi = i?N. For each a-
N
nonnegative number v, the symbol Vi will be used to denote v = a (\/ a‘l(i)) which is

the unique a-square is equal to i, which means that v2N = i. Throughout this paper,

iPNdenotes the pth non-Newtonian exponent. Thus we have
v =ixi=ala (@) xa 1)) = a([a” 2 (D]?),

i3 =i % i =a(a”t(@®) x a”1(D)

—a <a‘1 CICEORTRO)E a-l(t)) = a(la (D)),



iPN =PI x i = a([a”1(D)]P)

The a-absolute value of a number i € A € R(N) is defined as a(Ja~*(i)|) and is

N
denoted by |i|y. For each number i € A € R(N),Vizv = |i|ly = a(la™1(i)]). In this

case,

i, ifi>0
lily =% 0, ifi=0
0=i, ifi<0

Also R*(N) denotes non-Newtonian positive real numbers and R™(N) denotes non-

Newtonian negative real numbers.a-intervals are represented by

Closeda-interval{i, j] = [i,jly = {s E R(N) : i <5 <}
={seRW): a () <al(s) <a l(j)}

Open a-interval(i,j) = (i, )y = {SERN) : i <s < j}
={seRW): a 1(i) <a™l(s) <a 1(j)}

Likewise semi-closed and semi-open a-intervals can be represented. For the set R(N) of
non-Newtonianreal numbers, the binary operations (4)addition and (X) multiplication

are defined by
+ : RxR—R
@ i+j=ala™@®+a())
X : RXxXR—R

) —ixj=ala @) xa ().



The fundamental properties provided in the classical calculus is provided in non-

Newtonian calculus, too.

Lemma 2.1 (see[4]). (R(N),+,X) is a topologicallycomplete field.
Lemma 2.2(see[4))]i X jly = lily X ljIxyV i,j € R(N).

Lemma 2.3(see [4])|i+jly < lily+ljly, Vi,j € R(N)

The non-Newtonian metric spaces provide an alternative to the metricspaces introduced

in [4].

Definition 2.4(see [4]). Let M be a non-empty set and dy:M X M — R*(N)be a
function such that for all i, j, k € M;

(NNM1). dy(i, ) =0=i=j
(NNM2). dy(i,j) = dy(, k)
(NNM3). dy(i,)) < dy(i, k)+dy(k, ).

Then, the map dy is called non-Newtonian metric and the pair (M, dy)is called non-

Newtonian metric space.

Definition 2.5(see [4]). Let Mbe a vector space on R(N). If a function ||.|[y : M —
R*(N) satisfies the following axioms for all i,j € M and 1 € R(N):

(NNND). |lily=0ei=0
(NNN2). [IA x illy = |4y % llilly
(NNN3). [li+jlly < lilly+jlln-

then it is called a non-Newtonian norm on Mand the pair (M, ||.]||y) is called a non-

Newtonian normed space.

Remark 2.6(see [4]). Here it is easily seen that every non-Newtonian norm |[|.||yon

Mproduces a non-Newtonian metric dyon Mgiven by

dy(@@,j) = lli=jlly,VijeM



Definition 2.7(see [4]). (non-Newtonian convergentsequence)A sequence {j,}ina non-
Newtonian metric space(M, dy)is said to be non-Newtonian convergent if for every

given € > 0,there exists an ny = ny(€) €N and j € M such that dy(j,,j) < € for all
N

n > ngand is denoted by Nim,,_, ;o j, = j O j, — j as n — 0.
Definition 2.8 (see [4]). (non-Newtonian Cauchysequence) A sequence {j,} ina non-
Newtonian metric space(M, dy) is said to be non-Newtonian Cauchy if for every given

€ > 0,there exists an ny = ny(€) € Nsuch that dy(j,, j,,) < € for all m,n > n,.

Definition 2.9 (see [4]). (non-Newtonian complete metric space) The space M is said to

be non-Newtonian complete if every non-Newtonian Cauchy sequencein Mconverges.

