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Abstract
This paper concerns the application of adaptive control method in a four-dimensional hyperchaotic
system. Firstly, we carry out a systematic dynamic analysis including the properties of equilibrium
point, stability, dissipation, Lyapunov exponent spectrum, and bifurcation. Both the existence of two
positive Lyapunov exponents and the Lyapunov dimension value show the hyperchaotic property
of the system. Based on Lyapunov stability theorem, we then construct an adaptive controller
and the adaptive law to suppress hyperchaos to the origin, which is an unstable equilibrium point
under a certain parameter set. The effectiveness of the adaptive control is verified by theoretical
analysis and numerical simulation. We finally briefly demonstrate the control efficiency of self-linear
feedback control and misaligned feedback control. For the four-dimensional hyperchaotic system,
the adaptive control outperforms them from the view of control speed.

Keywords: Adaptive control; Control speed; Dynamic analysis; Hyperchaotic system; Misaligned
feedback control; Self-linear feedback control

1 Introduction
Chaos is a complex phenomenon possessing characteristics of sensitivity on initial conditions, intrinsic
randomness, and random order [1]. It may be undesirable in many applications of biological, physical,
and engineering due to these sensitive features [2]. Theoretically, chaos is identified in the sense of
Lyapunov when its largest Lyapunov exponent is positive. A more complex phenomenon, called
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hyperchaos, occurs if there are more than one positive Lyapunov exponents in a system [3]. The
concept of hyperchaos was first proposed by Rössler [4] who constructed a four-dimensional hyper
Rössler system with computer numerical simulation. Compared with chaotic systems, a hyperchaotic
system presents more complex dynamic behaviors and is yet technically more challenging [5].

Generally, the 4D systems have more complex properties compared with 3D systems. Firstly,
the existence of hyperchaos needs a fourth dimension. So some analyzing tools for 3D system are
not valid to 4D system [2]. Moreover, the 4D system will experience a broader bifurcation. The
mathematical model with dimensions higher than three is beneficial to model practical problems
such as electronic circuits [6], electroencephalograms [7], and chemical systems [8]. Finally, the
higher dependence of hyperchaotic system on initial conditions has practical applications such as
information encryption and secure communication than 3D chaos system [10].

In the past four decades, many hyperchaotic systems have been discovered in the fields of secure
communications, image encryption, cryptography, optical, chemical, physical, biological systems, and
neural networks [11, 12, 13]. Many hyperchaotic systems were constructed by modifying an already
existed 3D chaotic system. A continuous autonomous hyperchaotic system without equilibrium points
was constructed by adding a feedback controller to a 3D autonomous chaotic Lorenz-type system
[14]. Bonyah [15] proposed a new hyperchaotic system with four wings by changing the non-local and
non-singular fractional derivatives. A novel 5D hyperchaotic system with infinitely many heteroclinic
orbits was found through replicating and mutating the famous Shimizu-Morioka system [16]. Based
on the method of system variable expansion, Sun et al. [17] constructed a new 4D hyperchaotic
system.

Research on chaos and hyperchaos control has attracted considerable attention with the increase
of hyperchaotic systems. A variety of chaos control methods have been proposed, such as impulsive
control method, optimal control, adaptive control, linear feedback control, sliding mode control method,
misaligned linear feedback control, and nonlinear hyperbolic function feedback control. In the Lorenz
hyperchaotic system, Zhu [18] designed a linear feedback controller to control the hyperchaos of
a system to an unstable equilibrium point. The robust control with input nonlinear Rössler system
was achieved via sliding mode control method [19]. Chen et al. [20] obtained some new and
weak conservative conditions for projective and lag synchronization through an impulsive control
method. Zhuang [21] confirmed the system’s hyperchaotic attractors are controlled to unstable
equilibrium point by using single state feedback control, misaligned linear feedback control, and
nonlinear hyperbolic function feedback control, and the feedback coefficients in various control methods
are compared.

