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Abstract
This paper discusses initial value problems for second order neutral impulsive integro-differential
equations with advanced argument. By using the fixed point theorem of either Leray-Schaude or
Banach, two existence results are obtained. By comparison, each of them has his own strong and
weak points. If appropriate changes are made to some conditions for two results, the same results
can be got. Two examples to illustrate our main results are given, which are compared with the
existence results for impulsive differential equations from existing literature.
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1 Introduction
Impulsive differential equations are now recognized as an excellent source of models to simulate

processes and phenomena observed in control theory, physics, chemistry, population dynamics,
biotechnology, industrial robotic, optimal control, etc. About initial value problems for impulsive
differential equations, many authors have obtained very good existence results (for example, see
[1-7]). Now consider the following equation
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<

:

(u(φ(t)))′′ = f(t, u(t), u′(t), Ku(t), Hu(t)), t ∈ J = [0, a], t 6= ξk,
∆u(tk) = I0k(u(tk)), ∆u′(tk) = I1k(u′(tk)), k = 1, · · · , p,
u(0) = u0, u′(0) = u′

0,
(1.1)

where 0 = t0 < t1 < · · · < tp < tp+1 = a, φ ∈ C2(J, R), φ is monotone increasing with
t ≤ φ(t) ≤ a (t ∈ J), φ(0) = 0, φ(a) = a, φ′(t) > 0 with φ−1 ∈ C2(J, R), and let φ(ξk) =
tk (k = 1, · · · , p), J∗ = J \{t1, · · · , tp}, J̄ = J \{ξ1, · · · , ξp}, f : J × R4 → R is continuous
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everywhere except at {ξk}×R4, f(ξ+
k , x, x′, y1, y2) and f(ξ−k , x, x′, y1, y2) exist, f(ξ−k , x, x′, y1, y2) =

f(ξk, x, x′, y1, y2), and Ku(t) =
R t

0
k(t, s)u(s)ds, Hu(t) =

R T

0
h(t, s)u(s)ds, k(t, s) ∈ C(D, R+),

h(t, s) ∈ C(J × J, R+), D = {(t, s) ∈ R2, 0 ≤ s ≤ t ≤ a}, k0 = max{k(t, s) : (t, s) ∈ D}, h0 =
max{h(t, s) : (t, s) ∈ J × J}, further and I0k, I1k ∈ C(R, R), ∆u(tk) = u(t+k ) − u(tk), ∆u′(tk) =
u′(t+k )−u′(tk). Denote by PC(X, Y ), where X ⊂ R, Y ⊂ R, the set of all functions u : X → Y which
are piecewise continuous in X with points of discontinuity of the first kind at the points tk ∈ X, i.e.,
there exist the limits u(t+k ) < ∞ and u(t−k ) = u(tk) < ∞.

2 Preliminaries
According to the properties of φ, there exist positive constants m1 and m2 such that m1 ≤ φ′(t) ≤

m2 for all t ∈ J .
Let E0 = {u|u, u′ ∈ PC(J, R)}

T

C2(J∗, R). Evidently, E0 is a real Banach space with norm
‖u(t)‖E0 = max{‖u(t)‖PC , ‖u′(t)‖PC}, where ‖u(t)‖PC = supt∈J |u(t)|, ‖u′(t)‖PC = supt∈J |u′(t)|.
Further, let E = {u(φ(t))|u(t) ∈ E0}. We can check that E is also a real Banach space with
norm ‖u(φ(t))‖ = max{‖u(φ(t))‖PC , ‖(u(φ(t)))′‖PC∗}, where ‖u(φ(t))‖PC = supt∈J |u(φ(t))| =

‖u(t)‖PC , ‖(u(φ(t)))′‖PC∗ = sup
φ(t)∈J

˛

˛

˛

˛

du(φ(t))

dφ(t)

˛

˛

˛

˛

· sup
t∈J

dφ

dt
= sup

t∈J
|u′(t)| · m2 = m2‖u′(t)‖PC .

Define operator B : u(t) 7−→ u(φ(t)), where u(t) ∈ E0 and u(φ(t)) ∈ E. It is evident that B is
topological linear isomorphic, which implies that E is a real Banach space.