Definition 2.10(see [4]). (non-Newtonian bounded)Let (M,dy) be a non-Newtonian
metric space. The space M is said to benon-Newtonian bounded if there is a non-
Newtonian constant x > 0 such that dy(i,j) < k for all i,j € M. The space M is said to

be non-Newtonian unbounded if it is not non-Newtonian bounded.

Proposition 2.11(see [4]). Suppose that the non-Newtonian metric dy onR(N)is such
that dy(i,j) = |i—j|y for all i,j € R(N), then (R(N),dy)is a non-Newtonian metric

space.
Lemma 2.12 (see[18]). Let (M, dyy) be a non-Newtonian metric space. Then,

(1). A non-Newtonian convergent sequence in M is non-Newtonian bounded and its
non-Newtonian limit is unique.
(2).A non-Newtonian convergent sequence in M is a non-Newtonian Cauchy

sequence in M.

From the definition of non-Newtonian Cauchy sequence and Lemma 2.12, we can give

the following corollary:

Corollary 2.13(see [18])Anon-Newtonian Cauchy sequence is non-Newtonian bounded.



Lemma 2.14(sce [18])Suppose (M, dy) is a non-Newtonian metric spaceand i,j,k € M.
Then

ldn (i )=dn G )y < dy (i, k)

Definition 2.15 Let Mbe a set and fa map from Mto M. A fixed point of fis asolution of
the functional equation f(j) = j,j € M. A point j € M is called common fixed point of
two self-mappings f and g on M if f(j) = g(j) = j.

Definition 2.16(see [18])Suppose (M, dy) is a non-Newtonian complete metric space. A
mapping f: M — Mis called non-Newtonian Lipschitzian if there exists a non-Newtonian

number 6 € R(N) such that

dy(f(D,f()) £ 8% dy(i)),Vi,jEM.

The mapping fis called non-Newtoniancontractive if § < 1.

Binbasioglu et al [18] establishedfollowing result in non-Newtonian metric space.

Theorem 2.17Let f be a non-Newtonian contraction mapping on a non-Newtonian

complete metric space M. Then f has a unique fixed point.
3. Main Results

Now, we give some properties related to non-Newtonian metricspaces and non-

Newtonian normedspaces.
Proposition 3.1 The non-Newtonian distance is commutative.
Proof Let i and j be any two non-Newtonian numbers. Then
li<jly = a(la™' (@ —a™* (D
=a(la™'() —a™ (DD

= |j=ily (3.1)



This shows that non-Newtonian distance is commutative.
Proposition 3.2Let(M, dy) be a non-Newtonian metric space and let i, j, k,l € M. Then
ldn (i, ))=dy(k, Dy < dy (i, k) +dy G, D (3.2)
Proof The triangle inequality with the NNM axioms yields first

dn(i,)) < dy(, k) +dy (K, )

< dy( ) +dy e, D+dy (@ ))
Usingthe symmetry axiom, rearrangement of the above inequalitygives
dy (i, )=dy(k, D) < dy(, k)+dy(, D (3.3)
Similarly, we have

dy(k, D) < dy(k,D)+dy(, D

< dy(k, ) +dy @) +dyG, D

=dy(i, k)+dy (@, N+dnG, D
Therefore
dy(k,D)=dy(i, k) < dy(i, k)+dyG, D (3.4)
Thus from (3.3) and (3.4) it follows that (3.2).
Proposition 3.3Let(M, || . ||y) be a non-Newtonian normed space. Then
Willy=Wjllnly < lli =jlly, Vi, j € M (3.5)
ProofObserve that

lilly = lli=j+jlly < lli=jllx+ljlly



Therefore ||illy=Iljlly < li=jlly. Swapping the role of i andj, we also obtain

jlln=llélly < lli=jlly-This implies (3.5).
Now, we introduce some definitions in non-Newtonian metric spaces.

