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Abstract

We consider planar GCn node sets, i.e., n-poised sets whose all n-
fundamental polynomials are products of n linear factors. Gasca and
Maeztu conjectured in 1982 that every such set possesses a maximal
line, i.e., a line passing through n + 1 nodes of the set. Till now
the conjecture is confirmed to be true for n  5. The case n = 5
was proved recently by H. Hakopian, K. Jetter, and G. Zimmermann
(Numer. Math. 127 (2014) 685–713). In this paper we bring a short
and simple proof of the conjecture for n = 4.
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1 Introduction

In this paper we bring a simple and short proof of the Gasca-Maeztu con-
jecture for the case n = 4. The conjecture proposed in 1982 by Gasca and
Maeztu [7] has been confirmed to be true for n  5, yet. We think that
a simple proof of the Gasca-Maeztu conjecture for n = 4 will be helpful in
trying to prove it for the higher values.

Denote by ⇧n the space of bivariate polynomials of total degree at most
n :

⇧n =

(
X

i+jn

aijx
i
y

j : aij 2 R
)
.

We have that

N := Nn := dim⇧n =

✓
n+ 2

2

◆
.

Consider a set of distinct nodes

Xs = {(x1, y1), (x2, y2), . . . , (xs, ys)}.
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The problem of finding a polynomial p 2 ⇧n which satisfies the conditions

p(xi, yi) = ci, i = 1, 2, . . . s, (1.1)

is called interpolation problem.

Definition 1.1. The interpolation problem with the set of nodes Xs is called
n-poised if for any data {c1, . . . , cs} there exists a unique polynomial p 2 ⇧n,
satisfying the conditions (1.1).

A polynomial p 2 ⇧n is called an n-fundamental polynomial for a node
A = (xk, yk) 2 Xs if

p(xi, yi) = �ik, i = 1, . . . , s,

where � is the Kronecker symbol. We denote the n-fundamental polynomial
of A 2 Xs by p

?
A = p

?
A,Xs

.

A necessary condition of n-poisedness is: s = N. In this latter case the
following holds:

Proposition 1.2. The set of nodes XN is n-poised if and only if for any

polynomial p 2 ⇧n we have

p(xi, yi) = 0 i = 1, . . . , N ) p = 0.

Definition 1.3. A set of nodes X is called n-independent if all its nodes
have n-fundamental polynomials. Otherwise, X is called n-dependent.

Fundamental polynomials are linearly independent. Therefore a neces-
sary condition of n-independence is #X  N. Suppose a node set Xs is
n-independent. Then we have following Lagrange formula for a polynomial
p 2 ⇧n satisfying the interpolation conditions (1.1):

p(x, y) =
X

A2Xs

cAp
?
A,Xs

. (1.2)

In view of this formula we readily get that the node set Xs is n-independent
if and only if the interpolating problem (1.1) is solvable, i.e., for any data
{c1, . . . , cs} there exists a (not necessarily unique) polynomial p 2 ⇧n satis-
fying the conditions (1.1).

We shall use the same letter, most often ` to denote the linear polynomial
` 2 ⇧1 and the line defined by the equation `(x, y) = 0.

Definition 1.4. Given an n-poised set X , we say, that a node A 2 X uses
a line `, if ` is a factor of the fundamental polynomial p?A,X .
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The following proposition is well-known (see [8], [11]):

Proposition 1.5. Suppose that ` is a line. Then for any polynomial p 2 ⇧n

vanishing at n+ 1 points of ` we have

p = `r, where r 2 ⇧n�1.

From here we readily get that at most n+1 nodes of an n-poised set XN

can be collinear and the line `, containing n + 1 nodes, is used by all the
nodes in XN \ `. In view of this a line ` containing n+1 nodes of an n-poised
set X is called a maximal line [3].

In the sequel we will use the particular case n = 3 of the following

Proposition 1.6. Any set of at most 2n+1 points in the plain is n-dependent

if and only if n+ 2 of points are collinear.

Now let us define the following set of nodes:

Definition 1.7. For the given line ` we define N` to be the set of all nodes
in X , which do not lie in ` and do not use `:

N` = {A 2 X : A /2 ` and A is not using `}.

Theorem 1.8 ([5]). Suppose, that we have a line ` and an n-poised set X .

