On integral inequalities for product and
quotient of two multiplicatively convex functions

M. Aamir Ali®, Mujahid Abbas®, Zhiyue Zhang(®, Ifra Bashir Sial® and Rugia Arif(®
February 9, 2019

Abstract

In this paper, we derived integral inequalities of Hermite-Hadamard
type in the setting of multiplicative calculus for multiplicatively convex
and convex functions. We also derived integral inequalities of Hermite-
Hadamard type for product and quotient of multiplicatively convex and
convex functions in multiplicative calculus.
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mite Hadamard inequalities.

1 Introduction

During the period 1967-1970, Grossman and Katz defined a new type of deriv-
ative and integral replacing the roles of addition and subtraction with multipli-
cation and division, and thus established a new calculus, called multiplicative
calculus or non-Newtonian calculus. However, the multiplicative calculus is not
as popular as the calculus of Newton and Leibnitz despite the fact that it ad-
dresses all the problems that are expected from the subject of calculus. The
multiplicative calculus has a relatively restrictive application area compared to
the calculus of Newton and Leibnitz. In reality, it only covers positive functions.
Therefore, one might ask whether it is reasonable to develop a new instrument
with a restrictive purpose, while a well-developed instrument with a wider scope
has already been created. The answer is similar to why mathematicians use a po-
lar coordinate system while there is a system of rectangular coordinates, which
well describes the points of a plane ([10, 29]).

Recall that the multiplicative integral called * integral is denoted by f:f (f(z))d=
while the ordinary integral is denoted by f;f f(z)dz.This is due to the fact that
the sum of the terms of the product in the definition of a proper Riemann in-
tegral of f on [u1,us] is replaced with the product of terms raised to certain
powers.

It is also known that [2] if f is positive and Riemann integrable on [uy, us],



then it is *integrable on [u1, us] and

2 - "2 In(f(x))dz
/ (f(a))e = ez @)z,
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Consistent with [2] , the following results and notations will be needed in the
sequel.

0 L (@) = [ ((F@)=).

(i) [ 2 (f(@)g@)® = [2(f (@)™ [ (g(x)*,
(i) [ (Lyte = LU

(
(

9( — Laz gyt
iv) [, (f@)® = [ (F@)®™. [2(f@)®, w <c<us.
-1
V) U @) =1 and [ (F@) = (@)

The concept of convexity and its variant forms have played a fundamen-
tal role in the development of various fields. Hermite (1883) and Hadamard
(1896) independently shown that the convex functions are related to an integral
inequality known as Hermite-Hadamard inequality.

Let f: I C R — R be a convex function defined on interval I and uy,us € I.
Then following inequality holds

f <UI —; uz) = U2 iul /u2 f(x)dw = f(UI) —; f<uz>7 (1)

which is known as Hermite-Hadamrd integral inequality for the convex func-
tions. By an appropriate selection of the mapping f, some classical inequalities
for the mean can be derived from (1). Both inequalities in (1) holds in reverse
direction if f is concave. For several recent results concerning these types of
inequalities, we refer to [1, 6, 13, 15, 21, 23, 25] and references stated therein.

The main purpose of this article is to establish integral inequalities of the
Hermite Hadamard type for convex functions and multiplicatively convex func-
tions and their products and quotient in the setting of the multiplicative calcu-
lus.

2 Preliminaries

Definition 1 A non-empty set K is said to be convex, if for every ui,us € K
we have
ur + p(ug —ur) € K, V pelol].

Definition 2 A function f is said to be convex function on set K, if
flur + pluz —u1)) < f(ur) + p(f(uz) — fua)), ¥V p e (0,1].

Definition 3 A function f is said to be log or multiplicatively convex function
on set K, if

Flun + pluz —w)) < (F(w) ™" (flu2)", ¥V p € [0,1].



Definition 4 A function f is said to be quasi convex function on set K, if

flur + p(ug — ur)) < max(f(ur), f(u2)), v pe[0,1].

