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Abstract

In the present work, a fractional-order differential equation based on the Susceptible-Infected-

Recovered (SIR) model with nonlinear incidence rate in a continuous reactor is proposed. A

profound qualitative analysis is given. The analysis of the local and global stability of equilibrium

points is carried out. It is proved that if the basic reproduction number R > 1 then the disease-

persistence (endemic) equilibrium is globally asymptotically stable. However, if R ≤ 1, then the

disease-free equilibrium is globally asymptotically stable. Finally, some numerical tests are done in

order to validate the obtained results.
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1 Introduction

The first epidemiological models appeared at the beginning of the 20th century [3, 18]. It was in 1927

that Kermack and McKendrick proposed the first comprehensive model for modeling an epidemic.

The main idea comes from the fact that in discrete time, the number of new infections is proportional

to the product of the number of infected and susceptible.

The spread of an infectious agent in a population is a dynamic phenomenon: the numbers of susceptible

and infected individuals evolve over time, depending on the contacts in which the agent moves from

an infected individual to a healthy individual not immune, infecting it in turn. Such a phenomenon

can be studied by modeling it with differential equations and by determining its behavior through the

numerical resolution of these equations.

The qualitative study of epidemiological models such as the ”SIR” model is and has been a field

of intense and varied research [2, 3, 7, 16, 19, 20, 22, 24, 28, 37, 38]. An excellent review of the
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literature, but not very recent, was made by Hethcote [18].

In this paper, I revisit the classical ”SIR” epidemic model in a chemostat but with a general nonlinear

saturated incidence rate and by considering the fractional-order time derivative instead of the classical

ordinary differential equations.

The chemostat is an experimental device used to analyze the growth of populations of microorganisms

(Fig. 1). It was introduced simultaneously by A. Novick and L. Szilard [29] in the 1936s and by J.

Monod [27] in the 1950s. The mathematical growth of a species of bacteria in the chemostat is due to

C. Spicer [34]. From this date there are many articles relating to the competition of several species.

In a chemostat, an epidemic model can also be understood as a competition model where various

pathogen strains compete for the the same susceptible host as only resource [26, 32]. Such models

predict the strain with the largest basic reproduction number to be the winner. In [32], it is proved

that this prediction amount to the same if the per capita functional responses of infective individuals

to the density of susceptible are proportional to each other but that they are different if the functional

responses are non-proportional.

The important aspect in the model that considered by many researchers to interpret the dynamical

behaviour of the infectious disease is the susceptible-infected-recovered model (SIR) introduced by

Kermack and McKendrick in 1927 [21]. The considered population here is subdivided into three

S I R

D Sin D (S, I,R)

Fig. 1: ”SIR” epidemic model in a continuous reactor

subgroups of individuals. Each group has different epidemiological significance: the compartments of

Susceptible, the compartment of Infected and the compartment of Recovered, which are respectively

represented by the following letters S, I and R. The model developed here has then three components,

S, I and R known as ’SIR’ model of infectious disease transmission in a chemostat. I neglect all

individuals natural mortality other than one caused by the disease concerned by this study and I take

into account the dilution rate (D) only. Only susceptible individuals are introduced into the reactor

with a constant rate D and an input individual number Sin (Fig. 1). Note that Sin can be seen as the

new cases infected per unit of time by one infective individual. DSin describes the rate of recruitment

of susceptible (as input), this includes newborns who are born susceptible in the type of infection

considered. γ is the rate at which infectious agents recover their health. (D+ γ)−1 describes the

average infection period.

The epidemic is spread by contacts between infected individuals and susceptible individuals. The

number of these contacts is proportional to S and I, respective populations of susceptible and infected

individuals. The patients recover on average after a time 1/γ , they are then immune and can no longer

infect other people or be re-infected.

This paper is organized as follows. In section 2, a fractional-order mathematical dynamical
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system involving deterministic ”SIR” epidemic model with nonlinear incidence rate in a continuous

reactor is considered. The analysis of the local and global stability of equilibrium points is carried

out. It is proved that, for the deterministic model, if R > 1, then the disease-persistence (endemic)

equilibrium is globally asymptotically stable. However, if R ≤ 1, then the disease-free equilibrium is

globally asymptotically stable. Finally, in section 4, some numerical tests are done in order to validate

the obtained results.

