
1

An Accurate Implicit Quarter Step First Derivative Block Hybrid Method1

(AIQSFDBHM) for Solving Ordinary Differential Equations2

3
Abstract4

The new accurate implicit quarter step first derivative blocks hybrid method for solving ordinary5
differential equations have been proposed in this paper via interpolation and collocation method6
for the solution of stiff ODEs. The analysis of the method was study and it was found to be7
consistent, convergent, zero-stability, We further compute the region of absolute stability region8
and it was found to be stableA  . It is obvious that, the numerical experiments considered9

showed that the methods compete favorably with existing ones. Thus, the pair of numerical10
methods developed in this research is computationally reliable in solving first order initial value11
problems, as the results from numerical solutions of stiff ODEs shows that this method is12
superior and best to solve such problems as in tables and figures above.13

14
Keyword: Quarter-step, block hybrid, first derivative.15

16
1. INTRODUCTION17

In a bid to model real-life problems in areas of engineering, biological sciences, physical18
sciences, electronics and many others, initial value problems are most times encountered, (Shokri19
and Shokri, 2013). A sample first order initial value problem takes the form given below20

     ayyxfy ,,' (1.1)21

where f is a continuous function over an interval of integration. However in most cases, these22

initial value problems cannot be solved analytically and hence the need for numerical methods.23
These numerical methods are adopted to obtain an approximate solution to the initial value24
problem under consideration (James, Adesanya, and Fasasi, 2013). The solution of (1.1) using25
the known analytical methods is not always easy and in some cases cannot even be solved at all26
using these methods. In view of the importance of numerical methods in the solution of (1.1),27
numerical analysts have developed methods for the numerical solution of both stiff and non-stiff28
problems of the form (1.1). Ordinary differential equations (ODE’s) are important tools in29
solving real world problems and a wide variety of natural phenomena are modeled by these30
ODE’s. Over the years, several researchers have considered the important numerical solution of31
(1.1). (Sunday, Skwame and Tumba, 2015) developed a quarter-step hybrid block method for32
solving (1.1), (Sabo, et al., 2019) constructed an A-stable uniform order six linear multi-step33
methods for direct integration of (1.1). Also, (Skwame, Sabo and Kyagya, 2017) construct an34
implicit one-step block hybrid methods with multiple off-grid points for solving (1.1). And35
(Omar, and Adeyeye, 2016) formed numerical solution of first order initial value problems using36
a self-starting implicit two-step obrechkoff-type block method. (Kumleng, et-al., 2017),37
construct a family of continuous block A-stable third derivative for numerical integration of38
(1.1). Other authors who have done considerable work on the numerical solution of (1.1) case39
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include (Lambert, 1973; Butcher, 2008; Fatunla, 1988), to predictor-corrector methods (Kayode40
and Adeyeye, 2011; Adesanya, Anake and Udoh 2008; Awoyemi and Idowu, 2005) and then41
block methods (Omar and Kuboye, 2015; Sunday, Odekunle, and Adesanya, 2013; Hasni, Majid42
and Senu, 2013; Areo and Adeniyi, 2013).43
This section introduced the main aim of the paper and reviews, in section 2, we shall present the44
construction of our proposed numerical scheme for problem (1.1), section 3 provides an analysis45
for derived scheme while section 4 illustrates the method using some selected test problems.46
Finally, the paper is ended in section 5 with some concluding remarks.47

2. Derivation of Hybrid Method48

In this section, we intend to construct the proposed AIQSFDBHM which will be used to49
generate the method. We consider an approximation of the form:50
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Where j is unknown coefficients and  xT j are polynomial basis functions of degree53

1 qpn , where  the number of interpolation points is p and the number of distinct54

collocation points q are, respectively, chosen to satisfy kp 1 and 0q . The integer 1k55

denotes the step number of the method.56
To derive this, these off-step points are carefully selected to guarantee zero stability condition.57

For the method, the off-step points are 







4
1,

6
1,

12
1 , Using (2.1) and (2.2) with 4,1  qp , we58

have a polynomial of degree as 1 qp follows59

   xTxy j
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0
 (2.3)60

With first derivative,61

   xTxy j
j

j ''
4

0



  (2.4)62

interpolating (2.3) at nx and collocating (2.4) at
4
1

6
1,

12
1 andxn  yields,63
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Solving (2.5) by Gaussian Elimination method yields,65
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where
4
1

6
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100 ,,,  and are continuous coefficients obtained as67
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In what follows, let us express (2.6) as continuous function of t by letting nxxth  , yields,73

