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An Accurate Implicit Quarter Step First Derivative Block Hybrid Method1

(AIQSFDBHM) for Solving Ordinary Differential Equations2

3
Abstract4

An accurate implicit quarter step first derivative blocks hybrid method for solving first order5
ordinary differential equations have been developed via interpolation and collocation method,6
for the solution of stiff systems of first order ODEs. The analysis of the method was study and it7
was found to be consistent, convergent, zero-stability. We further compute the region of absolute8
stability, which was shown to be stableA  . The numerical experiments considered, showed9

that the method compete favorably with existing ones. Thus, the pair of numerical methods10
developed in this research is computationally reliable and this new method is proposed for11
adoption when solving first order initial value problems.12
Keyword: Quarter-step, block hybrid, stiff ODEs, first derivative.13

14
1. INTRODUCTION15

In a bid to model real-life problems in areas of engineering, biological sciences, physical16
sciences, electronics and many others, initial value problems are most times encountered, (Shokri17
and Shokri, 2013). A sample first order initial value problem takes the form given below18

     ayyxfy ,,' (1.1)19

where f is a continuous function over an interval of integration. However in most cases, these20

initial value problems cannot be solved analytically and hence the need for numerical methods.21
These numerical methods are adopted to obtain an approximate solution to the initial value22
problem under consideration (James, Adesanya, and Fasasi, 2013). The solution of (1.1) using23
the known analytical methods is not always easy and in some cases cannot even be solved at all24
using these methods. In view of the importance of numerical methods in the solution of (1.1),25
numerical analysts have developed methods for the numerical solution of both stiff and non-stiff26
problems of the form (1.1). Ordinary differential equations (ODE’s) are important tools in27
solving real world problems and a wide variety of natural phenomena are modeled by these28
ODE’s. Over the years, several researchers have considered the important numerical solution of29
(1.1). (Sunday, Skwame and Tumba, 2015) developed a quarter-step hybrid block method for30
solving (1.1), (Sabo, et al., 2019) constructed an A-stable uniform order six linear multi-step31
methods for direct integration of (1.1). Also, (Skwame, Sabo and Kyagya, 2017) construct an32
implicit one-step block hybrid methods with multiple off-grid points for solving (1.1). And33
(Omar, and Adeyeye, 2016) formed numerical solution of first order initial value problems using34
a self-starting implicit two-step obrechkoff-type block method. (Kumleng, et-al., 2017),35
construct a family of continuous block A-stable third derivative for numerical integration of36
(1.1). Other authors who have done considerable work on the numerical solution of (1.1) case37
include (Lambert, 1973; Butcher, 2008; Fatunla, 1988), to predictor-corrector methods (Kayode38
and Adeyeye, 2011; Adesanya, Anake and Udoh 2008; Awoyemi and Idowu, 2005) and then39
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block methods (Omar and Kuboye, 2015; Sunday, Odekunle, and Adesanya, 2013; Hasni, Majid40
and Senu, 2013; Areo and Adeniyi, 2013).41
This section introduced the main aim of the paper and reviews, in section 2, we shall present the42
construction of our proposed numerical scheme for problem (1.1), section 3 provides an analysis43
for derived scheme while section 4 illustrates the method using some selected test problems.44
Finally, the paper is ended in section 5 with some concluding remarks.45

2. Derivation of Hybrid Method46

In this section, we intend to construct the proposed AIQSFDBHM which will be used to47
generate the method. We consider an approximation of the form:48
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Where j is unknown coefficients and  xT j are polynomial basis functions of degree51

1 qpn , where  the number of interpolation points is p and the number of distinct52

collocation points q are, respectively, chosen to satisfy kp 1 and 0q . The integer 1k53

denotes the step number of the method.54
To derive this, these off-step points are carefully selected to guarantee zero stability condition.55

For the method, the off-step points are 
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1 , Using (2.1) and (2.2) with 4,1  qp , we56

have a polynomial of degree as 1 qp follows57
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With first derivative,59
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interpolating (2.3) at nx and collocating (2.4) at
4
1

6
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12
1 andxn  yields,61
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Solving (2.5) by Gaussian Elimination method yields,63
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where
4
1

6
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12
100 ,,,  and are continuous coefficients obtained as65
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In what follows, let us express (2.6) as continuous function of t by letting nxxth  , yields,71
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Evaluating (2.7) at
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3. Analysis of the Method82

In this section, the analysis of quarter step block hybrid method shall be analyzed.83
3.1 Order of the Methods84
Following (Fatunla 1991) and (Lambert 1973), we define a linear operator ℒ defined by85 ℒ       jhxyhjhxyhxy njn

k

j
j 



':
0

 (3.1)86

where  xy is an arbitrary test function that is continuously differentiable in the interval  ba, .87

Expanding    jhxyandjhxy nn  ' in Taylor series about nx and collecting like terms in88

yandh gives:89 ℒ            pp
p yhCCxhyCxyChxy  1

2
1

10 ': (3.2)90

Definition 3.191
The differential operator (3.1) and the associated are said to be of order p if (2.8) are said to be92

of order p if93
0, 1210  pp CCCCC  (3.3)94

The term 1pC is called error constant and it implies that the local truncation error is given by95

   211
1 0 
  p

n
pp

pkn hxyhCE (3.4)96

Following Definition 3.1 above, the quarter step block method (2.8) is of uniform order four with97

error constant,  TC 787
5 105070.1,104653.4,100605.1  98

3.2. Consistency99
Following Fatunla (1991) and Lambert (1973), the block method (2.8) is consistent if it has order100
greater or equal to one (that is 1p ), that is101

i.   01 102

ii.    11'  103

where,  and and are the first and second characteristic polynomials of the method.104