Among the above mentioned control methods, adaptive control is prevalent in the literature owing
to its fast control speed and the capability of dealing with unknown parameters [22]. Oudina [23, 24]
solved the 2D governing equations numerically using a finite volume method. Based on the adaptive
control of the corresponding driving circuit, Zhang et al. [25] indicated that 2D/3D switching and 3D
video sources with different parallax images can appear in the same autostereoscopic display system.
The results show that the increase of heat source length ratio make the critical Rayleigh number go
down. According to adaptive control method, Effati et al. [26] achieved the chaos control of a 3D
autonomous chaotic system and a 4D hyperchaotic system. By automatically adjusting gap-state
expectations, Zhou et al. [27] confirmed that the extended adaptive control system not only enhanced
machining robustness but also greatly improved its machining abilities. Nussbaum functions are
used in adaptive controller design for solving unknown control direction. Chen [28] found a kind of
Nussbaum functions to deal with time-varying unknown control coefficients in adaptive control.

Besides, adaptive control is also widely used in hydrodynamic stability, cruise flight, the human
body model, and cancer therapy [29, 30]. A low-dimension full-envelope adaptive control which meets
the practical task of full-envelope hypersonic flight is proposed by An et al. [31]. Wang et al. [32]
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designed an event-adaptive backstepping controller in the attitude tracking of spacecraft. Their
research results show that the controller could significantly reduce the communication burden and
provided a stable and accurate response for attitude maneuvers. A new type of adaptive control
that can well instruct the human arm model to imitate the arrived movements was found by Wang
et al. [33]. According to an adaptive controller based on bio-inspired, Molina et al. [34] achieved
a highly efficient speed regulation of the DC motor under uncertain parameters. Teles and Lemos
[35] designed a cancer therapy to eradicate metastatic renal cell carcinoma through adaptive control,
the robustness in stability and performance is verified by numerical simulation. Palis [36] showed
that the non-identifier-based adaptive control can control the nonlinear oscillations in the particle size
distribution. Although the applications on adaptive control have been involved in many fields, the
transient performance in adaptive control systems has remained a tricky issue. A large transient error
could occur at the start of a control process and especially when there is a time-varying parameter
[37].

Following the general stream of constructing hyperchaos, in particular designing a hyperchaotic
system from an originally chaotic but non-hyperchaotic system with some simple feedback control
techniques purposefully, which is a theoretically very attractive and yet technically challenging work
[38]. Moreover, the idea of environmental tax reform to shift tax towards profits arisen from the
increasingly serious environmental problems. Therefore, a nonlinear controller is added to the 3D
Resource-Economy-Pollution system [39]. Let x, y, z, and w represent the state variables which are
linearly independent with each other among the internal variables of the system. In actual environmental
economic issues, the state variables x, y, z, and w represent the total resources consumed, the GDP,
the amount of pollution, and the amount of environmental taxes in an economy during a period. The
dimensionless 4D system is as follows [40]

ẋ = a1x+ a2y − a3yz − a4w,
ẏ = b1x(1− x/M)− b2y − b3z + b4w,

ż = c1xy − c2z − c3w,
ẇ = dw(z −N),

(1.1)

where the dot ‘·’ expresses the derivative with respect to time, parameter families a, b, and c together
with d,M,N are positive. The number of equilibrium points depends on the values of parameters.
However, the origin O(0, 0, 0, 0) is always an equilibrium point. This paper adopts adaptive control
to suppress the hyperchaotic system to the origin which is an unstable equilibrium point. Numerical
simulations will be used to show the effectiveness of the adaptive control. A comparison with other
control methods will be applied to verify the advantages of adaptive control.

The novelty of this study lies in the following three aspects. Firstly, this paper sets up a new model
in the field of environmental economic. The second contribution is that the obtained attractor is also a
new hyperchaotic attractor compared with the previous attractors. Last but not least, this paper makes
a comparison among adaptive control, self-linear feedback control, and misaligned feedback control
on the control speed.

The outlines of this paper are organized as follows. The dynamic analysis of the hyperchaotic
system is proposed in section 2. Section 3 provided the theoretical analysis of adaptive control. The
numerical simulation and comparison analysis are given in section 4. In the last section, this paper
draws conclusions.