Definition 3.4Suppose (M, dy) is a non-Newtonian complete metric space. A mapping
f:M — Mis called non-Newtonianexpansive if there exists a non-Newtoniannumber

8 > 1 such that

dy(fx, fy) =8 Xdy(x,v),V x,y € M.(3.6)

Definition 3.5 Let (M, dy) be a non-Newtonian metric space and fbe a self-mapping of
M: (NN1) There exist non-Newtoniannumbers a, b, ¢ satisfying b = 0,c = 0 and a > 1

such that
dy(F(D, f(D) = axdy@, )N+b x dy(i, fF@)+c x dy(j, fF()) (3.7)
for each i,j € M. In this casef is called non-Newtonianexpansive type mapping.
Now,we give a simple but a useful Lemma.
Lemma 3.6 Let {j,,} be a sequence in a non-Newtonian metric space such that
dyUnojnt1) < 6 X dy(n-1,jn)(3.8)
where § < 1 and n € N.Then {j,;} is a non-Newtonian Cauchy sequence in M.
Proof By the simple induction with the condition (3.8), we have

dn U jn1) < 8 X dy (-1, Jn)

< %% X dy(jn-2, jn-1)

< 8™ X dy (jo, j1)(3.9)

Now, if m < n, we have



dN (fn'jm) S dN (jn;jn—l)‘i'dN (jn—lrjn—z)‘i'- e ‘i'dN (].m+1ljm)
< 8™ X dy (o, j1)F6™ 72N X dy (o, ja)F- ... F6™ X dy (o, j1)
<& x (146482 +........ +67mIN) % dy (o, j1)

& 8N %dnGo,jr)
=7 i

(3.10)

Since 6™ < 1 and dy (jo, j;) € R(N) is fixed, we can make%as small as we

want by taking msufficiently large. This shows that {j,}is anon-Newtonian Cauchy

sequence.

Now, we give some fixed-point results for expansive mappings in a non-Newtonian

complete metric space.Our first main result as follows.

Theorem 3.7 Let f: M — M be a surjection and non-Newtonian expansive mapping on a

non-Newtonian complete metric space M. Then f has a unique fixed point.

Proof: Let j, € M be arbitrary. Since f is surjection, then there exists j; € M such that

Jo = f(j1). By continuing this process, we get

Jn = f(ns+1), n=10,1,2,..... (3.11)

In case jp, = jn,+1 for some ng, then it is clear that j, is a fixed point of f. Now assume

that j, # j,_1 for all n. Since fnon-Newtonian expansive mapping

dN(].n—lijn) = dN(f(jn)'f(jn+1)) > % dN(jnrjn+1)

Consequently
Ay Unojns1) < (1/68) X dyGn-1,Jn) = 1 X dy(jn-1,jn)(3.12)

where x = 1/6 < 1.



Then by Lemma 3.6,{j,}is anNN-Cauchy sequence. Since (M, dy) is non-Newtonian

N
complete,there exists a point jin Msuch that j, —— j.Since f is surjection on M, there
exists u € M such that j = f(u).We now show that jis a fixedpoint of the mapping f. It
follows from (3.6) and (3.11) that

Ay (n,J) = dN(f(in+1)rf(u)) > § dy(Uns1, 1)

Since j, —N>j, it follows that dy(jp4q,u) 7, 0 and hence j,.q 7, u. By
uniqueness of non-Newtonian limit, we have j = u. This shows that jis a fixed point of f.
We conclude the proof by showing that jisthe only fixed point. Suppose that k is also a
fixed point, that is, suppose f (k) = k, then

Since § > 1, this implies that dy (j, k) = 0 and hence j = k.

Theorem 3.8Let (M,dy)be a non-Newtonian complete metric space and let fbe a
surjective self-mapping of M. If fsatisfies condition (NN1), then fhas a unique fixed
point in M.

Proof.Using the hypothesis, it can be easily seen that fisinjective. Indeed, if we take

f (@) = f(j), then, using (3.7), we get
0=dy(f(),f()) = axdy(,j)+bxdy(i, f(@))+cxdy(, F())
And so dy(i,j) = 0; that is, we have i = j, since a > 1.