105
106
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3.3. Zero-Stability107
the block method (2.8) is said to be zero stable if no roots of the first characteristic polynomial108
  has modulus greater than one and every root with modulus one is distinct, (Lambert (1973,109

1991).110
3.4. Convergence.111
Definition 3.3 Convergence (Lambert, 1973)112
A continuous linear multistep method is said to convergent if, for all IVPs (1.1) satisfying the113
hypothesis of Lipchitz condition. That the main aim of numerical method is to produce solution that114
have similar to the theoretical solution at all times. The convergence of (2.8) is considered in the light of115
the basic properties discussed earlier in conjunction with the fundamental theorem of (Dahlquist, 1956)116
for linear multistep method. We state Dahlquist theorem without proof.117
Theorem 3.3.1: (Dahlquist, 1956)118
The necessary and sufficient conditions for a linear multistep method to be convergent are that it119
be consistent and zero-stable.120
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(3.5)121

122
3.5. Region of Absolute Stability (RAS)123
Definition 3.3.6: Region of Absolute Stability (Yan, 2011)124
Region of absolute stability is a region in the complex z plane, where hz  . It is defined as125
those values of z such that the numerical solutions of hy ' satisfy 0,0  jasy j for any126

initial condition.127
To determine the regions of absolute stability of the computational method, a method that128
requires neither the computation of roots of a polynomial nor solving of simultaneous129
inequalities was adopted. This method according to Lambert (1973) is called the Boundary130
Locus Method (BLM). The stability polynomial for the (2.8) is given by,131
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The region of absolute stability of (2.8) is shown below133
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134
Figure 3.1: Stability Region for quarter step block hybrid method and the RAS obtained is135

stableA  .136

4 The Implementation of Method137

We shall apply the newly developed pair of quarter step on some first order ordinary differential138
equation of the form (1.1) and we shall display our result with existing once as displayed below.139
4.1 Numerical Examples (SIR Model)140
The SIR model is an epidemiological model that computes the theoretical number of people141
infected with a contagious illness in a closed population over time. The name of this class of142
models derives from the fact that they involve coupled equations relating the number of143
susceptible people  tS number of people infected  tI and the number of people who have144

recovered  tR . This is a good and simple model for many infectious diseases including measles,145

mumps and rubella. It is given by the following three coupled equations146

  SIS
dt
dS   1 (4.1)147

SIII
dt
dI   (4.2)148

IR
dt
dR   (4.3)149

where,  and, and β are positive parameters. Define y to be150
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RISY 151
and adding Equations (4.1)-(4.3) we obtain the following evolution equation for152

 yy  1' 153

Taking   5.00,5.0  y and attaching an initial condition (for a particular closed population),154

we obtain,155
      1.0,5.00,15.0'  hyyty156

with exact solution:157

  xety 5.05.01 158

Source: (Omar and Adeyeye, 2016).159
160

4.2 Numerical Examples161
Consider the ODE162
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(Source: Skwame, Sabo and Kyagya, 2017)165

4.3 Numerical Examples166
Consider the ODE167

168

With Exact Solution169

170

171

172

(Source, Sabo, et-al, 2019)173
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Table 4.1: Comparison of error for solving numerical example 4.1175

X Error in Omar
& Adeyeye,
(2016).

Error in our
method

61096.4  101000.8 
61073.8  91050.1 
61098.8  91020.2 
61055.8  91030.1 
51027.1  91080.3 
51016.1  91060.4 
51047.1  91020.5 

8.0 51040.1  91090.5 
51066.1  91050.6 
51058.1  91020.7 

176

Table 4.2: Comparison of error for solving numerical example 4.2177

X Error in Skwame, et-al., (2017) Error in our method

1y 2y 3y 1y 2y 3y
1.0 21023.2  21023.2  21053.2  21021.2  21021.2  21001.2 

2.0 41006.1  51014.9  41068.1  51045.2  51045.2  5105.4 

3.0 61023.8  61010.9  51033.1  61016.2  61016.2  51047.1 

4.0 61060.9  61030.9  71060.1  71025.1  71028.1  81051.3 
91068.1  91060.1  91020.1  91080.1 

91020.1  101060.1  101038.2 
101020.1  111000.1  111001.1 
111010.1  01000.0  01000.0 

178

179

1.0
2.0
3.0
4.0
5.0
6.0
7.0

9.0
0.1

5.0 61067.9  61067.9 

6.0 61050.9  61050.9  111012.9 

7.0 61008.9  61008.9  101005.1 

8.0 61049.8  61049.8  111084.6 
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Table 4.3: Comparison of error for solving numerical example 4.3180

X Error in Sabo, et-al., (2018) Error in new method

101000.5  91000.3 
81030.2  101000.8  91000.7 

91010.1  81000.1 
91070.1  81040.1 
91080.1  81070.1 
91000.2  81080.1 
91030.2  81010.2 

8.0 91040.2  81020.2 
91050.2  81030.2 
91050.2  81030.2 

181

5. CONCLUSION182
The new accurate implicit quarter step first derivative blocks hybrid method for solving ordinary183
differential equations have been introduced via interpolation and collocation method for the184
solution of stiff systems of ODEs. The analysis of the method was study and it was found to be185
consistent, convergent, zero-stability. We further compute the region of absolute stability region186
and it was found to be stableA  . It is obvious that, the numerical experiments considered187

showed that the methods compete favorably with existing ones. Thus, the pair of numerical188
methods developed in this research is computationally reliable in solving first order initial value189
problems.190
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