2 A hyperchaotic system and its dynamic analysis
This section will show that the system (1.1) is hyperchaotic via analyzing the dynamic behaviors
such as bifurcation diagram, Lyapunov exponents spectrum, dissipative analysis, equilibrium point
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analysis, max Lyapunov exponent, and Lyapunov dimension.
The hyperchaotic parameters are obtained through step by step searching. Based on Routh-

Hurwitz criterion and dissipative analysis, the range of chaotic parameters is reduced. Furthermore,
the range of hyperchaotic parameters is determined in the light of Lyapunov exponents spectrum.
Therefore, we select a set of parameters

a1 = 0.065, a2 = 0.035, a3 = 0.065, a4 = 0.026,
b1 = 0.6, b2 = 0.088, b3 = 0.07, b4 = 0.066,
c1 = 0.468, c2 = 0.071, c3 = 0.816, d = 0.035,
M = 6.6, N = 0.45.

(2.1)

and initial value [0.196, 0.36, 0.88, 0.29], the system (1.1) will exist hyperchaos.
The following dynamic analysis will be performed under the parameters and the initial value.

2.1 Bifurcation diagram and Lyapunov exponents spectrum
This subsection mainly proves the existence of hyperchaos by bifurcation diagram and Lyapunov
exponents spectrum.

For one thing, the existence of chaos is tested by bifurcation diagram. The bifurcation diagram
as shown in Fig. 1. We select bifurcation for z due to the main role of the environmental tax is
to reduce pollution, where c2 is the bifurcation parameter. There is an abrupt bifurcation occurs in
the system about c2 = 0.122 which is the critical value between stable and unstable of the system.
Therefore, the chaos would appear at these parameters where its value is smaller than c2 according
to the bifurcation diagram.

For another, the existence of hyperchaos is verified by Lyapunov exponents spectrum. Fig. 2
shows the Lyapunov exponents spectrum of the system. The system might be hyperchaos at specific
parameters where the two of maximum Lyapunov exponents are positive.

2.2 Dissipative analysis
The dissipation of the system (1.1) will be discussed in the subsection. The system has a dissipative
structure, which is a necessary condition for the generation of chaos.

The divergence of the system (1.1) is

∇V =
1

V

dV

dt
=
∂ẋ

∂x
+
∂ẏ

∂y
+
∂ż

∂z
+
∂ẇ

∂w
= a1 − b2 − c2 + d(z −N). (2.2)

According to the parameters selected by Eq.(2.1), the divergence can be simplified to

∇V = 0.035z − 0.10375. (2.3)

When ∇V < 0, i.e., 0.035z < 0.10375, the system (1.1) has been dissipated and convergence
with the exponent dV

dt
= e0.035z−0.10375. In pace with t → ∞, each volume element containing the

system trajectory converges to zero with 0.035z − 0.10375. All system trajectories will be limited to a
finite subset with zero volume and its asymptotic dynamic behaviors are fixed to an attractor, which
further certificates the existence of attractors [41].

2.3 Equilibrium point analysis
This subsection will analyze the equilibrium point of the system (1.1). The equilibrium point is an
unstable saddle point is another necessary condition for the existence of chaos.
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Let the four equations in system (1.1) are all equal to zero, we can get the equilibrium points of
the system. Specifically, the origin O(0, 0, 0, 0) is always an equilibrium point. Below we only discuss
the stability of the system at the equilibrium point O(0, 0, 0, 0).

The Jacobian matrix of system (1.1) at point O(0, 0, 0, 0) is

J =


a1 a2 0 −a4
b1 −b2 −b3 b4
0 0 −c2 −c3
0 0 0 −dN

 . (2.4)

The characteristic equation is

(λ2 + (b2 − a1)λ− a1b2 − a2b1)(λ+ c2)(λ+ dN) = 0. (2.5)

Under the parameters of Eq.(2.1), the four eigenvalues of the Eq.(2.5) are λ1 = 0.1524, λ2 =
−0.1745, λ3 = −0.071, λ4 = −0.01575, where λ1 is a positive real number, λ2, λ3, and λ4 are a
negative real number. By Routh-Hurwitz criterion, the equilibrium point O(0, 0, 0, 0) is an unstable
saddle point, which might lead to chaos [42].

2.4 Hyperchaotic attractor
The hyperchaos will be proved by Lyapunov exponents and Lyapunov dimension under specific
parameters in this subsection. The Lyapunov dimension between three and four is the sufficient
condition to the existence of hyperchaotic attractor [43].