Since
φ(a) − φ(0)

a − 0
= φ′(t̄) (0 < t̄ < a), i.e., φ′(t̄) = 1, we get m2 ≥ 1, next ‖(u(φ(t)))′‖PC∗ =

m2‖u′(t)‖PC ≥ ‖u′(t)‖PC , so
‖u(t)‖E0 ≤ ‖u(φ(t))‖. (2.1)

Lemma 2.1. u(t) ∈ E0 is a solution of (1.1) if and only if u(t) ∈ E0 is a solution of the following
integral equation

u(φ(t)) = u0 + u′
0t +

Z t

0

(t − s)f(s, u(s), u′(s), Ku(s), Hu(s))ds+
P

0<ξk<t[I0k(u(tk)) + (t − ξk)I1k(u′(tk))], t ∈ J.
(2.2)

Proof. (i) Necessity
For ξk < t ≤ ξk+1 (k = 0, 1, · · · , p), by (1.1), we get

u(t1) − u(0) = u(φ(ξ1)) − u(ξ(0)) =

Z ξ1

0

(u(φ(s)))′ds,

u(t2) − u(t+1 ) = u(φ(ξ2)) − u(φ(ξ+
1 )) =

Z ξ2

ξ1

(u(φ(s)))′ds,

· · · · · ·

u(tk) − u(t+k−1) = u(φ(ξk)) − u(φ(ξ+
k−1)) =

Z ξk

ξk−1

(u(φ(s)))′ds,

u(φ(t)) − u(t+k ) = u(φ(t) − u(φ(ξ+
k )) =

Z t

ξk

(u(φ(s)))′ds.

Adding these together, we obtain

u(φ(t)) = u(0) +

Z t

0

(u(φ(s)))′ds +

k
X

i=1

[x(t+i ) − x(ti)],
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u(φ(t)) = u0 +

Z t

0

(u(φ(s)))′ds +
X

0<ξk<t

I0k(u(tk)), t ∈ J. (2.3)

Similarly, we obtain

(u(φ(t)))′ = u′
0 +

Z t

0

(u(φ(s)))′′ds +
X

0<ξk<t

I1k(u′(tk)), t ∈ J. (2.4)

Substituting (2.4) into (2.3), it is easy to get (2.2).
(ii) Sufficiency
According to (2.2), it is clear that

u(0) = u0, ∆u(tk) = I0k(u(tk)). (2.5)

Differentiating both sides of (2.2), we have

(u(φ(t)))′ = u′
0 +

Z t

0

f(s, u(s), u′(s), Ku(s), Hu(s))ds +
X

0<ξk<t

I1k(u′(tk)), t ∈ J. (2.6)

Similarly, we also have

(u(φ(t)))′′ = f(t, u(t), u′(t), Ku(t), Hu(t)), t ∈ J̄ . (2.7)

By(2.6), it is evident that
u′(0) = u′

0, ∆u′(tk) = I1k(u′(tk)). (2.8)

From (2.5),(2.7) and (2.8), we get that u(t) is a solution of (1.1).

Lemma 2.2. (Leray-Schauder [6]) Let the operator A : X → X be completely continuous, where X
is a real Banach space. If the set G = {‖x‖ |x ∈ X, x = λAx, 0 < λ < 1} is bounded, then the
operator A has at least one fixed point in the closed ball T = {x|x ∈ X, ‖x‖ ≤ R}, where R = sup G.

Lemma 2.3. (Compactness criterion [7]) H ⊂ PC(J, R) is a relatively compact set if and only if
H ⊂ PC(J, R) is uniformly bounded and equicontinuous on every Jk (k = 0, · · · , p), where J0 =
[t0, t1], Jk = (tk, tk+1] (k = 1, · · · , p).