From the above definitions we have a relation

(f(u)' ™" (f(u2))"
fur) + p(f(u2) — f(ur))
max(f(u1), f(u2)).

fur + p(uz —up))
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3 Hermite-Hadamard Integral Inequalities

In this section, we derive integral inequalities of the Hermite Hadamard type
for positive functions in the framework of multiplicative calculus.

Theorem 5 Let f be a positive and multiplicatively convex function on interval
[u1,us], then following inequalities hold

() <) (f(x))d””)”l"” <G @), )

where G(.,.) is a geometric mean. The above is called Hermite Hadamard
Integral Inequalities for multiplicatively convex function.
Proof. Let f be a positive and multiplicatively convex function. Note that

lnf(“l‘;“2) _ ln<f<(1_’“‘)“1+W2;Mu1+(1—u)w>)
- 1n<f<(1_“>12”1+/~‘“2+MU1+(;—M)U2>)

(e (s o))
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Integrating the above inequality with respect to u on [0, 1], we have
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nr(t5) = g (s () ae s [ i (
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- % [w im /1:2 ) de Uy — Uz /u:l hl(f(x))dx}
it [t [P
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() )

1—p)
2

)



Thus

f (u ;u) (st iz m(se)e)

Hence

() < ([ wer) ®

Consider the second inequality

( / i (x))d’c>w - (e(f;‘ﬁ 1n(f<z>)dz)>uz—w

o (f22 (f(2))da)

— (o m(fur+p(uz—ur)))dp)

e(Jo m((F ()= (f (u2))* ) dp)

e(Jo (=) n f(ua) 4 n f(uz)dpn)
(

In(f (u1)-f (u2)) %)

IN

e

f(ur).f(uz)
= G(f(’lu), f<u2>)7

hence

( N (f(:v))d‘”) T G w), ). ()

1

Combining (3) and (4), we have

() < () v T < G, )

1

Example 6 Note that f(z) = e isa multiplicatively convez function. Suppose
that uy = 1 and us = 3. Then

f(w) — ()~ 545082

([ ) e (f (eﬂﬂz)”)% _ 761979

148.4132.
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which is true.



Theorem 7 Let f and g be positive and multiplicatively convex functions on
[u1,us], then following inequalities hold

f<U1;-U2>g

Proof. Let f and g be positive and multiplicatively convex functions. Note

that

(o

U1 +U2

w1 + Uz
2

U1—|—U2

2

)

2

))

)S(quuwflf@@wﬂwzl

IN

< G(f (), f(u2))-G(9(ur), g(uz)).
()

(o)) (252))

ln(f<(1 )ul—l—,uuQ—;—uul—&—l— )

+ln<g((1 )u1+uuz+uu1+ (1—p u2>)>

1n(f<(1_“)1;1+/w2+/w1+ (1-p ))
4l (Q((lu)zwm@ W1+ 1-p ))
ln((f«14—uﬁ“4%uuﬁ)%.Uwﬂu1+(1gi )

N|=

+m(@«1—um1+u@»%«gmmwwl—uma>)
S0 (U= )+ pun)) + 5 1 (f (s + (1~ )

2 n (g (s + (1 — p)ua)

5 (g (1= pun + puz)) + 5
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Integrating above inequality with respect to p on [0, 1], we have

(o

U1 +U2

U1 + Usg

2

)ol

2

))

1 11 1 11 1 d
5 m0(@ mn p) + S 107 s + (1= )|

1
+/0 B In (g (1 — p)ur + puz)) + %In (g (pun + (1 = M)w))} dp

1 u2 1 U1
o= /u In (/@) do + s / In (f(z)) da

1 w2 1 uy

! /?Zln(f(a:))da:+u2i /u?an(g(x))dx

U2 — UL Jy

Ui



e(uz — Jr2 In(f(@)dot ot [ ln(g(m))dm)

U1 + usg U1 + Uuo
(e (")

IN

f“z 1n(f(z))dz+f“2 ln(g(r))dz) u2iu1

_ ( J22 (7 (@)de f"fln<g<w)>dx)7uziul

|7 e [ ) .
Hence
f (“ ‘2“‘2) g (“1 +“2) (/ / <g<x>>“)”1”. (6)

Consider the second inequality:

</u2 (f($))dm . /UZ (g(m))da:> ug—ug _ (efl"le ln(f(a:))daH»fu"l? ln(g(x))dz) ”27iu1

U1 U1

(e(uz_"l){fo In(f (ur+p(uz—u1)))dpt[2 In(g(ur+n(uz—u) dﬂ})u2ul

efol ln(f(ul+,u(u2—u1)))d,u+f;12 In(g(ui+p(uz—u1)))dp
efol 1“((f(u1))17“-(f(u2))“)d#‘i'fol ln((g(ul))17“~(9(u2))“)d#

oo M((1=p) f (ur)+uf (uz))dpt [ In((1=p)g(u1)+hg(uz))du

IN

I (F (1) £ (u2)) 2 +n(g(u1).9(u2)) 3

= V(f(ur)-f(u2))-/(g(u1).g(uz))
= G (f(ur), f(uz)).G(g(u1), g(uz)).

Hence

(/ (f(m))di./uz (g(x))“)M < G (f(w), fluz)) .G(g(ur), gluz)). (7)

1 1

Combining (6) and (7), we have

(M) e () < ([ e [ ) T G ) ) Glglan) )

2 2 L L

This is called Hermite Hadamard type integral inequality for the product of
multiplicatively convex functions. m



Example 8 Note that f(z) = e and g(x) = el*l are multiplicatively convex
functions. Let uy =1 and uy = 3. Then

f(a;b)gcgb) = () 5 = 403.4288,

([ ver [" wer) o ([ [ (em)‘“f 5630302,

G(f(w), f(u2)).G(g(ur), g(uz)) = Vel.e?* Vel.e? =1096.6335.

which s true.

Theorem 9 Let f and g be positive and multiplicatively convexr functions on
[u1,us2]. Then the following inequalities

(8)

) @)™ G ), )
g (Bde) — f:f (g(z))™ ~ G(g(u1), g(uz))

hold.

Proof. Note that
-(4E5) - 005 ()
- (g m s
|

( <(1— )U1+MU2+MU1+ (1— p)ug )
—Infg

_ 1n<f<(1—/$)1201+/w2+/w1+ 1—p Uz))
ln<g<(1—ﬂ)ul+/~w2 /w1+ (1—p >

; )

I ((F (1= s + pu))® - (F (s + (1= puz))?)
—1n (g (1= s + p2))® (g (s + (1= pr)ua))? )
I (7 (1= o =+ o)+ 5 1 F o =+ (1= )

5 (1= oy + paz)) = 5 g (s + (1 )uz)).
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Integrating the above inequality with respect to u on [0, 1], we have

f(M) 1 1 1
In <g(m;§u2)> < /O [2 In (f (1 — p)us + puz)) + 3 In (f (pu1 + (1 — u)w))} dp

_/0 B In (g (1 = p)ur + un)) + %ln (g (pur + (1 — u)uz))] du
1

e I () da+ [ wsa i

2(’11,2 — U1 (Ul — ’LLQ) s

1 w2 1 u1

1 w2 1 Uz
= In(f(z))dx — / In(g(z)) dx
/u (o~ [P
ey [e2 n(f(@))de— ot [ ln(g(m))dm)

U2 — Uy

IN

f;‘f In(f(z))dz ﬁ
=\ i nGee)ds
1
( u2 f .'L' > Ug—uq
u1 g x

F(eg) (fif (f(x))(”) = o)
’ Ji? (g™

f:f In(f(z))dz— fu2 In(g (z))dw) uziul

w

Hence

Now consider,

1 L
o2 (g(a)™ - ef;‘f In(g(e))do
— (ef“2 In(f(x))dz— f“21n(g(x))dx)ﬁ

uq uq

efol In(f (urtp(uz—u1)))dp— [ In(g(us+u(ue—u1)))du

oo W ((F ) = (f(u2)*) = [ I((g(u1))* ~* (g(u2))*)

eJo ((I=p) In(f (u1))+pIn f(uz))dp— fg (1=p) In(g(ur))+ung(uz))du
I (1) (u2)) % ~In(g(ur).g(u2)) 3

