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Multiple Exact Travelling Solitary Wave Solutions of 

Nonlinear Evolution Equations 
 
 

ABSTRACT: 

An extended Tanh-function method with Riccati equation is presented for constructing multiple 
exact travelling wave solutions of some nonlinear evolution equations which are particular cases 
of a generalized equation. The results of solitary waves are general compact forms with non-zero 
constants of integration. Taking the full advantage of the Riccati equation improves the 
applicability and reliability of the Tanh method with its extended form. 
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1. Introduction 

Nonlinear partial differential equations (NLPDEs) play a major role in the study of nonlinear 
science. In recent decades, constructing the exact travelling solitary wave solutions and solitons 
of NLPDEs have become an important research subject due to the constant proposing of 
analytical methods, say, [1]–[14]. Among these methods, the powerful Hyperbolic Tangent 
(Tanh) method [2], [15], which has been tremendously developed in the literature – for instance 
[7], [8], [16]. More precisely, the Extended Tanh method (later known as Tanh-coth method) and 
its modified form was introduced by [7]–[9] and has been successfully utilized to obtain the 
solutions of NLPDEs. The Modified Extended Tanh method with Riccati equation [9], [16], [17] 
is widely recognized as one of the most powerful tools used in a favor of obtaining the explicit 
travelling solitary wave solutions of NLPDEs. 

The following NLPDE is proposed as a generalization of  the equations under study, which 
involves nonlinear dispersion and dissipation effects [18]: 

2 0,t x x xx pxu uu u u u u         (1) 

Where 0, 0    and p are all arbitrary constants. Considering the setting of these 

parameters to be equal to special values, with 0  , equation (1) is reduced to KdV-Burgers 

equation ( 3,p   0  ), and to Kuramoto-Sivanshinsky  4, 0p   . The governing 

NLPDEs take the following well-known forms (respectively): 

3 0,t x xx xu uu u u       (2) 

4 0t x xx xu uu u u      ,  (3) 

However, the class of this NLPDE when 0  is considered in [19]. This paper is organized to 

fully present the algorithm of the considered method in Section 2. The analytical solution in the 
form of travelling solitary wave solutions of equation (1), with its special parameters’ values are 
obtained in Section 3. Finally, in Section.4 concluding remarks are presented. 
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2. The Methodology of the method 

The travelling solitary wave solution of a NLPDE in two variables ,x t :  

 1 , , , , , 0,t x xt xxu u u u u   (4) 

is the solution of the nonlinear ordinary differential equation NLODE: 

 2 , , , , 0,U U U U     (5) 

Which is obtained by using the travelling wave transformation ( , ) ( ) ( )u x t U U x t    , and 

the prime denotes the ordinary derivative with respect to  . Introducing a new 

variable ( )   , that satisfies the Riccati equation of the form: 

2( ) ( ) ,
d

k
d

   


   (6) 

where k  is a real constant. The modified Extended Tanh method with Riccati equation admits 

that the solution of (5) can be expressed by a polynomial in j : 

1
1 1 0

1 1
1 1

( , ) ( )

,

N N
N N

N N
N N

u x t U a a a a

b b b

   

  




   


     

   




 (7) 

where N  is the balancing integer. Substituting (6) along with (7) into (5), then setting the 

coefficients of all powers of  ( ) j   to zero, a nonlinear algebraic system is generated with 

respect to parameters 0 , , , ,j ja a b k  . By the sign test of k , the Riccati equation (6) has the 

well-known general solutions: 

1
( ) , 0k 


    (8) 

  
  

tanh
( ) 0

coth

k k x t
k

k k x t


 



    
   

 (9) 

  
  

tan
( ) 0

cot

k k x t
k

k k x t


 



  
 

 (10) 

 

3. The solitary travelling wave solutions 

3.1  Explicit solution of KdV-Burgers equation 

Using the wave transformation prescribed in the previous section gives rise to the NLODE: 

0,U UU U U            (11) 

Integrating (11) with respect to  , to get: 
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2

0 0,
2

U U U U


           (12) 

where 0 is an arbitrary constant. With 2N  (by balancing 
2U and U  using the homogeneous 

balance principle); therefore, equation (7) admits the ansätz: 

2 1 2

0 1 2 1 2( ) ( ) ( ) ( ) ( ),U a a a b b                (13) 

Substituting (13)  into (12) and with the use of (6), we obtain the following algebraic system by 

setting all the coefficients of , 0, 1, 2j j    to zero: 
2

2 2
2

2
1 2 1 2

2
1

1 2 2 0 2

1 1 0 1 2 1 2

2
20

0 1 2 1 1 1 2 2 2

1 1 0 1 2 2 1

2
1

1 2 2 0 2

6 0,
2

2 2 ,

8 ,
2

2 2 ,

2 2 ,
2

2 2 ,

8 ,

0

0

0

0

2

0

0

b
k b

k b k b b b

b
k b k b b a b

k b b a b b a b

a
a k a k a b a b b a b

k a a a a k a a b

a
a k a a a a




  


   

    


       

    


   

 

 

    

   

       

  











   

1 2 1 2

2
2

2

2 2 ,

6
2

0

0

a a a a

a
a

  






 



 (14) 

The system in (14) is solved by the aid of Mathematica, and taking into consideration the solution 
of Riccati equation (8) - (10),   we obtain the following families of solutions: 

Family1. 