2 Mathematical model and properties

Notions of non-integer differentiation and integration are an effective tool for characterizing the behavior

of a large category of infinite dimensional dynamical systems. The applications are numerous,

whether in electricity, heat, chemistry or signal processing. Fractional calculus is a domain of mathematics

whose purpose is to extend the definitions of traditional derivatives to non-integer orders. The

fractional derivative represents the generalization to non-integer orders of the derivative [5], just like

the real exponent power function which corresponds to the ”extension” of the full exponent power

function. Several definitions have been proposed for the non-integer derivation. It should be noted,

however, that these definitions do not always lead to identical results but are globally equivalent

for a large number of functions. In this paper, the Caputo derivative approach will be used due to its

application advantages. The most important advantage is that the initial conditions for fractional order

is the same as that of integer order, avoiding solvability issues.

I first give some definitions that I use later in this paper.

For an arbitrary function f (t), the definition of the Caputo fractional derivative is defined as

follows:

Dα
C f (t) = Jn−α [ f (n)(t)] =

1

Γ(n−α)

∫ t

0

(t − s)n−α−1 f (n)(s)ds (2.1)

where n is the first integer which is greater than α.

The Laplace transform of the Caputo fractional derivative is given by

L (Dα
C f (t)) = λ α F(s)−

n−1

∑
k=0

f (k)(0)λ α−k−1. (2.2)

The Mittag-Leffler function is defined by the following infinite power series:

Eα ,β (z) =
+∞

∑
k=0

zk

Γ(αk+β )
. (2.3)

The Laplace transform of the Mittag-Leffler function is given by

L [tβ−1Eα ,β (±αtα )] =
sα−β

sα ∓α
. (2.4)

Let α,β > 0 and z ∈ Z, and the Mittag-Leffler functions satisfy the equality given by [4, Theorem 4.2]

Eα ,β (z) = zEα ,α+β (z)+
1

Γ(β )
. (2.5)

Dα denotes the Caputo fractional derivative of order 0 < α ≤ 1 defined for an arbitrary function

f (t) by [30] as follows:

Dα f (t) =
1

Γ(1−α)

∫ t

0

(t −x)−α f ′(x)dx.
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The considered mathematical model is given by the following three-dimensional dynamical system of

Fractional Differential Equations (FDEs):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Dα S(t) = D Sin −DS(t)−μ(I(t))S(t),

Dα I(t) = μ(I(t))S(t)− (D+ γ)I(t)

Dα R(t) = γI(t)−DR(t)

(2.6)

with positive initial condition (S0, I0,R0) ∈ R
3
+ .

μ represents the saturated incidence rate and it is assumed to satisfy the following Assumption.

Assumption 1. μ is non-negative C1(R+), increasing bounded concave function such that μ(0) = 0,

μ ′(I)> 0 and μ ′′(I)< 0.

Remark 1. • The saturated incidence rate satisfies μ(I)≤ μ ′(0)I,∀I ≥ 0 and μ(I)> μ ′(I)I,∀I > 0.

• The classical Monod function can be used to express transmission rate of infection from

infected individuals to susceptible ones.

μ(I) =
μ̄I

k+ I
(2.7)

μ̄ represents the transmission rate of the disease. k is the Monod constant which is equal to

the number of infected individuals when the saturated incidence rate is
ū

2
.

Given a disease, a fundamental question is whether it can spread in the population. This amounts

to calculating the average number of individuals that an infectious individual can infect, as long as it is

contagious. This number is called the basic reproduction rate [37], and is denoted R. It is considered

in a population where all individuals are healthy, except the infectious individual introduced. If R < 1,

then an individual infects on average less than one, which means that the disease will disappear

from the population eventually. In contrast, if R > 1, then the disease can spread in the population.

Determining R according to the parameters of the model thus makes it possible to calculate the

conditions under which the disease is spreading.

In our case, the basic reproduction number for the system (2.6), denoted by R, is given by:

R =
μ ′(0)Sin

(D+ γ)
(2.8)

R
3
+, the closed non-negative cone in R

3, is positively invariant ([8, 9, 10, 11, 12, 13, 14, 31]) for

the system (2.6). More precisely,

Proposition 1.

1. For all initial condition (S0, I0,R0) in R
3
+ , the solution of system (2.6) is bounded and has

positive components and thus is defined for all t > 0.

2. System (2.6) admits a positive invariant attractor set of all solution given by Ω = {(S, I,R) ∈
R

3
+ / S+ I +R ≤ Sin}.