Let us denote the inverse mapping of fby F. Let j, € Mand define the sequence {j, }as

follows:
j1=F(o), J2=F(@y) = Fz(jo),
Jja=F(2) = FFz(fo) = F3(jo)' ------- Jn+1 = F(n) = Fn+1(fo)'(3-13)

Suppose that j,, # j,qfor all n. Using (3.7) and (3.13), we have



A Gn-1,Jn) = Ay (FF 7 Gnr), FF71Gi))
2 a X dy(f " Gn-2), f 7 G))Fb X du(f G, f 7 Gn))
e X dy(F71Gnd, FF710n)
> a X dy(F(n-1), F(n))+b X dy (F(n-1), jn-1)F¢ X dy (F (jn). Jin)
> a X dy G, jns1) b X dy Uy jn-1)F¢ X dy Gne1,Jn)
= (a+¢) X dy G, jins1)+b X dy Gy jn-1)
which implies that
(1-b) X dy(n-1,Jn) = (atc) X dy(in jns+1)(3.14)
Clearly, we have a+c # 0. Hence, we obtain
dy G jn+1) < (1-b)/(ate) X dy(n-1,jn) = 8 X dy(jn-1,jn)(3.15)

Where § = (1-b)/(a+c), then we get § < 1, since a+b+c > 1. Repeating this process

in condition (3.15), wefind

Ay UnoJns1) < 8™ X dy(o,j1)

and by Lemma 3.6,{j,}is an NN-Cauchy sequence. Since(M,dy) is non-Newtonian

N

complete,there exists a point jin Msuch that j,, —— jand therefore
.. N . . . N

dN(]n;]) —0, dN(]n+1;]n) — 0.

Using the subjectivity of hypothesis, there exists u € M such that j = f(u).From (3.7)
and (3.13), we have

dN(jn'j) = dN(f(jn+1);f(u))

2 a X dy(jns1,0)+b X dN(jn+11f(in+1))‘i'C X dN(u'f(u))



=axX dN(fn+1;P)‘i‘b X dN(fn+1;jn)‘i‘C X dN(u,f(u))
N
If we take limit for n —— oo, we obtain
0> (atc) x dy(u,j)

which implies that dy (u, j) = 0; that is, we have j = u, since a-+c > 1. This shows that

jis a fixed point of f.

Now we show the uniqueness of j. Let kbe another fixed point of fwith j # k. Using
(3.7),we get

dN(jr k) = dN(f(j);f(k))
>axdy(,k)+bxdy(j, f())+cx dy(k, f(k))
=aXdy(,k)+b xdy(,j)+c x dy(k, k)
=axdy(j,k)(3.16)
which implies that j = k, since a > 1. Consequently, fhas aunique fixed point j.
If we take b = ¢ in condition (NN1), then we obtain the following corollary.

Corollary 3.9Let (M,dy)be a non-Newtonian complete metric space and let fbe a
surjective self-mapping of M. If there exist real numbers a, b satisfying b = O0and a > 1

such that

dy (D, f()) 2 a X dy(i, )+b * max{dy(i, f©), dn (. f(D)}3.17)
for eachi, j € M, then fhas a unique fixed point in M.

Now, we prove following common fixed point result.

Theorem 3.10Let f,g:M — M be two surjective mappings of a non-Newtonian

complete metric space (M, dy). Suppose that f and g satisfying inequalities



dy (F(9(1), 9() +1e % d(F(9(1D).1) = ax du(g(),N(3.18)

dy (9(FO). FO)) +1e % du(g(F (D), 1) 2 b X dw(F(),)(3.19)

for j € M and some non-Newtonian real numbers a,b and k with a~x > i+k and
b=k > i4xk. If f or g is non-Newtoniancontinuous, then fand g have a common fixed

point in M.