2 2 2 2

0 1 2 1 22

144 25 12 12 12
, , , 0, ,

50 5100

k k k k
k a a a b b

      
   

 

  
 

and are an arbitrary

= = = = = = =
 (15) 

As it is noted the value of 0k   whenever  2
0  , thus the corresponding travelling wave 

solution is: 

2

1

2
21 6 3

( ) (coth( ( )) 1)
25 25 10

( , ) xu x tt
   

   
   

 (16)
 

Family2. 

2 2 2

0 1 2 1 22

144 25 12 12 12
, , , , , 0

50 5100

k k
k a a a b b

      
   



  
   

 is an arbitrary.

= = = = =
 (17) 

Since 0k   whenever  2
0   , thus the corresponding travelling wave solution is: 
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2

2

221 6 3
tanh( ( )) 1

25 25 10
( , )t x tu x

   
   
   

    



  
 

 (18)
 

Family3. 

2 2 2

0 1 22

2
1 1 2 2

576 25 24 12 12
, , , , ,

50 5400

, , )

k k
k a a a

b ka b k a

      
   



  
  

  is an arbitrary

= = = = =

= =

 (19) 

Since 0k   whenever  2
0   , thus the corresponding travelling wave solution is: 

2

3

1 3 3 3
tanh( ) tanh( ) coth( ) coth( )

50 25 4 25 4

1
, ( )

20

( , )
q q q q q

z z zu x t z

q z x t

    
  
  
 

              
    

  



 (20) 

This solution can be reduced to obtain the travelling solitary wave solution in equation (16). 
 

Family4. 

2 2

0 1 22

2

1 2

6 12
, 0, , , 0,

25 100

12 12
, , )

5

k
k a a a

k k
b b is an arbitrary

    
 
  
 

 
      

      



 (21) 

Since 0k   whenever  2
0   , thus the corresponding travelling wave solution is: 

22 2

4,5

1 6 3
( ) coth( ( )) 1
25 25

( , )
10

x t x tu
   

   
     
 


 (22)

 

Family5. 

2 2

0 1 22

1 2

6 12 12 12
, 0, , , , ,

25 5100

0, 0,

k
k a a a

b b

      
   



 
   

 is an arbitrary

 = = = = =

= =

 (23) 

Since 0k   whenever  2
0   , thus the corresponding travelling wave solution is: 

22 2

6,7

1 6 3
tanh( ( )) 1

25 25 10
( , )u x x tt

   
   
   

      



   (24)

 

Family6. 

2 2

0 1 22

2
1 1 2 2

6 24 12 12
, 0, , , , ,

25 5400

, )

k
k a a a

b ka b k a

      
  








 
  

 and  is an arbitrary

= = = = = =

= =

 (25) 
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Since 0k   whenever 2( ) 0   thus the corresponding travelling wave solution is: 

   
2 2 2

9

2

8,

21 3 3 3
( ) tanh( ) 2 coth( ) 2
10 100 100

(

( , )

1
,

20
)

u x z

z xq t

t t

q






 
   



  

 

 





 (26) 

which are reduced to obtain the travelling solitary wave solution in equation (15) . 

The graphical representation of some travelling solitary wave solutions of (2) is illustrated as 
follows: 

 

Figure 1 The plots of travelling solitary wave solutions (18) ( 10)   and (24) when 

1, 1, 0.1      . 

 

3.2  Explicit solution of Kuramoto-Sivashinsky equation 

Making the wave transformation prescribed in Section 2, the KS equation (3) is reduced to the 
following NLODE: 

( 4) 0,U UU U U            (27) 

Integrating (27) with respect to  , once yields: 

2

0 0,
2

U U U U


            (28) 

where  0 is an arbitrary constant. With 3N  (by balancing U  and 2U  using the 

homogeneous balance principle); therefore, equation (7) admits the ansätz: 

2 3 1 2 3

0 1 2 3 1 2 3( ) ( ) ( ) ( ) ( ) ( ) ( ),U a a a a b b b                       (29) 

Substituting (29)  into (28) and with the use of (6), we obtain the following algebraic system by 

setting all the coefficients of , 0, 1, 2, 3j j     to zero: 
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ò

2 1 2 3 0 3

2
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3
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0
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 (30)

 

The system in (30) is solved by the aid of Mathematica and by taking into consideration the 
solution of Riccati equation (8) - (10),   we obtain the following families of solutions: 

Family 1. 