Proof. 1. The positivity of the solution is proved by the fact that :

Since S = 0 then Dα S = DSin > 0, if I = 0 then Dα I = 0, and if R = 0 then Dα R = γI > 0.

Next I have to prove the boundedness of solutions of (2.6). By adding three equations of

system (2.6), one obtains, for T = S + I + R− Sin, a single equation for the total number of

individuals :

Dα T (t) = Dα S(t)+Dα I(t)+Dα R(t) = D(Sin −S− I −R) =−DT.
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I solve the above equation by applying the Laplace transform (2.2) , I obtain

λ α
L (T (t))−λ α−1T (0) =−DL (T (t))

that can be written as below using the Laplace transform properties (2.4) and equality (2.5),

(λ α +D)L (T (t)) = λ α−1T (0).

Then

L (T (t)) =
λ α−1

(λ α +D)
T (0)

≤ tα−1Eα ,α(−Dtα )T (0)

where 0 <α ≤ 1 and Ea,b(z) is the two parameter Mittag-Leffler function with parameter a and b

[4]. Since Mittag-Leffler function is an entire function, thus Eα ,α(−Dtα ) is bounded for all t > 0.

Therefore I have

lim
t �→+∞

T (t)≤ 0 (2.9)

Thus, closed set Ω is positively invariant and attracting to the system (2.6).

Since all terms of the sum are positive, then the solution of system (2.6) is bounded.

2. The invariance of the attractor Ω is simply deduced from inequality (2.9) .

Remark 2. Since the compartment R doesn’t affect equations of S and I compartments, it is sufficient

to consider only both first equations of system (2.6).

⎧⎨
⎩

Dα S(t) = D Sin −DS(t)−μ(I(t))S(t),

Dα I(t) = μ(I(t))S(t)− (D+ γ)I(t)
(2.10)

with positive initial condition (S0, I0) ∈ R
2
+ .

Define E∗ = (S∗, I∗) as an endemic equilibrium of system (2.10) where S∗ > 0 and I∗ > 0 satisfying

⎧⎨
⎩

DSin = DS∗+μ(I∗)S∗,

μ(I∗)S∗ = (D+ γ)I∗.
(2.11)

Regarding the characteristic equations and characteristic roots of the proposed model (2.10), it

is easy to prove the following proposition.

Proposition 2. • If R ≤ 1 then system (2.10) admits a disease-free equilibrium Ē = (Sin,0) as the

unique equilibrium.

• If R > 1 then system (2.10) admits only two equilibrium: a unique disease-free equilibrium

Ē = (Sin,0) and a unique disease-persistence (endemic) equilibrium E∗ = (S∗, I∗).

The value of R has a great importance in determining whether there exists an endemic equilibrium

or not (as in [2], Theorem 2.3).

Theorem 1. • If R < 1, then the disease-free equilibrium Ē is locally asymptotically stable.
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• If R > 1, then the disease-free equilibrium Ē is unstable and the disease-persistence equilibrium

E∗ is locally asymptotically stable.

Proof. The Jacobian matrix at a point (S, I) is given by:

J =

⎛
⎝ −D−μ(I) −μ ′(I)S

μ(I) μ ′(I)S− (D+ γ)

⎞
⎠

The Jacobian matrix evaluated at Ē is then given by:

J̄ =

⎛
⎝ −D −μ ′(0)Sin

0 μ ′(0)Sin − (D+ γ)

⎞
⎠=

⎛
⎝ −D −μ ′(0)Sin

0 (D+ γ)(R−1)

⎞
⎠

J̄ admits two eigenvalues given by λ1 =−D < 0 and λ2 = (D+ γ)(R−1). It follows that

• If R < 1, then λ2 < 0 and Ē is then locally asymptotically stable

• If R > 1, then λ2 > 0 and Ē is unstable.

The Jacobian matrix evaluated at E∗ is then given by:

J∗ =

⎛
⎝ −D−μ(I∗) −μ ′(I∗)S∗

μ(I∗) μ ′(I∗)S∗ − (D+ γ)

⎞
⎠ .

The associated characteristic polynomial to J∗ is given by

P(λ ) = λ 2 +A1λ +A0

where A0 and A1 are given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A0 = (D+ γ)(D+μ(I∗))−Dμ ′(I∗)S∗ = (D+ γ)μ(I∗)+
(D+ γ)

μ(I∗)

(
μ(I∗)−μ ′(I∗)I∗

)
,

A1 = 2D+ γ +μ(I∗)−μ ′(I∗)S∗ = D+μ(I∗)+
(D+ γ)

μ(I∗)

(
μ(I∗)−μ ′(I∗)I∗

)
.