Proof Let j, be an arbitrary point in M. Since f is surjective, there exists j; € M such
that j, = f(j;). Also, since g is surjective, there exists j, € M such thatj, = g(j;).
Continuing this process, we construct a sequence {j,} in M such that j,, = f(jons+1) and

Jon+1 = 9Uana2) for all n € N. Now for n € N, by (3.18) we have

dy (f(g(jZn+2))rg(jZn+2)) + K X dN(f(g(iZn+2))lj2n+2) 2 a X dy(gUan+2)s jzn+2)
Thus

dN(/Zn:f2n+1)‘i‘K X dN(iZnJZn+2) > a x dN(iZn+1'j2n+2)

which implies that

dN(jZn'jZn+1)+K X [dN(jZn'j2n+1)+dN(jZn+1;j2n+2)] > a x dN(jZn+1;j2n+2)

Hence
dy Uzns1 jans2) < [(146)/(@=10)] X dy (zns jan+1)(3.20)
On other hand, from (3.19), we have
dy (9(f Gane)), fUznen)) Fie X dn(g(f Ganen))samer) 2 b X dn(f Ganer)somer)
Thus

dN(iZn—lijZn)‘i_K X dN(/Zn—1J2n+1) > b x dN(ianjZn+1)



which implies that
dn Gzn-1,J2n) Hi X [dy Gan-1,J2n) Fdy Gzns Jane1)] 2 b X dyGan Jons1)
Hence
dyGznsJons1) < [(i‘i‘K)/(b;K)] X dy(Jan-1,J2n)(3.21)
Let § = maj{[(1+k)/(a~1)] [(1+v)/(b-K)]} < 1
Then by combining (3.20) and (3.21), we have
dyUnoJn+1) < 6 X dy(n-1,/n)(3.22)

where 8 € [0,1), Vn € N. Then by Lemma 3.6, the sequence {j,,} is an NN-Cauchy

sequence. Since (M, dy) is non-Newtonian complete,there exists a point jin Msuch that
N N N
Jjn — J. Therefore j,,,1 ——j and jypyp ——J as n — +oo. Without loss of

N
generality, we may assume that f is continuous, then f(j,,+1) —— f(j)as n —» +oo. But

N
fUans1) = jon ——J asn — +oo. Thus, we have f(j) = j. Since g is surjection on M,
there exists u € M such that j = g(u).We now show that jis a common fixedpoint of the

mapping f and g. It follows from (3.18) that

dy (f(g@), g@)) +1 % dy (F(g@)),u) = a X dy(g(w),w)
= 04K x dy(j,u) = a x dy(j,u)
= 0> (a~x) x dy(j,u)

Since a~k > 14k, we conclude that dy(j,u) =0 and consequently j = u. Hence

f(G) = g(j) = j. Therefore j is a common fixed point of fand g.
By taking f = g in Corollary 3.9we have the following Corollary.

Corollary 3.10Let f: M — M be two surjective mappings of a non-Newtonian complete

metric space (M, dy). Suppose that f satisfying inequality



dy(f2G), F D)+ < dy(F2(D, ) = a < dy(F (), ) (3.24)

for j € M and some nonnegative real numbers a,b and k with a~k > 14x. If f is

continuous, then fhas a fixed point in M.
References

[1].Grossman M, Katz R. Non-newtonian calculus. Lee Press, Pigeon Cove (Lowell
Technological Institute); 1972.

[2].Bashirov AE, Kurpinar EM, Ozyapici A. Multiplicative calculus and its
applications. J. Math.Anal. Appl. 2008;337:36-48.

[3].Ozyapici A, Riza M, Bilgehan B, Bashirov AE. On multiplicative and Volterra
minimizationmethods. Numerical Algorithm. 2013;1-14,.

[4].Cakmak AF, Basar F. Some new results on sequence spaces with respect to non-
Newtoniancalculus. J. Ineq. Appl. 2012;228:1-17.