Under the set of parameters (2.1) and the initial value [0.196, 0.36, 0.88, 0.29], system (1.1) has
Lyapunov exponents LE1 = 0.0179, LE2 = 0.0042, LE3 = −0.0197, LE4 = −0.0959 by the Jacobian
method [44]. There are two positive Lyapunov exponents and the sum of all Lyapunov exponents is
negative.

The Lyapunov dimension is

DL = 3 +
LE1 + LE2 + LE3

|LE4|
= 3.025, (2.6)

indicating that the system (1.1) is in hyperchaos.
The corresponding hyperchaotic attractor is shown in Fig. 3. The hyperchaotic attractor is

a new attractor compared with the previous hyperchaotic attractors such as Rösser hyperchaotic
attractor, Lorenz hyperchaotic attractor, and Chen hyperchaotic attractor. It has different hyperchaotic
behaviors based on the above analysis.

There are different properties of system (1.1) for different parameters sets. For instance, we get
a new set of parameters only change c2 to 0.065. The Lyapunov exponents are LE1 = 0.0270, LE2 =
−0.0033, LE3 = −0.0157, LE4 = −0.0977 under the same initial value. We find that the system has
one positive Lyapunov exponent and the sum of all Lyapunov exponents is negative, i.e., the system
is in chaos but not hyperchaos under the new set of parameters. Fig. 4 shows the new attractor
whose patterns are different from the hyperchaos attractor (Fig. 3). Therefore, the features of the
system are different when the parameters change.

3 Adaptive control
This section designs an adaptive controller and adaptive law under unknown parameters. The
theoretical analysis indicates that the hyperchaotic system can be controlled to the unstable equilibrium
point by the adaptive control which based on the Lyapunov stability theory.
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Figure 3: The 3-D view of the hyperchaotic attractor (c2=0.071)
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Traditionally, the controlled system can be obtained by introducing controller to the hyperchaotic
system. The controlled system is

ẋ = a1x+ a2y − a3yz − a4w + u1,

ẏ = b1x(1− x/M)− b2y − b3z + b4w + u2,

ż = c1xy − c2z − c3w + u3,

ẇ = dw(z −N) + u4,

(3.1)

where u1, u2, u3, and u4 are controllers.
The adaptive control aims to find the suitable adaptive controller and adaptive law to make

hyperchaotic system (1.1) asymptotically converge to the unstable equilibrium point O(0, 0, 0, 0).
The adaptive controller is a reasonable control signal which can make a hyperchaotic system to a
stable state. Adaptive law means the updated law of the estimate parameters [45]. For the purpose
of understanding the objective of control action intuitively, Fig. 5 denotes the overall control block-
diagram of adaptive control. Input, namely the control input, indicating an adaptive controller that
changes over time. Similarly, the output is the control output. The control signal delivers the changes
that the adaptive controller brings to the controlled system. The controller parameters are the updated
parameters after the action of adaptive law.

Adaptive 

controller 

Controlled 

system 

Adaptive 

law 

Input 
Output 

Control signal 

Controller 

parameters 

Figure 5: The overall control block-diagram of adaptive control

Theorem 3.1. The controlled system (3.1) is asymptotically converges to the unstable equilibrium
point O(0, 0, 0, 0) if the adaptive controller is set as

u1 = −(Â+ 1)x− 0.035y + 0.065yz + 0.026w,

u2 = −0.6x(1− x/6.6) + (B̂ − 1)y + 0.07z − 0.066w,

u3 = −0.468xy + (Ĉ − 1)z + 0.816w,

u4 = (0.45D̂ − 1)w − D̂wz,

(3.2)

and the adaptive law is set as 
˙̃A = −x2 − Ã,
˙̃B = y2 − B̃,
˙̃C = z2 − C̃,
˙̃D = (0.45− z)w2 − D̃,

(3.3)
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where Ã = A− Â, B̃ = B− B̂, C̃ = C− Ĉ, D̃ = D− D̂; ˙̃A, ˙̃B, ˙̃C, and ˙̃D are their derivatives; Â, B̂, Ĉ,
and D̂ are the estimated values of the unknown constants A,B,C, and D respectively.

Proof. We first define the unknown parameter set. We pick up 10 parameters out of the 14 parameters.
The fixed parameters are

a2 = 0.035, a3 = 0.065, a4 = 0.026,
b1 = 0.6, b3 = 0.07, b4 = 0.066,
c1 = 0.468, c3 = 0.816,M = 6.6, N = 0.45.

