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Abstract

We consider planar GC), node sets, i.e., n-poised sets whose all n-
fundamental polynomials are products of n linear factors. Gasca and
Maeztu conjectured in 1982 that every such set possesses a maximal
line, i.e., a line passing through n + 1 nodes of the set. Till now
the conjecture is confirmed to be true for n < 5. The case n = 5
was proved recently by H. Hakopian, K. Jetter, and G. Zimmermann
(Numer. Math. 127 (2014) 685-713). In this paper we bring a short
and simple proof of the conjecture for n = 4.
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1 Introduction

Denote by II,, the space of bivariate polynomials of total degree at most

II,, = { Z aijxiyj Da; € ]R} )
i+j<n

We have that

N := N, :=dimll,, = (n;—?)

Consider a set of distinct nodes
XS = {(xlvyl)a ($27y2)7 sy (xs; ys)}
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The problem of finding a polynomial p € II,, which satisfies the conditions
p(ri,y) =c¢, i=1,2,...s, (1.1)
is called interpolation problem.

Definition 1.1. The interpolation problem with the set of nodes X is called
n-poised if for any data {ci,...,cs} there exists a unique polynomial p € II,,,
satisfying the conditions (1.1).

A polynomial p € II, is called an n-fundamental polynomial for a node
A= (xk,yk) e X, if
p(zi, i) = Oigsi =1,..., 5,

where 0 is the Kronecker symbol. We denote the n-fundamental polynomial
of A€ X, by pi =P x,-

A necessary condition of n-poisedness is: s = N. In this latter case the
following holds:

Proposition 1.2. The set of nodes Xy is n-poised if and only if for any
polynomial p € 11,, we have

p(zi,y:)) =0 i=1,...,N=p=0.

Definition 1.3. A set of nodes X is called n-independent if all its nodes
have n-fundamental polynomials. Otherwise, X" is called n-dependent.

Fundamental polynomials are linearly independent. Therefore a neces-
sary condition of m-independence is #X < N. Suppose a node set X is
n-independent. Then we have following Lagrange formula for a polynomial
p € 1I,, satisfying the interpolation conditions (1.1):

p(e,y) = Y caplix,- (1.2)
AeXs

In view of this formula we readily get that the node set X is n-independent
if and only if the interpolating problem (1.1) is solvable, i.e., for any data
{c1,...,cs} there exists a (not necessarily unique) polynomial p € TI,, satis-
fying the conditions (1.1).

We shall use the same letter, most often ¢ to denote the linear polynomial
¢ € II; and the line defined by the equation ¢(z,y) = 0.

Definition 1.4. Given an n-poised set X', we say, that a node A € X" uses
a line ¢, if £ is a factor of the fundamental polynomial p7 ,.



The following proposition is well-known (see [8], [1H]):

Proposition 1.5. Suppose that ¢ is a line. Then for any polynomial p € 11,
vanishing at n + 1 points of ¢ we have

p=1{r, where rell,_;.

From here we readily get that at most n + 1 nodes of an n-poised set X
can be collinear and the line ¢, containing n + 1 nodes, is used by all the
nodes in Xy \ £. In view of this a line ¢ containing n + 1 nodes of an n-poised
set X is called a maximal line [3].

In the sequel we will use the particular case n = 3 of the following

Proposition 1.6. Any set of at most 2n+1 points in the plain is n-dependent
if and only if n+ 2 of points are collinear.

Now let us define the following set of nodes:

Definition 1.7. For the given line ¢ we define N, to be the set of all nodes
in X, which do not lie in ¢ and do not use ¢:

Ne={AeX:A¢/( and A isnotusing ¢}
Theorem 1.8 ([5]). Suppose, that we have a line { and an n-poised set X.

Then the following hold:

(i) If the set Ny is nonempty, then it is (n — 1)-dependent and for no node
A € Ny, there exists a fundamental polynomial Pan, I, 1.

(il) Ny = 0 if and only if € passes through n + 1 nodes in X.

2 The Gasca-Maeztu conjecture and GGC),-sets

Now we are going to consider a special type of n-poised sets whose n-
fundamental polynomials are products of n linear factors as it always takes
place in the univariate case.

Definition 2.1 (Chung, Yao [6]). An n-poised set X is called GC,-set, if
each node A € X has an n-fundamental polynomial which is a product of n
linear factors.

Since the fundamental polynomial of an n-poised set is unique we get (see
e.g. [9], Lemma 2.5)





Lemma 2.2 ([9]). Suppose X is a poised set and a node A € X uses a line
C: py =4q,q €ll,_1. Then £ passes through at least two nodes from X, at
which q does not vanish.

Now we are in a position to present the Gasca-Maeztu conjecture.

Conjecture 2.3 (Gasca, Maeztu [7]). Any GC,,-set X possesses a mazimal
line, i.e., a line passing through its n + 1 nodes.

The Gasca-Maeztu conjecture is proved to be true for n < 5. The case
n = 4 was proved for the first time by J.R. Busch [4]. The case n = 5 was
proved recently by H. Hakopian, K. Jetter, and G. Zimmermann in [10]. In
this paper we bring a short and simple proof of the conjecture for n = 4.

2.1 The Gasca-Maeztu conjecture for n =4
We start with the formulation of the Gasca-Maeztu conjecture for n = 4 as:

Theorem 2.4. Any GCy-set X of 15 nodes possesses a mazximal line, i.e., a
line passing through 5 nodes.

To prove the theorem assume by way of contradiction the following.
Assumption 2.5. The set X is a GCy-set without any mazximal line.

We call a line k-node line if it passes through exactly £ nodes of the set
X. In the next subsection we discuss the problem: Given a 2,3 or 4-node
line. By how many nodes in X it can be used at most.