[5].Bashirov AE, Misirli E, Tandogdu Y, Ozyapici A. On modelling with
multiplicative differentialequations. Applied Mathematics - A Journal of Chinese
Universities. 2011;26(4):425-428.

[6].Campbell D. Multiplicative calculus and student projects. Primus, IX. 1999;327-
333.

[7].Cakmak AF, Basar F. Certain spaces of functions over the field of non-
Newtoniancomplex numbers. Abstr. Appl. Anal. 2014. Article ID 236124, 12
pages, 2014.DOI:10.1155/2014/236124.

[8].Cakmak AF, Basar F. On line and double integrals in the non-newtonian sense.
AIP Conference Proceedings. 2014;1611:415-423.

[9].Cakmak AF, Basar F. Some sequence spaces and matrix transformations in
multiplicativesense. TWMS J. Pure Appl. Math. 2015;6(1):27-37.

[10]. Natanson IP. Theory of functions of a real variable. Frederick Ungar Publishing
Co., New York.1964:1.

[11].Spivey MZ. A product calculus, Technical report. University of Puget Sound;
2010.

[12].Stanley D. A multiplicative calculus. Primus. 1999;9(4):310-326.



[13].Tekin S, Ba_sar F. Certain sequence spaces over the non-newtonian complex
field. Abstr. Appl.Anal; 2013. Article ID 739319, 11 pages, 2013.

[14]. Turkmen CF, Basar. Some basic results on the sets of sequences with geometric
calculus. AIP Conference Proceedings 1470. 2012;95-98.

[15]. Turkmen C, Basar F. Some basic results on the geometric calculus. Commun.
Fac. Sci. Univ.Ankara, Ser. A 1. 2012;61(2):17-34.

[16]. Uzer A. Multiplicative type complex calculus as an alternative to the classical
calculus, Comput. Math. Appl. 2010;60:2725-2737.

[17].Cenap Duyar, Birsen Sagr and Oguz Ogur,Some Basic Topological Properties
on Non-Newtonian Real Line, British Journal of Mathematics & Computer
Science 9(4): 296-302, 2015, Article no.BJIMCS.2015.204.

[18].Binbasoglu D, Demiriz S, Turkoglu D. Fixed points of non-Newtonian
contraction mappings on non-Newtonian metric spaces, J. Fixed Point Theory
Appl.18 (2016) 213-224.

[19]. Wang SZ, Li BY, Gao ZM, Iseki K, Some fixed point theorems for expansion
mappings, Math. Japonica. 29 (1984), 631-636.

[20]. Daffer PZ, Kaneko H, On expansive mappings, Math. Japonica. 37 (1992), 733-
735.

[21].Jain R, Daheriya RD Ughade M, Fixed Point, Coincidence Point and Common
Fixed Point Theorems under Various Expansive Conditions in Parametric Metric
Spaces and Parametric b-Metric Spaces, Gazi University Journal of Science,
Accepted, 2015.

[22]. Daheriya RD, Jain R, Ughade M. “Some Fixed Point Theorem for Expansive
Type Mapping in Dislocated Metric Space”, ISRN Mathematical Analysis,
Volume 2012, Article ID 376832, 5 pages, doi:10.5402/2012/376832.

[23]. Yan Han, Shaoyuan Xu, Some new theorems of expanding mappings without
continuity in cone metric spaces, Fixed Point Theory and Applications, 2013,
2013:3.

[24].Shatanawi W, Awawdeh F, Some fixed and coincidence point theorems for

expansive maps in cone metric spaces, Fixed Point Theory and Applications

2012, 2012:19.



[25].Huang X, Zhu C, Wen X, Fixed point theorems for expanding mappings in
partial metric spaces, An. St. Univ. Ovidius Constant_a Vol. 20(1), 2012, 213-
224,

[26]. Aage, CT, Salunke, JN: Some fixed point theorems for expansion onto mappings

on cone metric spaces. Acta Math. Sin. Engl. Ser. 27(6), 1101-1106 (2011).