2 2

0 1 2 3

0

2 3

1 2 3 0

11 3600 361
, , , 0, 0, 0,

76 722

60(38 ) 120
, 0, ,

19

k
k a a a a

k k k
b b b

   


 

  


 


      


    a  are arbitrand ries

ò

ò

 (31) 

As 0  , we see that 0k  . Consequently, we obtain: 

2

1

15 11 1 11
( , ) coth( ) 9 11coth ( ) , ( )

19 19 2 19
u x t z z z x t

   


   
        (32) 

As 0  , we see that 0k  , the corresponding solution is: 
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2

2

15 11 1 11
cot( ) 9 11cot ( ) , ( )

19 19 2 19
( , )u x t z z z x t

   


   
         (33) 

Family 2. 

2 2

0 1 2 3

0

2 3

1 2 3 0

3600 361
, , , 0,

76 722

60(38 ) 120
, 0, ,

19

k
k a a a a

k k k
b b b

   


 

  


 


     


   and  are arbitararies

ò

ò

 (34) 

If 0  , then 0k  . Consequently, we obtain: 

2

3

15 1
coth( )( 3 coth ( )( , ) ), ( )

19 19 2 19
z z zu x x tt

  
 

   





      (35) 

If 0


 , then 0k  . Consequently, we obtain: 

2

4

15 1
cot( ) 3 cot ( ) , ( )

19 19 2 1
, )

9
(u x z z z x tt

   


   
        (36) 

Family 3. 

2 2

0 1 2 3

0

1 2 3 0

11 3600 361 60(38 ) 120
, , , , 0, ,

76 722 19

0,

k k
k a a a a

b b b

      


   



 
       

    and are arbitrarairs

ò

ò

 (37) 

If 0  , then 0k  . Consequently, we obtain: 

2

5

15 11 1 11
tanh( ) 9 11tanh ( ) , ( )

1
( , )

9 19 2 19
u x t z z z x t

  
 

   
       (38) 

If 0  , then 0k  . Consequently, we obtain: 

 6

15 11 1 11
tan( ) 9 11ta( , ) n( ) , ( )

19 19 2 19
z zu x t z x t

   


   


 
     (39) 

Family 4.  

2 2

0 1 2 3

0

1 2 3 0

3600 361 60(38 ) 120
, , , , 0, ,

76 722 19

0,  are arbia trar es ind

k k
k a a a a

b b b

      


   



 
       

  

ò

ò    (40)

 

If 0  , then 0k  and vice versa . Respectively, we obtain: 
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2

7

15 1
( , ) tanh( ) 3 tanh( ) , ( )

19 19 2 19
u x t z z z x t

   


   

 
        (41) 

2

8

15 1
( , ) tan( )[3 tan ( )], ( )

19 19 2 19
u x t z z z x t

   


   
      (42) 

 

Family 5. 

2 2

0 1 2 3

0

3

1 1 2 3 3 0

11 14400 361 60(38 ) 120
, , , , 0, ,

304 722 19

, 0, ,

k k
k a a a a

b ka b b k a

      




   

 
        

     and are arbitraries

ò

ò

(43)

 

If 0  , then 0k  and vice versa. Respectively, we obtain: 

3
2 3

9

3
2 3

15 19 15
( , ) ( ) tanh( ) tanh ( )

19 8 8

15 19 15
( ) coth( ) coth ( )

19 8 8

11 1 11
, ( )

19 4 19

q q
u x t q z z

q q
q z z

z x tq

 
 

  


 

 

 


 

    

  







  (44)  

3
2 3

10

3
2 3

15 19 15
( , ) ( ) tan( ) tan

19 8 8

15 19 15
( ) cot( ) cot

19 8 8

11 1 11
, ( )

1

( )

(

9 1

)

4 9

q q
u x t q z z

q q
q z

z x

z

q t

 
 

  


 

 

 


 

   

  


 



 (45) 

The travelling solitary wave solutions (44) and (45) can be simplified so that 1( , )u x t  and 

2 ( , )u x t are obtained respectively.  

Family 6. 

