Multiple Exact Travelling Solitary Wave Solutions of
Nonlinear Evolution Equations

ABSTRACT:

An extended Tanh-function method with Riccati equation is presented for constructing multiple
exact travelling wave solutions of some nonlinear evolution equations which are particular cases
of a generalized equation. The results of solitary waves are general compact forms with non-zero
constants of integration. Taking the full advantage of the Riccati equation improves the
applicability and reliability of the Tanh method with its extended form.
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1. Introduction

Nonlinear partial differential equations (NLPDEs) play a major role in the study of nonlinear
science. In recent decades, constructing the exact travelling solitary wave solutions and solitons
of NLPDEs have become an important research subject due to the constant proposing of
analytical methods, say, [1]-[14]. Among these methods, the powerful Hyperbolic Tangent
(Tanh) method [2], [15], which has been tremendously developed in the literature — for instance
[71, [8], [16]. More precisely, the Extended Tanh method (later known as Tanh-coth method) and
its modified form was introduced by [7]-[9] and has been successfully utilized to obtain the
solutions of NLPDEs. The Modified Extended Tanh method with Riccati equation [9], [16], [17]
is widely recognized as one of the most powerful tools used in a favor of obtaining the explicit
travelling solitary wave solutions of NLPDEs.

The following NLPDE is proposed as a generalization of the equations under study, which
involves nonlinear dispersion and dissipation effects [18]:

U, +auu, + Bu’U, +vu, +uu, =0, Q)

Where aff #0,vu#0 and P are all arbitrary constants. Considering the setting of these
parameters to be equal to special values, with f =0, equation (1) is reduced to KdV-Burgers
equation (P=3, avu#0), and to Kuramoto-Sivanshinsky (p =4, avu# O). The governing
NLPDE:s take the following well-known forms (respectively):

U, +auu, +vu, +uu, =0, 2)
U, +auu, +vu, +uu,, =0, 3)
However, the class of this NLPDE when £ # 0is considered in [19]. This paper is organized to
fully present the algorithm of the considered method in Section 2. The analytical solution in the

form of travelling solitary wave solutions of equation (1), with its special parameters’ values are
obtained in Section 3. Finally, in Section.4 concluding remarks are presented.




2. The Methodology of the method

The travelling solitary wave solution of a NLPDE in two variables X, t :

¥, (u,u,u,u,,u,...)=0, @
is the solution of the nonlinear ordinary differential equation NLODE:

¥, (U,ULU"U",.) =0, ®)
Which is obtained by using the travelling wave transformation u(x,t) =U({)=U(X-wt), and
the prime denotes the ordinary derivative with respect to g“ . Introducing a new

variable iy = (<), that satisfies the Riccati equation of the form:

SOk, ®

where K is a real constant. The modified Extended Tanh method with Riccati equation admits

that the solution of (5) can be expressed by a polynomial iny/ I,

ux,)=U =aw" +a, w" "' +...+ay+a,

-1 -N-1 -N (7)
+hy b by,

where N is the balancing integer. Substituting (6) along with (7) into (5), then setting the
coefficients of all powers of (& )} to zero, a nonlinear algebraic system is generated with
respect to parameters @, ,bj ,K,® . By the sign test of K , the Riccati equation (6) has the
well-known general solutions:

1
__ 1 k=0 8
(<) ‘ )]
—ﬁtanh(ﬁ(x—a)t))
w()= k<0 ©
—ﬂcoth(ﬂ(x—a)t))
x/Etan(\/F(x—wt))
()= k>0 (10)

—ﬁcot(ﬁ(x—wt))

3. The solitary travelling wave solutions

3.1 Explicit solution of KdV-Burgers equation

Using the wave transformation prescribed in the previous section gives rise to the NLODE:
—aJ' +oUU + WU+ U =0, (11)

Integrating (11) with respect to é/ , to get:



(04
~oU +=U” +WU'+ 0"+, =0, (12)
2

where 77, is an arbitrary constant. With N = 2 (by balancing U Zand U" using the homogeneous
balance principle); therefore, equation (7) admits the ansétz:

U($)=a, +aw({)+ay’ (&) +by (O +by (<), (13)

Substituting (13) into (12) and with the use of (6), we obtain the following algebraic system by
setting all the coefficients of w ', j =0, £1, £ 2 to zero:
2
6k*ub, + aby _ 0,
2
2k* b, — 2kvb, +abb, =0,
ab}
2
2k b, — b, + aa b, —2vb, + aab, =0,

—kvb, + +8k ub, — b, + aa,b, =0,

2

a8,
2

n—oa, +—>+kva, + 2k’ ua, —vb +aab, +2ub, + aab, =0, (14)

2kua, — wa, + aaya, +2kva, + aa,b, =0,

&

(24
va, + +8kua, —wa, +aaya, =0,
2ua, +2va, +aaa, =0,

aaﬁ_o

6ua, +

The system in (14) is solved by the aid of Mathematica, and taking into consideration the solution
of Riccati equation (8) - (10), we obtain the following families of solutions:

Familyl.
2 2 2 2
__v 2’0[:144kv +25w L8, = 12k’u+w,al:a2=O,b1:12kV,b2:—12k’u
1004 507 o Sa a (15)

n and @ are an arbitrary

As it is noted the value of k<0 Whenever(v,u)2 >0, thus the corresponding travelling wave

solution is:

2 2
U061 == (4 )= (coth(—X— (x— wt)) 1)’
a 25u 25au 10u
(16)
Family2.
2 2 2 _
__v _a= 144kv- + 25w a = 12ky+a)’a1 _ _12_1/’az _ _12_,u’b1 _b, =
100 50n a S5a a 17

w is an arbitrary.

Since k <0 whenever (V,u)2 >0 , thus the corresponding travelling wave solution is:



2 2 2
b0t = & o |- 2 b (x—at)) -1
al\25u 25au 104

(18)
Family3.
s o= 576kv? + 250" o= 2kt o 1v o 12u
4004%° 50n 0 a ' 5a7 a’ (19)
b, = —ka,,b, = k’a,, @ is an arbitrary)
Since k <0 whenever (V,u)2 >0 , thus the corresponding travelling wave solution is:
1(3uq’ 3q qu j 3q ( 4 j
u,(x,t)=—| —+w |+——tanh(z)| v ———tanh(z) |+ ——coth(z)| v ———coth(z
3()(1[50 25g PN\ Ty (@) o coth@)| v m T coth(@)
a=Y 7=  (x—at) (20)
U 20 p
This solution can be reduced to obtain the travelling solitary wave solution in equation (16).
Family4.
2 2
y:$6L’77:0,k -7 >3 = 12kﬂ+w,al =a, =0,
25w 1004 o @1
2
b = nkv,b2 _ 1% y’w is an arbitrary)
Sa a
Since k <0 whenever (V,u)2 >0 , thus the corresponding travelling wave solution is:
1 62 3?2 ’
Uy s (X,1) = — (o + @) - ——| coth(—— (X—tw)) ~ 1
’ a 25u 25au 10u 22)
Family5.
2 2 _
Iu:$_6v = 0,k=— v .8, = 12k’u+w731 = _12_‘/,32 = _12_/1,
25w 1004 a Sa (23)
b =0,b, =0, wisanarbitrary
Since k <0 whenever (V,u)2 >0 , thus the corresponding travelling wave solution is:
1{ 6v? 3v? v ’
Ug, (X, 1) =— +ow |- tanh(—— (x — wt)) -1
' al\25u 25au 10u 4)
Family6.
_6v’ v —24ku+w 12v 12
H=F ’77:07k:_ 2!a0: H ,aI:__’Z:__’u’
25w 4001 a Sa a (25)

b, = —ka,,b, = k’a, @ and w is an arbitrary)



Since k <0 whenever (vu)* >0 thus the corresponding travelling wave solution is:

2 2 2
Uy (00 = - 4 ) - —Y(tanh(t) - 2)} ——Y— (coth(2)~2)’
’ a 10u 100 100cu
14 1
==, z=—q(x-at (26)
q P 50X )

which are reduced to obtain the travelling solitary wave solution in equation (15) .

The graphical representation of some travelling solitary wave solutions of (2) is illustrated as
follows:

Figure 1 The plots of travelling solitary wave solutions (18) (7 = 10) and (24) when
v=Lu=-Lwo=0.1.

3.2 Explicit solution of Kuramoto-Sivashinsky equation

Making the wave transformation prescribed in Section 2, the KS equation (3) is reduced to the
following NLODE:

—oJ' +oUU + 0"+ Y =0, (27)

Integrating (27) with respect to £, once yields:

[04
U +=U> + WU + U " +¢, =0, (28)
2

where  &)is an arbitrary constant. With N =3 (by balancing U”and U? using the
homogeneous balance principle); therefore, equation (7) admits the ansétz:

U()=a, +aw()+ay’ () +ay’ () +by () +by () +by (), (29)

Substituting (29) into (28) and with the use of (6), we obtain the following algebraic system by
setting all the coefficients of ', j =0, 1, 22, %3 to zero:



2

5 ab,
—60k’ ub, +—>= =0,
2

3
=24K" b, +abb, =0,
2

6k, + 22 114K b, — 3kvb, + abb, = 0
1 2 3 3 173 >

~40k* b, — 2kvb, + abb, — wb, + aa b, =0,
2

b
—8k>ub, —kvb, + “T‘ — b, +aa,b, — 60k ub, — 3vb, +aab, =0,

—-ob, +aab, —16kub, —2vb, + @ab, +aa,b, =0,

2
0

2 3
—-oa, + +2k"pa, +kva, + 6k’ pa, —2kub, —vb, +aab,

+aa,b, —6ub, +aab, +0, =0,

~wa, +aa,a, +16k’ua, +2kva, +aa,b, +aab, =0,
aa) )
8kua, +va, +———wa, +aa,a, +60k" ua, +3kva, +aa,b =0,
2