The following lemma is in ([9], Lemma 4.1). We bring it here for the sake
of completeness.

Lemma 2.6. Any 2 or 3-node line can be used by at most one node of X.

Proof. Assume by contradiction that ¢ is a 2 or 3-node line used by two
points A, B € X. Consider the fundamental polynomial p%. The node A
uses the line ¢ and three more lines, which contain the remaining > 11 nodes
of X\ (¢U{A}), including B. Since there is no 5-node line, we get

Py = byl O3,

Here the subscript = 4 means that the corresponding line is a 4-node line,
while the subscript > 3 means that except the 3 nodes the corresponding
line may also pass through some nodes belonging to the other lines. First
suppose that B belongs to one of the 4-node lines, say to /_,. We have also

py = lq, where ¢ € Il;.
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Notice that ¢ vanishes at 4 nodes of /_4 and 3 nodes of /_, (i.e., except B).
Therefore by using Proposition 1.5 twice we get that ¢ = ¢_4r, r € II; and
r={(_,s, s €Il. Thus p% = £l_4(_,s. Hence p’ vanishes at B (B € (_,),
which is a contradiction.

Now assume that B belongs to the line {>3. Then ¢ vanishes at 4 nodes
of {—4, 4 (> 3) nodes of 6':4 and at least 2 nodes of /~3. Therefore again, as
above, by consecutive usage of Proposition 1.5 we get that pl = £_4l_ (3.
Hence again pj vanishes at B (B € (>3), which is a contradiction. ]

The following lemma is in ([1], Lemma 2.6). Here we bring a very short
proof of it.

Lemma 2.7. Any 4-node line can be used by at most three nodes of X.

Proof. Assume by contradiction that ¢ is a 4-node line used by four points
from X. Therefore we have #N, < 15 —4 — 4 = 7. In view of Theorem
1.8 NV # 0 is (essentially) 3-dependent. According to Theorem 1.6 a set of
< 2 x 341 = 7 nodes is 3-dependent if and only if there is a 5-node line,
which contradicts Assumption 2.5. O]

Now we are in a position to prove the Gasca-Maeztu conjecture for n = 4.

2.2 Proof of the Gasca-Maeztu conjecture for n =4

Let us start with an observation from ([10], Section 3.2). Fix any node A € X,
and consider all the lines through the node A and some other node(s) of X.
Denote this set of lines by L4. Let n,,(A) be the number of m-node lines
from L4. In view of Assumption 2.5 we have

Iny(A) 4 2n3(A) + 3na(A) = #(X \ {A}) = 14. (2.1)

Denote by M(A) the total number of uses of the lines passing through A.
By Lemma 2.2 each of 14 nodes of X'\ {A} uses at least one line from Ly.
On the other hand, we get from Lemmas 2.6 and 2.7 that

14 < M(A) < 1ns(A) + 1ns(A) + 3n4(A).

Comparing this with (2.1), we conclude that necessarily M(A) = 14 and
n3(A) =0, i.e., there is no 3-node line in L4.
Thus we have
na(A) + 3n4(A) = 14. (2.2)

Therefore each 4-node line in L4 is used exactly three times and each 2-
node line is used exactly once. From here we conclude easily that ny(A) > 2.
Next we show that actually no(A) = 2.
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Consider two 2-node lines passing through A. Suppose except A they
pass through B and C| respectively. Denote these two lines by ¢ and /¢,
respectively (see Fig 2.1).

Figure 2.1: The lines of L4

Next, we will prove that B uses {¢. Let us verify that in this case the node
C uses (5. Indeed, if B uses {¢ we have p; = {cq, where ¢ is a product of three
lines. Notice that the polynomial /gq is the fundamental polynomial of the
node C, which means that C' uses {g. Now, suppose by way of contradiction
that B does not use {¢. Therefore C' does not use /.

Thus, there are two nodes D and E in the 12 nodes of X \ {A, B,C}
using the lines {5 and /¢ respectively. In this case, we have p}, = {pq; and
Py = {cqe, where ¢; and g9 are polynomials of degree 3.

Since ¢; and ¢y have 10 common nodes we get from the Bezout theorem
that they have common linear factor «, passing through at most 4 nodes.
So we can write ¢; = af; and ¢ = «afy, where 5, and [ have at least 6
common nodes. Therefore, $; and 5 have common linear factor oy, passing
through at most 4 nodes.

Now, we have for the following presentations of the fundamental poly-
nomials: pj, = {paaiay and pj, = loaanas . Therefore ag and oo have at



least two common nodes, which means that they coincide. We have that
E € aUa; Uay and thus come to a contradiction, which proves that B uses

N

C-

Note that - was an arbitrary 2-node line, which means that B uses all
2-node lines different from ¢g. It is easy to see that any node from X" can use
at most one 2-node line, since otherwise if some node uses two 2-node lines
the remaining > 10 nodes have to lie on two. Therefore, we conclude that
there are no 2-node lines other than /5 and (¢, i.e., na(A) = 2. From here
and the equality (2.2) we get ny(A) = 4.

Thus, the 12 nodes of X \ {A, B,C} lie on four 4-node lines passing
through A. We denote these lines by ¢4, ..., 4.

Finally, by taking p(z,y) = ¢102050,, in the Lagrange formula (1.2), we
obtain
€1£2€3€4 = )\1}?% + )\2}96, (23)

since (1090304 vanishes in X'\ {B, C'}. Now recall that p}, = ¢¢q and p, = (pq,
where ¢ is a product of three 4-node lines passing through the 12 nodes of
X\ {A, B,C}. Thus we get

€1€2£3£4 = q()\léc + A2I€B).

Clearly none of the lines ¢; here is a factor of ¢q. Hence this leads to a contra-
diction, which proves Theorem 2.4.
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