10 74
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Evaluating (2.7) at
4
1

6
1
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1 ,,

 nnn
xxx yields the following discrete schemes79
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83

3. Analysis of the Method84

In this section, the analysis of quarter step block hybrid method shall be analyzed.85
3.1 Order of the Methods86
Following (Fatunla 1991) and (Lambert 1973), we define a linear operator ℒ defined by87 ℒ       jhxyhjhxyhxy njn

k

j
j 



':
0

 (3.1)88

where  xy is an arbitrary test function that is continuously differentiable in the interval  ba, .89

Expanding    jhxyandjhxy nn  ' in Taylor series about nx and collecting like terms in90

yandh gives:91 ℒ            pp
p yhCCxhyCxyChxy  1

2
1

10 ': (3.2)92

Definition 3.193
The differential operator (3.1) and the associated are said to be of order p if (2.8) are said to be94

of order p if95
0, 1210  pp CCCCC  (3.3)96

The term 1pC is called error constant and it implies that the local truncation error is given by97

   211
1 0 
  p

n
pp

pkn hxyhCE (3.4)98

Following Definition 3.1 above, the quarter step block method (2.8) is of uniform order four with99

error constant,  TC 787
5 105070.1,104653.4,100605.1  100

3.2. Consistency101
Following Fatunla (1991) and Lambert (1973), the block method (2.8) is consistent if it has order102
greater or equal to one (that is 1p ), that is103

i.   01 104

ii.    11'  105

where,  and and are the first and second characteristic polynomials of the method.106

107
108
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3.3. Zero-Stability109
the block method (2.8) is said to be zero stable if no roots of the first characteristic polynomial110
  has modulus greater than one and every root with modulus one is distinct, (Lambert (1973,111

1991).112
3.4. Convergence.113
Definition 3.3 Convergence (Lambert, 1973)114
A continuous linear multistep method is said to convergent if, for all IVPs (1.1) satisfying the115
hypothesis of Lipchitz condition. That the main aim of numerical method is to produce solution that116
have similar to the theoretical solution at all times. The convergence of (2.8) is considered in the light of117
the basic properties discussed earlier in conjunction with the fundamental theorem of (Dahlquist, 1956)118
for linear multistep method. We state Dahlquist theorem without proof.119
Theorem 3.3.1: (Dahlquist, 1956)120
The necessary and sufficient conditions for a linear multistep method to be convergent are that it121
be consistent and zero-stable.122
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(3.5)123

124
3.5. Region of Absolute Stability (RAS)125
Definition 3.3.6: Region of Absolute Stability (Yan, 2011)126
Region of absolute stability is a region in the complex z plane, where hz  . It is defined as127
those values of z such that the numerical solutions of hy ' satisfy 0,0  jasy j for any128

initial condition.129
To determine the regions of absolute stability of the computational method, a method that130
requires neither the computation of roots of a polynomial nor solving of simultaneous131
inequalities was adopted. This method according to Lambert (1973) is called the Boundary132
Locus Method (BLM). The stability polynomial for the (2.8) is given by,133
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The region of absolute stability of (2.8) is shown below135
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136
Figure 3.1: Stability Region for quarter step block hybrid method and the RAS obtained is137

stableA  .138

4 The Implementation of Method139

We shall apply the newly developed pair of quarter step on some first order ordinary differential140
equation of the form (1.1) and we shall display our result with existing once as displayed below.141
4.1 Numerical Examples (SIR Model)142
The SIR model is an epidemiological model that computes the theoretical number of people143
infected with a contagious illness in a closed population over time. The name of this class of144
models derives from the fact that they involve coupled equations relating the number of145
susceptible people  tS number of people infected  tI and the number of people who have146

recovered  tR . This is a good and simple model for many infectious diseases including measles,147

mumps and rubella. It is given by the following three coupled equations148

  SIS
dt
dS   1 (4.1)149

SIII
dt
dI   (4.2)150

IR
dt
dR   (4.3)151

where,  and, and β are positive parameters. Define y to be152
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RISY 153
and adding Equations (4.1)-(4.3) we obtain the following evolution equation for154

 yy  1' 155

Taking   5.00,5.0  y and attaching an initial condition (for a particular closed population),156

we obtain,157
      1.0,5.00,15.0'  hyyty158

with exact solution:159

  xety 5.05.01 160

Source: (Omar and Adeyeye, 2016).161
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(Source: Skwame, Sabo and Kyagya, 2017)167

4.3 Numerical Examples168
Consider the ODE169

170

With Exact Solution171
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(Source, Sabo, et-al, 2019)175
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Table 4.1: Comparison of error for solving numerical example 4.1177

X Error in Omar
& Adeyeye,
(2016).