(3.4)

Assuming a1, b2, c2, d are unknown. For clarify, we rename a1, b2, c2, d to A,B,C,D.
Substituting the adaptive controller (3.2) and the fixed parameters (3.4) into the controlled system

(3.1), we can get the following system
ẋ = Ax− (Â+ 1)x,

ẏ = −By + (B̂ − 1)y,

ż = −Cz + (Ĉ − 1)z,

ẇ = Dw(z − 0.45) + (0.45D̂ − 1)w − D̂wz.

(3.5)

We then define the Lyapunov function

V (x, y, z, w, Ã, B̃, C̃, D̃) =
1

2
x2 +

1

2
y2 +

1

2
z2 +

1

2
w2 +

1

2
Ã2 +

1

2
B̃2 +

1

2
C̃2 +

1

2
D̃2. (3.6)

Taking the derivative of the Lyapunov function over time, we can get

V̇ = xẋ+ yẏ + zż + wẇ + Ã ˙̃A+ B̃ ˙̃B + C̃ ˙̃C + D̃ ˙̃D

= x(Ax− (Â+ 1)x) + y(−By + (B̂ − 1)y) + z(−Cz + (Ĉ − 1)z)

+ w(Dw(z − 0.45) + (0.45D̂ − 1)w − D̂wz) + Ã ˙̃A+ B̃ ˙̃B + C̃ ˙̃C + D̃ ˙̃D.

(3.7)

Finally, substituting the adaptive law (3.3) into Eq.(3.8), the derivative of the Lyapunov function
can be written as

V̇ = −x2 − y2 − z2 − w2 − Ã2 − B̃2 − C̃2 − D̃2. (3.8)
We will show that the derivative of the Lyapunov function is negative when the Lyapunov function

is positive. Therefore, the equilibrium solution of the controlled system (3.5) is asymptotically stable
based on the Lyapunov stability theory, i.e., the controlled system (3.1) can asymptotically converge
to the unstable equilibrium point O(0, 0, 0, 0) with the adaptive controller (3.2) and the adaptive law
(3.3). The proof is completed.

In order to make a comparison, this paper also introduces self-linear feedback control and
misaligned feedback control. The differences among the three proposed methods are the form of the
controller and the condition of parameters. From the point of the form of the controller, the adaptive
controller may be nonlinear. The self-linear feedback controller is the function of the coefficient and
the state variables. The misaligned feedback controller is the function of the coefficient and other
state variables [4]. Adaptive control is under unknown parameters while the parameters of self-linear
feedback control and misaligned feedback control are known.

We present two corollaries about the validation of the self-linear feedback control and the misaligned
feedback control. Theoretical proofs are omitted for the length of the paper.

Corollary 3.2. Under the hyperchaotic parameters (2.1), the controlled system (3.1) is asymptotically
stable to the unstable equilibrium point O(0, 0, 0, 0) by the self-linear feedback control with controllers
u1 = kx, u2 = u3 = u4 = 0, where k > 0.3036.

Corollary 3.3. Under the hyperchaotic parameters (2.1), the controlled system (3.1) is asymptotically
stable to the unstable equilibrium pointO(0, 0, 0, 0) by the misaligned feedback control with controllers
u1 = ky, u2 = u3 = u4 = 0, where k > 0.0445.
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4 Numerical simulation
In this section, we give the numerical simulation results to verify the validity of the proposed control
methods and make a comparison among their results. The simulation results are all obtained under
the chaotic parameters (2.1) and the given initial value [0.196, 0.36, 0.88, 0.29]. Note that the dimensional
unit of time in the x-axis of Figs. 6 - 10 is non-dimensional due to the parameters (2.1) are not identified
by actual data.
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Figure 6: Evolution of state variables under adaptive control

The trajectory of state variables is as shown in Fig. 6 when the unknown parameters are a =
0.065, b = 0.088, c = 0.071, d = 0.035. We find that x, y, z, and w all monotonous decline until they
tend to zero. And these state variables tend to the equilibrium point O(0, 0, 0, 0) about t = 7. It can
be seen that the state variables asymptotically converge in a fast manner to the unstable equilibrium
point O(0, 0, 0, 0) under the action of the adaptive controller.