Then the following hold:

(i) If the set N` is nonempty, then it is (n� 1)-dependent and for no node

A 2 N`, there exists a fundamental polynomial p

?
A,N`

in ⇧n�1.

(ii) N` = ; if and only if ` passes through n+ 1 nodes in X .

2 The Gasca-Maeztu conjecture and GC

n

-sets

Now we are going to consider a special type of n-poised sets whose n-
fundamental polynomials are products of n linear factors as it always takes
place in the univariate case.

Definition 2.1 (Chung, Yao [6]). An n-poised set X is called GCn-set, if
each node A 2 X has an n-fundamental polynomial which is a product of n
linear factors.

Since the fundamental polynomial of an n-poised set is unique we get (see
e.g. [9], Lemma 2.5)
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Lemma 2.2 ([9]). Suppose X is a poised set and a node A 2 X uses a line

` : p

?
A = `q, q 2 ⇧n�1. Then ` passes through at least two nodes from X , at

which q does not vanish.

Now we are in a position to present the Gasca-Maeztu conjecture.

Conjecture 2.3 (Gasca, Maeztu [7]). Any GCn-set X possesses a maximal

line, i.e., a line passing through its n+ 1 nodes.

The Gasca-Maeztu conjecture is proved to be true for n  5. The case
n = 4 was proved for the first time by J.R. Busch [4]. The case n = 5 was
proved recently by H. Hakopian, K. Jetter, and G. Zimmermann in [10]. In
this paper we bring a short and simple proof of the conjecture for n = 4.

2.1 The Gasca-Maeztu conjecture for n = 4

We start with the formulation of the Gasca-Maeztu conjecture for n = 4 as:

Theorem 2.4. Any GC4-set X of 15 nodes possesses a maximal line, i.e., a

line passing through 5 nodes.

To prove the theorem assume by way of contradiction the following.

Assumption 2.5. The set X is a GC4-set without any maximal line.

We call a line k-node line if it passes through exactly k nodes of the set
X . In the next subsection we discuss the problem: Given a 2, 3 or 4-node
line. By how many nodes in X it can be used at most.

The following lemma is in ([9], Lemma 4.1). We bring it here for the sake
of completeness.

Lemma 2.6. Any 2 or 3-node line can be used by at most one node of X .

Proof. Assume by contradiction that ` is a 2 or 3-node line used by two
points A,B 2 X . Consider the fundamental polynomial p?A. The node A

uses the line ` and three more lines, which contain the remaining � 11 nodes
of X \ (` [ {A}), including B. Since there is no 5-node line, we get

p

?
A = ``=4`

0

=4`�3.

Here the subscript = 4 means that the corresponding line is a 4-node line,
while the subscript � 3 means that except the 3 nodes the corresponding
line may also pass through some nodes belonging to the other lines. First
suppose that B belongs to one of the 4-node lines, say to `

0
=4. We have also

p

?
B = `q, where q 2 ⇧3.
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Notice that q vanishes at 4 nodes of `=4 and 3 nodes of `
0
=4 (i.e., except B).

Therefore by using Proposition 1.5 twice we get that q = `=4r, r 2 ⇧2 and
r = `

0
=4s, s 2 ⇧1. Thus p?B = ``=4`

0
=4s. Hence p

?
B vanishes at B (B 2 `

0
=4),

which is a contradiction.
Now assume that B belongs to the line `�3. Then q vanishes at 4 nodes

of `=4, 4 (� 3) nodes of `
0
=4 and at least 2 nodes of `�3. Therefore again, as

above, by consecutive usage of Proposition 1.5 we get that p?B = ``=4`
0
=4`�3.

Hence again p

?
B vanishes at B (B 2 `�3), which is a contradiction.

The following lemma is in ([1], Lemma 2.6). Here we bring a very short
proof of it.

Lemma 2.7. Any 4-node line can be used by at most three nodes of X .

Proof. Assume by contradiction that ` is a 4-node line used by four points
from X . Therefore we have #N`  15 � 4 � 4 = 7. In view of Theorem
1.8 N` 6= ; is (essentially) 3-dependent. According to Theorem 1.6 a set of
 2 ⇥ 3 + 1 = 7 nodes is 3-dependent if and only if there is a 5-node line,
which contradicts Assumption 2.5.

Now we are in a position to prove the Gasca-Maeztu conjecture for n = 4.