3 Main Result
Let us introduce the following conditions for later use:

(H1) There exist nonnegative constants b, c, di (i = 1, 2), bk, ck (k = 1, · · · , p),
and g ∈ L(J, R+) such that |f(t, x2, y2, z12, z22) − f(t, x1, y1, z11, z21)|

≤ g(t)
`

b‖x2 − x1‖PC + c‖y2 − y1‖PC +
2

P

i=1

di‖zi2 − zi1‖PC

´

, t ∈ J,

|I0k(x2(tk)) − I0k(x1(tk))| ≤ bk|x2(tk) − x1(tk)|, I0k(0) = 0, k = 1, · · · , p,
|I1k(y2(tk)) − I1k(y1(tk))| ≤ ck|y2(tk) − y1(tk)|, I1k(0) = 0, k = 1, · · · , p,
where x1, x2 ∈ E0, yi(t) = ȳ′

i(t), ȳi(t) (i = 1, 2) ∈ E0, z1i = Kz̄1i, z2i = Hz̄2i, z̄1i, z̄2i

(i = 1, 2) ∈ E0, a0 =

Z a

0

g(t)dt.

(H2) There exist positive constant M such that |f(t, u(t), u′(t), Ku(t), Hu(t))| ≤ M(1 + ‖u(t)‖E0).

(H3) l = max{l1, l2} < 1, where l1 = a2M +
p

P

k=1

(bk + ack), l2 =
m2

m1

`

aM +

p
X

k=1

ck

´

.
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(H4) r = max{r1, r2} < 1, where r1 = aa0

`

b + c + ad1k0 + ad2h0

´

+
p

P

k=1

(bk + ack),

r2 =
m2

m1

ˆ

a0

`

b + c + ad1k0 + ad2h0

´

+

p
X

k=1

ck

˜

.

Theorem 3.1. If conditions (H1),(H2) and (H3) are satisfied, then (1.1) has at least one solution in the
closed ball B = {u(φ(t))|u(φ(t)) ∈ E, ‖u(φ(t))‖ ≤ R}, where R = sup G, G = {‖u(φ(t))‖ |u(φ(t)) ∈
E, u(φ(t)) = λAu(φ(t)), 0 < λ < 1}.

Proof. (i) For any u(φ(t)) ∈ E define the operator A by

Au(φ(t)) = u0 + u′
0t +

Z t

0

(t − s)f(s, u(s), u′(s), Ku(s), Hu(s))ds+
P

0<ξk<t

[I0k(u(tk)) + (t − ξk)I1k(u′(tk))], t ∈ J.
(3.1)

It is easy to see that Au(φ(t)) ∈ E0. According to the properties of φ, for any v(t) ∈ E0, we have
v(t) = v(φ−1(φ(t))) = vφ−1(φ(t)). Let u = vφ−1. Next, it is clear that v(t) = u(φ(t)) ∈ E. It follows
that A maps E into E. Thus Au(φ(t)) ∈ E with

(Au(φ(t)))′ = u′
0 +

Z t

0

f(s, u(s), u′(s), Ku(s), Hu(s))ds +
X

0<ξk<t

I1k(u′(tk)), t ∈ J. (3.2)

A is a completely continuous operator will be verified by the following tree steps.
Step1. A is continuous.
Let any un(φ(t)) (n = 1, 2, · · · ), u(φ(t)) ∈ E with ‖un(φ(t)) − u(φ(t))‖ → 0 as n → ∞.

By (3.1) and (H1), we have

|Aun(φ(t)) − Au(φ(t))| ≤
Z t

0

(t − s)g(s)
ˆ

b‖un(s) − u(s)‖PC+

c‖u′
n(s) − u′(s)‖PC + d1‖Kun(s) − Ku(s)‖PC + d2‖Hun(s) − Hu(s)‖PC

˜

ds+
P

0<ξk<t

[bk|un(tk) − u(tk)| + (t − ξk)ck|u′
n(tk) − u′(tk)|]

≤
`

b + c + ad1k0 + ad2h0

´

‖un(t) − u(t)‖E0

Z t

0

(t − s)g(s)ds+

‖un(t) − u(t)‖E0

P

0<ξk<t

[bk + (t − ξk)ck],

|Aun(φ(t))−Au(φ(t))| ≤
ˆ

aa0

`

b+c+ad1k0 +ad2h0

´

+

p
X

k=1

(bk +ack)
˜

‖un(t)−u(t)‖E0 , t ∈ J. (3.3)