As μ is a concave function and μ(I∗) > μ ′(I∗)I∗, it follows that A0 > 0 and A1 > 0 and thus using

Routh-Hurwitz criterion, both eigenvalues have negative real parts.

Thus, if R > 1, then E∗ exists and it is always locally asymptotically stable. This completes the

proof.

The global stability of the disease-free equilibrium Ē and the disease-persistence equilibrium E∗

are given in the following theorem.

Theorem 2. • If R ≤ 1, then the disease-free equilibrium Ē is globally asymptotically stable.

• If R > 1, then the disease-persistence equilibrium E∗ is globally asymptotically stable.

Proof. Let (S, I) to be a solution of the system (2.10) and define the Lyapunov function

V1(t) = S(t)+ I(t)−S∗ ln(
S

S∗
)−

∫ I(t)

I∗

μ(I∗)

μ(η)
dη

The equilibrium E∗ is the only internal stationary point and minimum point of V1(t), and V1(t) �→+∞

at the boundary of the positive quadrant. Consequently, E∗ is the global minimum point, and the
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function is bounded from below.

The Caputo fractional derivative of V1(t) along solution of system (2.10) is given by

DαV1(t) =
(

1−
S∗

S

)
Dα S(t)+

(
1−

μ(I∗)

μ(I)

)
Dα I(t)

=
(

1−
S∗

S

)(
D Sin −DS−μ(I)S

)
+
(

1−
μ(I∗)

μ(I)

)(
μ(I)S− (D+ γ)I

)

=
(

1−
S∗

S

)(
DS∗+μ(I∗)S∗ −DS−μ(I)S

)
+
(

1−
μ(I∗)

μ(I)

)(
μ(I)S− (D+ γ)I

)

=
S−S∗

S

(
D(S∗ −S)+(μ(I∗)S∗ −μ(I)S)

)
+

μ(I)−μ(I∗)

μ(I)

(
μ(I)S− (D+ γ)I

)

= −D
(S−S∗)2

S
+(D+ γ)I∗

μ(I∗)−μ(I)

μ(I)

( I

I∗
−

μ(I)

μ(I∗)

)
− (D+ γ)I∗

(S∗

S
−1− ln(

S∗

S
)
)

On the one hand, μ is concave and then

•

μ(I)

μ(I∗)
≥

I

I∗
for all 0 ≤ I ≤ I∗ and

•

μ(I)

μ(I∗)
≤

I

I∗
for all I ≥ I∗.

Then
μ(I∗)−μ(I)

μ(I)

( I

I∗
−

μ(I)

μ(I∗)

)
≤ 0 for all I ≥ 0. On the other hand, x−1− ln(x)> 0 for all x > 0 thus

•

(S∗

S
−1− ln(

S∗

S
)
)
> 0, ∀S ≥ 0

Since all parameters of the model are non-negative, it follows that DαV1 ≤ 0. Therefore, all the

conditions of [23] are satisfied. This proves that E∗ is globally asymptotically stable where R > 1.

Let (S, I) to be a solution of the system (2.10) and define the Lyapunov function

V2(t) = S(t)+ I(t)−Sin ln(
S

Sin
),

The equilibrium Ē is the only internal stationary point and minimum point of V2(t), and V2(t) �→+∞ at

the boundary of the positive quadrant. Consequently, Ē is the global minimum point, and the function

is bounded from below.

The Caputo fractional derivative of V2(t) along solution of system (2.10) is given by

DαV2(t) =
(

1−
Sin

S

)
Dα S(t)+Dα I(t)

=
(

1−
Sin

S

)(
D Sin −DS−μ(I)S

)
+μ(I)S− (D+ γ)I

=
S−Sin

S

(
D (Sin −S)−μ(I)S

)
+μ(I)S− (D+ γ)I

= −
D(Sin −S)2

S
+(D+ γ)

( Sin

(D+ γ)
μ(I)− I

)
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Note that Assumption 1 ensure that

μ(I)≤ μ ′(0)I, ∀ I > 0.

Then

DαV2(t)≤−
D(Sin −S)2

S
+(D+ γ)

( Sin

(D+ γ)
μ ′(0)−1

)
I =−

D(Sin −S)2

S
+(D+ γ)(R −1)I .