Fig. 7 shows the estimating process of the unknown parameters under the adaptive control
method, where the left vertical axis represents the estimated parameters and the right vertical indicates
the convergent parameters. All the estimated parameters tend to their given values. However,
patterns of the relative position among parameters are different. After one oscillation, A and D
are always greater than their corresponding given value, while B and C are smaller. In addition, C
converges with a significantly large drop in the beginning. This indicates the effectiveness of adaptive
control.

The control input history of adaptive control is presented in Fig. 8, which confirms that the
adaptive control used in this study is appropriate. In the profile of control history, we notice that
the control input changes as time goes on. This phenomenon verifies that the adaptive controller can
correct its characteristics to adapt to changes in the dynamic characteristics of the object and the
disturbance. Combined with the evolution of state variables and estimated parameters, the control
input at t = 7 is satisfied in this study. The control input history of self-linear feedback control and
misaligned feedback control are omitted for the length of the paper.
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Figure 7: Estimating process of unknown parameters under adaptive control
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Figure 8: The control input history of adaptive control
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Figure 9: Evolution of state variables under self-linear feedback control

0 100 200 300 400 500 600 700 800 900 1000

t

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

S
ta

te
 v

ar
ia

bl
es

x
y
z
w

Figure 10: Evolution of state variables under misaligned feedback control
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Fig. 9 indicates the evolution of state variables under self-linear feedback control with k = 0.7. In
order to make the Fig. 9 more beautiful, we truncate the vertical axis to 0.6. We can see that, x, y,
and z all drop while w goes upward before a low-frequent fluctuation. All the variables tend to zero
approximately t = 400. This means the state variables converge to the equilibrium point O(0, 0, 0, 0)
under self-linear feedback control.

Fig. 10 denotes the evolution of the state variables under misaligned feedback control when
k = 0.07. We find that at the beginning, both x and z fluctuate downward, while both y and w
fluctuate upward. The state variables approach to the equilibrium point O(0, 0, 0, 0) at t = 600 after
dramatic fluctuations. This demonstrates the hyperchaotic system can be controlled to the equilibrium
point O(0, 0, 0, 0) under the misaligned feedback control.

We make a comprehensive and comparative analysis of the proposed three methods according
to Figs. 6, 9, and 10. We point out that adaptive control has the fastest convergent speed among the
three proposed methods. It takes only seven units of time for the state variables to converge under
the adaptive control, which is merely 7/400, 7/600 of that under self-linear feedback control and
misaligned feedback control. The reason lies in the convergence pattern. Under the adaptive control,
the state variables convergence to the equilibrium point O(0, 0, 0, 0) in a monotonous decreasing
manner. The fluctuating convergence pattern in the other two control method takes up much of
time. Specifically, there are some differences among the three mentioned control methods. From
the fluctuation regulations, under self-linear feedback control and misaligned feedback control, the
fluctuating directions of the state variables are up and down, while the state variables under the
adaptive control always fluctuate downward until they reach the equilibrium point O(0, 0, 0, 0). In
terms of fluctuation strength, the state variables have relatively gentle fluctuations under self-linear
control and adaptive control, while under misaligned linear control, the fluctuations are more severe.

5 Conclusions
Adaptive control has been effectively applied to a four-dimensional hyperchaotic system in this study.
Originated from a three-dimensional chaotic system, the hyperchaotic system we built has complex
behaviors, such as hyperchaotic attractor, bifurcation diagram, and Lyapunov exponents spectrum.
This hyperchaotic attractor is controlled to the unstable equilibrium point O(0, 0, 0, 0) through the
adaptive control method. The validity of the adaptive control method is verified by theoretical analysis
and numerical simulations, where Matlab simulations demonstrate the effectiveness of controller
more intuitive. The theoretical analysis and numerical simulation in this study show the following
conclusions:

1. The four-dimensional system is hyperchaotic because it has two positive Lyapunov exponents
and the Lyapunov dimension is between three and four.

2. The origin is always an unstable equilibrium point.
3. The adaptive control is obviously superior to the other two methods in the control speed.

However, the design of adaptive controller is also relatively complicated.
4. The self-linear feedback controller has a simple structure and a general control effect.
5. Although the misaligned feedback control can also achieve the control effect, it is the slowest

in the control speed.
6. The choice of control method depends on the actual situation.
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