Then from (3.3) and (2.1), we have

‖Aun(φ(t)) − Au(φ(t))‖PC ≤
ˆ

aa0

`

b + c + ad1k0 + ad2h0

´

+

p
X

k=1

(bk + ack)
˜

‖un(t) − u(t)‖E0 ,

‖Aun(φ(t))−Au(φ(t))‖PC ≤
ˆ

aa0

`

b+c+ad1k0+ad2h0

´

+

p
X

k=1

(bk +ack)
˜

‖un(φ(t))−u(φ(t))‖. (3.4)

Thus
‖Aun(φ(t)) − Au(φ(t))‖PC → 0 as n → ∞. (3.5)

Similarly, from (3.2) and (2.1), we get
˛

˛

˛

˛

d[Aun(φ(t)) − Au(φ(t))]

dφ(t)

˛

˛

˛

˛

dφ

dt
= |(Aun(φ(t)) − Au(φ(t)))′| = |(Aun(φ(t)))′ − (Au(φ(t)))′|

≤
ˆ

a0

`

b + c + ad1k0 + ad2h0

´

+
p

P

k=1

ck

˜

‖un(φ(t)) − u(φ(t))‖,
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˛

˛

˛

˛

d[Aun(φ(t)) − Au(φ(t))

dφ(t)

˛

˛

˛

˛

≤ 1

m1

ˆ

a0

`

b + c + ad1k0 + ad2h0

´

+

p
X

k=1

ck

˜

‖un(φ(t)) − u(φ(t))‖, t ∈ J,

‖(Aun(φ(t))−Au(φ(t)))′‖PC∗ ≤ m2

m1

ˆ

a0

`

b+c+ad1k0 +ad2h0

´

+

p
X

k=1

ck

˜

‖un(φ(t))−u(φ(t))‖. (3.6)

Thus
‖(Aun(φ(t)) − Au(φ(t)))′‖PC∗ → 0 as n → ∞. (3.7)

By (3.5) and (3.7), it is easy to see that ‖Aun(φ(t)) − Au(φ(t))‖ → 0 as n → ∞, that is to say, A is
continuous.

Step 2. A maps any bounded subset of E into one bounded subset of E.
Let T be any bounded subset of E. Then there exist h > 0 such that ‖u(φ(t))‖ ≤ h for all

u(φ(t)) ∈ J .
By (3.1),(H1),(H2) and (2.1), we have

|Au(φ(t))| ≤ |u0| + |u′
0|t +

Z t

0

(t − s)M(1 + ‖u(s)‖E0)ds +
X

0<ξk<t

[bk|u(tk)| + (t − ξk)ck|u′(tk)|]

≤ |u0| + a|u′
0| + M(1 + ‖u(t)‖E0)

Z a

0

ads + ‖u(t)‖E0

X

0<ξk<t

(bk + ack)

≤ |u0| + a|u′
0| + M(1 + ‖u(θ(t))‖)

Z a

0

ads + ‖u(φ(t))‖
p

X

k=1

(bk + ack)

≤ |u0| + a|u′
0| + a2M(1 + h) + h

p
P

k=1

(bk + ack), t ∈ J,

so

‖Au(φ(t))‖PC ≤ |u0| + a|u′
0| + a2M(1 + h) + h

p
X

k=1

(bk + ack). (3.8)

Similarly, from(3.2),(H1),(H2) and (2.1), we get

˛

˛

˛

˛

dAu(φ(t))

dφ(t)

˛

˛

˛

˛

· dφ

dt
= |(Au(φ(t)))′| ≤ |u′

0| + aM(1 + h) + h

p
X

k=1

ck, t ∈ J,

˛

˛

˛

˛

dAu(φ(t))

dφ(t)

˛

˛

˛

˛

≤ 1

m1

ˆ

|u′
0| + aM(1 + h) + h

p
X

k=1

ck

˜

, t ∈ J,

so

‖(Au(φ(t)))′‖PC∗ ≤ m2

m1

ˆ

|u′
0| + aM(1 + h) + h

p
X

k=1

ck

˜

. (3.9)

According to (3.8) and (3.9), we obtain

‖Au(φ(t))‖ ≤ max
n

|u0|+ a|u′
0|+ a2M(1 + h) + h

p
X

k=1

(bk + ack),
m2

m1

ˆ

|u′
0|+ aM(1 + h) + h

p
X

k=1

ck

˜

o

.