Since all parameters of the model are non-negative and R < 1, it follows that DαV2 ≤ 0. Therefore,

again, using [23], {Ē} is globally asymptotically stable for R < 1.

Now, if R = 1, then DαV2 = 0 if and only if S = Sin and the largest compact invariant set in {(S, I) ∈
Ω : DαV2 = 0} is the singleton {Ē}. Therefore, by the LaSalle’s invariance principle (see, for instance,

[23]), {Ē} is globally asymptotically stable (for other applications, see [8, 9, 10, 13, 31]).

3 Numerical Simulations

The system (2.6) has the following form

Dα
C y(t) = f (t,y(t)), y(0) = y0 (3.1)

There are several analytical and numerical methods have been proposed to solve such systems (3.1).

Diethelm and Freed [6] proposed the well-known algorithm called FracPECE, using the classical

predict, evaluate, correct, evaluate (PECE) type approach, but modified in order to solve fractional-

order derivative equations [15]. This approach combines fractional Adams-Bashforth-Moulton methods.

Suppose that the time interval [0,T ] is discretized uniformly into N sub-intervals; define t j =
j dt,n = 0,1, · · · ,N, where dt = T/N is the time step. Let y j be the exact value of a function y(t) at time

step t j.

Firstly, I calculate the predictor yP
n+1

according to

yP
n+1 = y0 +

1

Γ(α)

n

∑
j=0

b j,n+1 f (t j,y j) (3.2)

where

b j,n+1 =
dtα

α

(
(n+1− j)α − (n− j)α

)
. (3.3)

Then I evaluate f (tn+1,y
P
n+1

), use this to determine the corrector yn+1 by means of equation

yn+1 = y0 +
1

Γ(α)

( n

∑
j=0

a j,n+1 f (t j,y j)+an+1,n+1 f (tn+1,y
P
n+1)

)
(3.4)

where

a j,n+1 =
dtα

α(α +1)

(
(n+2− j)α+1 −2(n+1− j)α+1 +(n− j)α+1

)
. (3.5)

Finally I evaluate f (tn+1,yn+1) which is then used in the next integration step.

I performed numerical simulations for system (2.6) using FracPECE algorithm. I use classical

Monod functions to express transmission rate of infection from infected individuals to susceptible

ones μ(I) =
μ̄I

(k+ I)
with μ̄,k > 0 which satisfies Assumption 1.
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Two cases were considered. The first case performs the global stability of the disease-persistence

equilibrium. The second case performs the global stability of the disease-free equilibrium. In a first

case, the parameters are chosen such Sin = 10,D = 1,γ = 2,k = 3, μ̄ = 5 and R = 5.5556 > 1. The

solution of system (2.6) converge asymptotically to E∗ (Fig. 2 (a)). This performs the global stability

of the disease-persistence equilibrium E∗ = (S∗, I∗,R∗) when R > 1. Note that S∗ + I∗ + R∗ = Sin.

In a second case, the parameters are chosen such α = 0.8,Sin = 1,D = 1,γ = 2,k = 3, μ̄ = 5 and

R = 0.5556 < 1. The solution of system (2.6) converge asymptotically to Ē = (Sin,0,0) = (1,0,0) (Fig.

3 (a)). This performs the global stability of the disease-free equilibrium Ē = (Sin,0,0) when R ≤ 1.
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Fig. 2: Parameters are fixed to α = 0.8,Sin = 10,D = 1,γ = 2,k = 3 and μ̄ = 5, thus

R = 5.5556 > 1 and the solution of system (2.6) converge asymptotically to E∗.
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Fig. 3: Parameters are fixed to α = 0.8,Sin = 1,D = 1,γ = 2,k = 3 and μ̄ = 5, thus

R = 0.5556 < 1 and the solution of system (2.6) converge asymptotically to Ē.
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4 Conclusion

A Fractional-order mathematical three-dimensional dynamical system involving a deterministic ”SIR”

epidemic model with a general nonlinear saturated incidence rate in a reactor is proposed. A profound

qualitative analysis is given for each form. The analysis of the local and global stability of equilibrium

points is carried out. It is proved that if R > 1 then the disease-persistence (endemic) equilibrium

is globally asymptotically stable. However, if R ≤ 1, then the disease-free equilibrium is globally

asymptotically stable. I consider the optimal control problem relative to this epidemic model by

minimizing the infected and susceptible populations and maximizing the recovered populations.

Numerical test were used to validate the obtained results.
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