2.2 Proof of the Gasca-Maeztu conjecture for n = 4

Let us start with an observation from ([10], Section 3.2). Fix any node A 2 X ,
and consider all the lines through the node A and some other node(s) of X .
Denote this set of lines by LA. Let nm(A) be the number of m-node lines
from LA. In view of Assumption 2.5 we have

1n2(A) + 2n3(A) + 3n4(A) = #
�
X \ {A}

�
= 14. (2.1)

Denote by M(A) the total number of uses of the lines passing through A.

By Lemma 2.2 each of 14 nodes of X \ {A} uses at least one line from LA.
On the other hand, we get from Lemmas 2.6 and 2.7 that

14  M(A)  1n2(A) + 1n3(A) + 3n4(A).

Comparing this with (2.1), we conclude that necessarily M(A) = 14 and
n3(A) = 0, i.e., there is no 3-node line in LA.

Thus we have
n2(A) + 3n4(A) = 14. (2.2)

Therefore each 4-node line in LA is used exactly three times and each 2-
node line is used exactly once. From here we conclude easily that n2(A) � 2.
Next we show that actually n2(A) = 2.
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Consider two 2-node lines passing through A. Suppose except A they
pass through B and C, respectively. Denote these two lines by `B and `C ,

respectively (see Fig 2.1).

Figure 2.1: The lines of LA

Next, we will prove that B uses `C . Let us verify that in this case the node
C uses `B. Indeed, ifB uses `C we have p?B = `Cq, where q is a product of three
lines. Notice that the polynomial `Bq is the fundamental polynomial of the
node C, which means that C uses `B. Now, suppose by way of contradiction
that B does not use `C . Therefore C does not use `B.

Thus, there are two nodes D and E in the 12 nodes of X \ {A,B,C}
using the lines `B and `C respectively. In this case, we have p

?
D = `Bq1 and

p

?
E = `Cq2, where q1 and q2 are polynomials of degree 3.
Since q1 and q2 have 10 common nodes we get from the Bezout theorem

that they have common linear factor ↵, passing through at most 4 nodes.
So we can write q1 = ↵�1 and q2 = ↵�2, where �1 and �2 have at least 6
common nodes. Therefore, �1 and �2 have common linear factor ↵1, passing
through at most 4 nodes.

Now, we have for the following presentations of the fundamental poly-
nomials: p

?
D = `B↵↵1↵2 and p

?
E = `C↵↵1↵2

0
. Therefore ↵2 and ↵2

0
have at
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least two common nodes, which means that they coincide. We have that
E 2 ↵[↵1 [↵2 and thus come to a contradiction, which proves that B uses
`C .

Note that `C was an arbitrary 2-node line, which means that B uses all
2-node lines di↵erent from `B. It is easy to see that any node from X can use
at most one 2-node line, since otherwise if some node uses two 2-node lines
the remaining � 10 nodes have to lie on two. Therefore, we conclude that
there are no 2-node lines other than `B and `C , i.e., n2(A) = 2. From here
and the equality (2.2) we get n4(A) = 4.

Thus, the 12 nodes of X \ {A,B,C} lie on four 4-node lines passing
through A. We denote these lines by `1, ..., `4.

Finally, by taking p(x, y) = `1`2`3`4, in the Lagrange formula (1.2), we
obtain

`1`2`3`4 = �1p
?
B + �2p

?
C , (2.3)

since `1`2`3`4 vanishes in X \{B,C}. Now recall that p?B = `Cq and p

?
C = `Bq,

where q is a product of three 4-node lines passing through the 12 nodes of
X \ {A,B,C}. Thus we get

`1`2`3`4 = q(�1`C + �2`B).

Clearly none of the lines `i here is a factor of q. Hence this leads to a contra-
diction, which proves Theorem 2.4.

Conclusion

We presented a simple, short, and clear proof of the Gasca-Maeztu con-
jecture for the case n = 4. The Conjecture was proposed in 1981 by Gasca
and Maeztu [7]. Until now, this has been confirmed only for the values n  5.
The case n = 5 was proved in 2014 by Hakopian, Jetter, and Zimmermann,
in [10]. So far this is the only proof for n = 5. In addition, it is very long and
complicated. In our opinion a simple proof of the Gasca-Maeztu conjecture
for smaller values of n greatly simplifies its generalization to higher values.
We believe that this is a way in trying to prove the Conjecture for the values
n � 6.
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