Therefore A(T ) is uniformly bounded.
Step 3. A(T ) is equicontinuous on every Jk (k = 0, · · · , p), where J0 = [0, ξ1], Jk = (ξk, ξk+1] (k =

1, · · · , p).

For any Au(φ(t)) ∈ A(T ) and any ε > 0, take δ =
ˆ

|u′
0| + aM(1 + h) + h

p
P

k=1

ck

˜−1
ε. Then if

t1, t2 ∈ Jk and |t1 − t2| < δ with t1 < t2, from (3.1),(H1),(H2) and (2.1), we have
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|Au(φ(t2)) − Au(φ(t1))| ≤ |u′
0|(t2 − t1) +

Z t2

t1

(t − s)M(1 + ‖u(s)‖E0)ds +

k
X

i=1

(t2 − t1)ci|u′(ti)|

≤
ˆ

|u′
0| + aM(1 + ‖u(t)‖E0) + ‖u(t)‖E0

k
P

i=1

ci

˜

(t2 − t1)

≤
ˆ

|u′
0| + aM(1 + ‖u(φ(t))‖) + ‖u(φ(t))‖

p
P

k=1

ck

˜

|t2 − t1| ≤
ˆ

|u′
0| + aM(1 + h) + h

p
P

k=1

ck

˜

|t2 − t1| < ε.

Thus, A(T ) is equicontinuous on every Jk (k = 0, · · · , p).
As a consequence of Step 1-3, A is completely continuous.
(ii) For any ‖u(φ(t))‖ ∈ G, similar with getting (3.8) and (3.9), we have respectively

‖Au(φ(t))‖PC ≤ |u0| + a|u′
0| + a2M +

ˆ

a2M +
p

P

k=1

(bk + ack)
˜

‖u(φ(t))‖

= |u0| + a|u′
0| + a2M + l1‖u(φ(t))‖,

‖(Au(φ(t)))′‖PC∗ ≤ m2

m1
(|u′

0| + aM) +
m2

m1

`

aM +

p
X

k=1

ck

´

‖u(φ(t))‖ =
m2

m1
(|u′

0| + aM) + l2‖u(φ(t))‖.

Then ‖u(φ(t))‖ = λ‖Au(φ(t))‖ ≤ ‖Au(φ(t))‖ ≤ L + l‖u(φ(t))‖, where L = max
˘

|u0| + a|u′
0| +

a2M,
m2

m1
(|u′

0| + aM)
¯

. It follows that ‖u(φ(t))‖ ≤ L

1 − l
, i.e., G is bounded.

From (i) and (ii), now all conditions of Lemma 2.2 are satisfied and therefore the proof is complete.

Theorem 3.2. If conditions (H1) (I0k(0) = 0, I1k(0) = 0 are not needed) and (H4) are satisfied, then
(1.1) has a unique solution.

The proof of Theorem 3.2 is similar to that of Theorem 3.1, and is omitted here.
Remark 3.1. By comparing Theorem 3.1-3.2, each of them has his own strong and weak points. The
condition (H3) of Theorem 3.1 is more easily satisfied than the condition (H4) of Theorem 3.2. The
condition (H2) of Theorem 3.1 is also satisfied easily, but Theorem 3.2 hasn’t the condition. The result
of Theorem 3.1 determines that (1.1) has at least one solution in the closed ball B.
Remark 3.2. If the corresponding formulas of (1.1),(H1),(H3) and (H4) are respectively changed
into ∆u(tk) = I0k(u(tk), u′(tk)), ∆u′(tk) = I1k(u(tk), u′(tk)) of (1.1), |I0k(x2(tk)) − I0k(x1(tk))| ≤
b1k|x2(tk)−x1(tk)|+b2k|y2(tk)−y1(tk)|, |I1k(y2(tk))−I1k(y1(tk))| ≤ c1k|x2(tk)−x1(tk)|+c2k|y2(tk)−