_ \/(f(ul)-f(u2))
V (g(u1).g9(u2))

G ((f (u1), f(u2)))

G (g(u1),9(u2))

IN

oo



Hence

St D"\ _ G (), f(2)
[ (g(a))™ ~ G(g(u1),g(u2))

Combining (9) and (10), we have
P (fa)\ = < GU (), fluz))
o(55=) "\ [ @)™) 7 Glalw)gw))

This is called Hermite Hadamard Integral inequality for quotient of multi-
plicatively convex functions. m

Example 10 Note that f(z) = ¢ and g(z) = el*! are multiplicatively conver
functions. Suppose that w1 =1 and us = 3. Then

f(u142ru2) e(#)z

Emm) = s 7.3890,
I 2\ AT 2
<W> e M — 10.3123
[ (g™ HEE |
G(f(ur) f(u)) _ Vee” _ 20.0854.

G(g(u1), g(u2)) Ve.e3

which is true.

Theorem 11 Let f and g be conver and multiplicatively convex positive func-
tions, respectively. Then we have

1
" . ﬁ (f(ug))f (#2)\ Fluz)—7(u1)
Jile@)®) T Cllm) glu))e

where G(.,.) is a geometric mean.

(11)

Proof. Note that

1 . L
22 (@)™ — | (@)
U1
_ (oF e 2 e

— oo m(F(urtp(uz—u)))dp— [o In(g(ur+p(uz—u1)))du
< efo Wm(F(un)+p(f (uz) = f (u1)))dp— fo In((g(ur))' =" (g(u2))")dp

(f(uq))f (w0

G(g(u1),g(uz)).e




Hence

1
u do\ wp=a (f (u2)) “2) | Fluz) =7 1)
Ju, (f(@)) T ((f(uj))ﬂul)) -

[ (g(a))®™ G(g(u1), 9(u2)).e
This completes the proof. m

Theorem 12 Let f and g be multiplicatively convexr and convex positive func-
tions, respectively. Then

(f;‘f (f(w))“)”’“l” L GUm), fu))e

Sz (g(a))™ (aapeten) ) T
(g(u1))sCr)

where G(.,.) is geometric mean.

Proof. Note that

1 w 1
j‘;l? (f(.’L‘))(h ug—uj B efu12 In(f(x))dx \ uwz—ug
T ate) ™ T
_ (ef"l? ln(f(m))dmffjl2 ln(g(m))dx) u2i”1

— efol In(f (u1+p(uz—u1)))du— [ In(g(u1+p(uz—u1)))du

< efo m((F () H(f (u2))*)dp— fo In(g(ur)+p(g(u2)—g(ur)))dp
1

]n(G(f(u1),f(u2)))71H(<(g<u2))g(u2) > 9(“2)*9(“1))+1

(9(u1))9(u1)
G(f(u1), fluz))-e

(g(up))9tu)

= €

Hence

(f;‘f (f(w))“) G fu)e

S (g(a))™ B (<g(u2>>g<“2>>m'
(9(u)) 70D

This completes the proof. m

Theorem 13 Let f and g be convex and multiplicatively convex positive func-
tions, respectively. Then

— i

€

) : e (U T G ), )
([ e [ ew) N i) g

1 1

where G(.,.) is geometric mean.

10



Proof. Note that

(/

U2 U2

1
e [y ) T (s )
1 ul

_ efol In(f (u1+p(uz—u1)))dut [ In(g(ur+p(uz—u1)))du

uq

(e<u2—u1>{f; In(f (urp(ua =)t [2 (g (ua+p(uz —u

)))du}) e

< edo m(F(u)+p(f (uz) = F (u1))dptfo In((g(ur)'~# (g(uz))*)dp

(f(uy ) (v1)

1
ws ) (w2) ug)—f(u
1n(<M)“ 2= “>f1+ln<a<g<u1>,g<uz>>>
e

€

Hence

(/

1
ws ) (w2) \ Flug)—Flur)
(L) T G g ), g(w))

1
1 (f(u ))f(uz) flug)—f(uy)
s s wa (G Gla(w). g(u2))

et [ (g(x))d“) <

e
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