Error in our
method

61096.4  101000.8 
61073.8  91050.1 
61098.8  91022.2 
61055.8  91010.3 
51027.1  91080.3 
51016.1  91060.4 
51047.1  91020.5 

8.0 51040.1  91090.5 
51066.1  91050.6 
51058.1  91020.7 

178

179

Figure: 4.1 showing the performance of new methods with exact solution of experiment 4.1180
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51047.1  91020.5 

8.0 51040.1  91090.5 
51066.1  91050.6 
51058.1  91020.7 
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Figure: 4.1 showing the performance of new methods with exact solution of experiment 4.1181

182

6 7 8 9 10

exact

numerical

8

Table 4.1: Comparison of error for solving numerical example 4.1179

X Error in Omar
& Adeyeye,
(2016).

Error in our
method

61096.4  101000.8 
61073.8  91050.1 
61098.8  91022.2 
61055.8  91010.3 
51027.1  91080.3 
51016.1  91060.4 
51047.1  91020.5 
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Table 4.2: Comparison of error for solving numerical example 4.2182

X Error in Skwame, et-al., (2017) Error in our method

1y 2y 3y 1y 2y 3y
1.0 21023.2  21023.2  21053.2  21021.2  21021.2  21001.2 

2.0 41006.1  51014.9  41068.1  51045.2  51045.2  5105.4 

3.0 61023.8  61010.9  51033.1  61016.2  61016.2  51047.1 

4.0 61060.9  61030.9  71060.1  71025.1  71028.1  81051.3 
91068.1  91060.1  91020.1  91080.1 

91020.1  101060.1  101038.2 
101020.1  111000.1  111001.1 
111010.1  01000.0  01000.0 

183

184

Figure: 4.2a showing the performance of new methods with exact for Y1 solution of185
experiment 4.2186

187

5.0 61067.9  61067.9 

6.0 61050.9  61050.9 

7.0 61008.9  61008.9 

8.0 61049.8  61049.8 
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Table 4.2: Comparison of error for solving numerical example 4.2184

X Error in Skwame, et-al., (2017) Error in our method

1y 2y 3y 1y 2y 3y
1.0 21023.2  21023.2  21053.2  21021.2  21021.2  21001.2 

2.0 41006.1  51014.9  41068.1  51045.2  51045.2  5105.4 

3.0 61023.8  61010.9  51033.1  61016.2  61016.2  51047.1 

4.0 61060.9  61030.9  71060.1  71025.1  71028.1  81051.3 
91068.1  91060.1  91020.1  91080.1 

91020.1  101060.1  101038.2 
101020.1  111000.1  111001.1 
111010.1  01000.0  01000.0 
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Figure: 4.2a showing the performance of new methods with exact for Y1 solution of189
experiment 4.2190

189
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Figure: 4.2b showing the performance of new methods with exact solution for Y1 of189
experiment 4.2190
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Figure: 4.2c showing the performance of new methods with exact solution for Y3 of193
experiment 4.2194
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Figure: 4.2c showing the performance of new methods with exact solution for Y3 of195
experiment 4.2196
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Figure: 4.2c showing the performance of new methods with exact solution for Y3 of197
experiment 4.2198
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Table 4.3: Comparison of error for solving numerical example 4.3196

X Error in Sabo, et-al., (2018) Error in new method
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81030.2  101000.8  91000.7 

91010.1  81000.1 
91070.1  81040.1 
91080.1  81070.1 
91000.2  81080.1 
91030.2  81010.2 

8.0 91040.2  81020.2 
91050.2  81030.2 
91050.2  81030.2 
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Figure: 4.3a showing the performance of new methods with exact solution for Y1 of199
experiment 4.3200
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202

Figure: 4.3b showing the performance of new methods with exact solution for Y2 of203
experiment 4.3204

5. CONCLUSION205
The new accurate implicit quarter step first derivative blocks hybrid method for solving ordinary206
differential equations have been proposed via interpolation and collocation method for the207
solution of stiff ODEs. The analysis of the method was study and it was found to be consistent,208
convergent, zero-stability, We further compute the region of absolute stability region and it was209
found to be stableA  . It is obvious that, the numerical experiments considered showed that210

the methods compete favorably with existing ones. Thus, the pair of numerical methods211
developed in this research is computationally reliable in solving first order initial value problems,212
as the results from numerical solutions of stiff ODEs shows that this method is superior and best213
to solve such problems as in tables and figures above.214
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