y1(tk)| of (H1), l1 = a2M +
p

P

k=1

[(b1k + b2k) + a(c1k + c2k)], l2 =
m2

m1

`

aM +

p
X

k=1

(c1k + c2k)
´

of (H3),

r1 = aa0

`

b + c + ad1k0 + ad2h0

´

+
p

P

k=1

[(b1k + b2k) + a(c1k + c2k)], r2 =
m2

m1

ˆ

a0

`

b + c + ad1k0 +

ad2h0

´

+

p
X

k=1

(c1k + c2k)
˜

of (H4), then there are also the same results as Theorem 3.1-3.2.

4 Examples
Example 4.1. Consider the equation

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

`

u(t +
1

2
t(1 − t))

´′′
=

t

66

h

11 sin(u(t) + et) − 2u′(t) + 6

Z t

0

(ts)u(s)ds+

3

Z 1

0

(ts2)u(s)ds
i

, t ∈ J = [0, 1], t 6= ξ1 =
1

2
,

∆u(t1) =
1

12
u(t1), ∆u′(t1) =

1

12
u′(t1), t1 =

5

8
,

u(0) = u0, u′(0) = u′
0,

(4.1)
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Firstly, it is easy to verify that φ(t) = t +
1

2
t(1 − t), k(t, s) = ts, k0 = 1, h(t, s) = ts2, h0 = 1

all satisfy the requisitions of (1.1). From φ′(t) =
3

2
− t, we get m1 = 1/2, m2 = 3/2. Next, since

f(t, x, y, z1, z2) =
t

66

ˆ

11 sin(x + et) − 2y + 6z1 + 3z2

˜

, and | sin(x2(t) + et) − sin(x1(t) + et)| =

|(x2(t)+et)− (x1(t)+et)| · | cos(x̄(t)+et)| ≤ |x2(t)−x1(t)| (x̄(t) is located between x1(t) and x2(t)),
we have

|f(t, x2, y2, z12, z22) − f(t, x1, y1, z11, z21)|
≤ t

66

ˆ

11| sin(x2 + et) − sin(x1 + et)| + 2|y2 − y1| + 6|z12 − z11| + 3|z22 − z21|
˜

≤ t
ˆ1

6
|x2 − x1| +

1

33
|y2 − y1| +

1

11
|z12 − z11| +

1

22
|z22 − z21|

˜

≤ t
ˆ1

6
‖x2 − x1‖PC +

1

33
‖y2 − y1‖PC +

1

11
‖z12 − z11‖PC +

1

22
‖z22 − z21‖PC

˜

, t ∈ J,

where b =
1

6
, c =

1

33
, d1 =

1

11
, d2 =

1

22
, a = 1, a0 =

Z 1

0

tdt =
1

2
. From I01(x) =

1

12
x, I11(y) =

1

12
y, we have

|I01(x2(t1)) − I01(x1(t1))| ≤
1

12
|x2(t1) − x1(t1)|, I01(0) = 0,

|I11(y2(t1)) − I11(y1(t1))| ≤
1

12
|y2(t1) − y1(t1)|, I11(0) = 0,

where b1 = c1 =
1

12
. Further, we have

|f(t, u(t), u′(t), Ku(t), Hu(t))|

≤ 1

66

h

11| sin(u(t) + et)| + 2|u′(t)| + 6

Z t

0

k(t, s)|u(s)|ds + 3

Z 1

0

h(t, s)|u(s)|ds
i

≤ 1

66
[11 + 2‖u(t)‖E0 + 6‖u(t)‖E0 + 3‖u(t)‖E0 ] =

1

6
(1 + ‖u(t)‖E0),

where M =
1

6
. Finally, since l1 = a2M + (b1 + ac1) =

1

3
, l2 =

m2

m1
(aM + c1) =

3

4
, we get

l = max{l1, l2} =
3

4
< 1.