2 2

0 1 2 3

0

3

1 1 2 3 3 0

14400 361 60(38 ) 120
, , , , 0, ,

304 722 19

, 0, ,

k k
k a a a a

b ka b b k a

      


 



 

 
       

      and are arbitraries

ò

ò

  (46) 

If 0  , then 0k  and vice versa. Respectively, we obtain: 
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3
2 3 3

1

3
2 3

1

15 19 1 15
( ) tanh( ( )) tanh ( )

19 8 4 8

15 19 15
( ) coth( )

(

coth ( )
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1
, ( )

19 4
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q q
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q q
q z z

q z q x t

u x t
 

  
  


 

 






    

   


  



 (47) 

3
2 3

3
2 3

12

15 19 15
( ) tan( ) tan( , ( )

19 8 8

15 19 15
( ) cot( ) cot ( )

19 8 8

9

)

1
( )

1 4
,

q q
q z z

q q
q z z

q

u t

t

x

xq z

 
 

  


 

 














  

 



 (48)
  

The travelling solitary wave solutions (47) and (48) can be simplified so that 3 ( , )u x t  and 

4 ( , )u x t are obtained respectively.  

Family 7. 

3 2

0 0 1 2 32 2

2 3

1 2 3

900 361
0, , , , 0,

6859 3600

60(38 ) 120
, 0, ,  and are arbitaraies

19

k a a a a

k k k
b b b

  


 

  
 

 

        


  

ò

 (49) 

Since 0k  , it follows that: 

2

13

19 19
( , ) coth( ( )) 3 coth ( ( )

2 60 60
u x t x t x t

   
 

   
     

 
 

 (50) 

Family 8. 

3 2

0 0 1 2 32 2

2 3

1 2 3

9900 361
0, , , , 0,

6859 3600

60(38 ) 120
, 0, ,  and are arbitaraies

19

k a a a a

k k k
b b b

  


 

  
 

 

       


  

ò

 (51) 

Since 0k  , it follows that: 

2

14

19 19
( , ) coth( ( )) 9 11coth [ ( )]

2 60 60
u x t x t x t

   
 

   
     

 
 

 (52) 

Family 9. 
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3 2

0 0 12 2

2 3 1 2 3

900 361 60(38 )
0, , , , ,

196859 3600

120
0, , 0

k
k a a

a a b b b

    


  





       

     

ò

 (53) 

Since 0k  , it follows that: 

2

15

19 19
tanh( ( )) 3 tanh ( ( ))

2 60 60
( , ) x t tu xx t

   
 

   
     

 
 

 (54) 

Family 10. 

3 2

0 0 1 22 2

3 1 2 3

9900 361 60(38 )
0, , , , , 0,

196859 3600

120
, 0

k
k a a a

a b b b

    


  





       

    

ò

 (55) 

Since 0k  , it follows that: 

2

16

19 19
tanh( ( )) 9 11ta( , nh ( ( ))

2 60 6
)

0
u x x x tt t

   
 

   
    

 
 

 (56) 

Family 11. 

3 2

0 0 1 22 2

3

3 1 1 2 3 3

900 361 60(38 )
0, , , , , 0,

196859 14400

120
, , 0,

k
k a a a

a b ka b b k a

    


  





        

      

ò

 (57) 

Since 0k  , it follows that: 

 

 

2

3

7

3 3

1

19(361)
tanh( ) coth( )

2 7200

6859
tanh ( ) coth ( ) ,

14400

19
, ( )

)

1 0

( ,

2

q
q z z

q
z z

q z q x

u x t

t


 

 










  

 

 





 
 
 

 (58) 

Simplifying (58) the travelling solitary wave solution in (50) is obtained. 

Family 12. 

3 2

0 0 1 22 2

3

3 1 1 2 3 3

9900 361 60(38 )
0, , , , , 0,

196859 14400

120
, , 0,

k
k a a a

a b ka b b k a

    


  





       

      

ò

 (59) 

Since 0k  , it follows that: 
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2

3
3 3

18

19(361)
tanh( ) coth( )

2 7200

6859
tanh ( ) coth ( )

14400

19
( )

12

, )

0

(

,

q
q z zu x t

q

q
z z

q x tz



 

 










 


  

 



 
 
 

 (60) 

By simplifying (60) the travelling solitary wave solution (52) is obtained. 

The graphical representation of some travelling solitary wave solutions of (3) is illustrated as 
follows: 

  

Figure 2 The plots of travelling solitary wave solutions (32) and (33) when 

01, 1, 4; ( 10)      ò . 

 

 

Figure 3 The plot of travelling solitary wave solutions (52) when 1, 1, 4     . 

 

Remark: All solutions are tested to satisfy their related PDEs and found to be more generalized 
compact forms with nonzero constants of integration; as mentioned in [20]. 
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4. Conclusion  

In this presented work, we have established and successfully employed the modified Extended 
Tanh method with Riccati equation for obtaining the solitary travelling wave solutions for a given 
class of NLPDEs. The method has the advantage of being direct and concise. In addition, an 
enormous variety of solutions was obtained with the aid of Mathematica software. 
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