Thus (4.1) satisfies all conditions of Theorem 3.1. It follows that (4.1) has at least one solution in
the closed ball B.

Example 4.2. Consider the equation
8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

`

u(t +
1

2
t(1 − t))

´′′
=

t

108

h

12
p

1 + u2(t) − 6 arctan(u′(t) + et) + 3

Z t

0

(ts)u(s)ds+

3

Z 1

0

(ts2)u(s)ds
i

, t ∈ J = [0, 1], t 6= ξ1 =
1

2
,

∆u(t1) =
1

18
u(t1) + 1, ∆u′(t1) =

1

18
u′(t1) + 2, t1 =

5

8
,

u(0) = u0, u′(0) = u′
0,

(4.2)

Firstly, it is easy to verify that φ(t) = t +
1

2
t(1 − t), k(t, s) = ts, k0 = 1, h(t, s) = ts2, h0 = 1

all satisfy the requisitions of (1.1). From φ′(t) =
3

2
− t, we get m1 = 1/2, m2 = 3/2. Next, since

f(t, x, y, z1, z2) =
t

108

ˆ

12
p

1 + x2 − 6 arctan(y + et)+3(z1 + z2)
˜

, and |
p

1 + x2
2(t)−

p

1 + x2
1(t)| =

|x2(t) − x1(t))| · |
|x̄(t)|

1 + |x̄(t)|2 ≤ |x2(t) − x1(t)|, | arctan(y2(t) + et) − arctan(y1(t) + et)| = |(y2(t) +
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et)− (y1(t) + et)| · 1

1 +
`

ȳ(t) + et
´2 ≤ |y2(t)− y1(t)| (x̄(t) is located between x1(t) and x2(t), ȳ(t) is

located between y1(t) and y2(t)), we have

|f(t, x2, y2, z12, z22) − f(t, x1, y1, z11, z21)|

≤ t

108

h

12
˛

˛

˛

q

1 + x2
2 −

q

1 + x2
1

˛

˛

˛

+ 6| arctan(y2 + et) − arctan(y1 + et)| + 3

2
X

i=1

|zi2 − zi1|
i

≤ t
h1

9
|x2 − x1| +

1

18
|y2 − y1| +

1

36

2
X

i=1

|zi2 − zi1|
i

≤ t
h1

9
‖x2 − x1‖PC +

1

18
‖y2 − y1‖PC +

1

36

2
X

i=1

‖zi2 − zi1‖PC

i

, t ∈ J,

where b =
1

9
, c =

1

18
, d1 = d2 =

1

36
, a = 1, a0 =

Z 1

0

tdt =
1

2
. From I01(x) =

1

18
x + 1, I11(y) =

1

18
y + 2, we have

|I01(x2(t1)) − I01(x1(t1))| ≤
1

18
|x2(t1) − x1(t1)|, |I11(y2(t1)) − I11(y1(t1))| ≤

1

18
|y2(t1) − y1(t1)|,

where b1 = c1 =
1

18
. Finally, since r1 = aa0(b + c + ad1k0 + ad2h0) + (b1 + ac1) =

2

9
, r2 =

m2

m1
[a0(b + c + ad1k0 + ad2h0) + c1] =

1

2
, we get r = max{r1, r2} =

1

2
< 1.

Thus (4.2) satisfies all conditions of Theorem 3.2. It follows that (4.2) has a unique solution.

5 Conclusion
We have derived some existence results for second order neutral impulsive integro-differential

equations with advanced argument. Firstly, u(t) ∈ E0 is a solution of (1.1) if and only if u(t) ∈ E0

is a solution of the integral equation. Although the methods used are conventional, the impulsive
integro-differential equations are different from the past, with that are higher-order and advanced. The
difficulty of solving the problem have increased a lot, with the equations are from the first order and
advanced to the higher order and advanced. Because Theorem 3.1-3.2 have their own advantages
and disadvantages, we can choose according to the conditions given. Finally, two examples are
given to illustrate the effectiveness and superiority of our main results, which are compared with the
examples for impulsive differential equations from existing literature.
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