40k pra, +2va, + aa a, — wa, + aaa, =0,

2

aaz

oua + +114kpua, +3va, + aaa, =0, (30)

24pua, +aa,a, =0,

273
2
3

aa
60ua, +

=0

The system in (30) is solved by the aid of Mathematica and by taking into consideration the
solution of Riccati equation (8) - (10), we obtain the following families of solutions:

Family 1.
1y 3600kv” +3610” ®
k=———,a=——,3,=—,3, =0,a,=0,a, =0,
764 7220, a
(31
60(38k” 1 + kv) 120k’ . .
b=————,b,=0,b, = , @ and 0, are arbitraries
19« a
As vu >0, we see thatk < 0 . Consequently, we obtain:
o 15v |1lv ) 1 |1lv
U,(x.t) ==~ —— |—coth(z)[ 9-11coth’ (2) | z=—= |[—(x-at) (32)
a 19a \19u 2\ 19u

As v <0, we see that K > 0, the corresponding solution is:



o 15v 11lv ) 1 11lv
U, (x.t) == -—— [-——cot(z) [ 9+11eot’() |, == [-——(x~a)
a 19« 19u 2 19u

Family 2.
v 3600kv’ + 3610’ o
ks=—,a=——,3,=—,8, =2, =2, =0,
764 7220, a ’
60(38k’ 1 + kv 120k’
b, :#, b,=0,b, = 'u, o and 0, are arbitararies
19 a

If viu> 0, then k < 0. Consequently, we obtain:

o 15 -V ) 1 [ —v
U, (x,) = =+ ——v, [— coth(2)(| 3~ coth’ (2) ). 2 ==, [—(x~ot)
a 19« 19u 2\ 19u

1%
If —< 0, then k > 0. Consequently, we obtain:

i
o 15v v ) 1 v
U, ==+ —— |——cot(2)[ 3+cot’ (2) ], 2=, [—(x=at)
a 19a \19u 2\ 19u
Family 3.
11v 3600ky’ +361w° w 60(38K 1 +v)
K=——, =, 8=—,a =——,a,=0,a, =
76,11 7220, a 19a

b =b, =b, =0, » and ¢, are arbitrarairs

If vie >0, then k < 0 . Consequently, we obtain:

o 15 1lv 2 1 [11v
U () = =———v, |——tanh(z) 91 1tanh’(2) |, 2 ==, [—(x-ot)
a 19a \19u 2\ 19u

If v <0, then k > 0. Consequently, we obtain:

o 15v |-11lv 1 |-11v
U (X, t)y=—+— tan(z)[9+11tan(2)], z=— (X — wt)
a 19a \ 19u 2\ 19u

Family 4.

v 3600kv’ +3610’ ) 6038ku+v)

ke—\ag=————a =—,a=—————-a =0,a, =

>0 1 L)

Tou 7220, a 19a

b =b, =b, =0, wand ¢, are arbitraries

If vie <0, then k < 0 and vice versa . Respectively, we obtain:

(33)

(34

(35

(36)

(37

(38%)

(39

(40)



o 15v ) 1 |-v
u,(x,t)y =—+—— —tanh(z) 3 —tanh(z) ], =—, [—(X-wt) 41)
a 19a \19u 2\ 19u

o 15v 1 v
Ug (X, 1) = ————, [— tan(2)[3 + tan’ (2)], z=—,|—(X—-at) (42)
a 19a \19u 2\ 19u
Family 5.
1lv 14400k +3610° @ 60(38ku +v 120
k=- ,a = ,a0=—,a1=—M,a2=(),a3=——#,
304 u 7220, a 19« a

b, =—ka,,b, = 0,b, = —k’a,, ® ando, are arbitraries

If vie <0, then Kk < 0 and vice versa. Respectively, we obtain:

159 19 159’
U, (X, t):2+—q(——,uq +v)tanh(z) + ! tanh’(z)
a 19« 8 8a
159 19 159’
+—q(——yq +v)coth(z) + i coth3(z)
19«
11lv 11v
=, /— —(X—ot)
19u 19u
15q 150"
um(x,t):———(—,uq +v)tan(z) — tan” (2)
a 19a 8 a
15 159"
—q(—uq +v)cot(z) + #4 c0t3(z)
19«

-1lv
= , ( —ot)
19u 19u

(43)

(44)

(45)

The travelling solitary wave solutions (44) and (45) can be simplified so that U, (X,t) and

U, (X,1) are obtained respectively.

Family 6.
v 14400kv” +3610° ) 60(38K 1 +v)
k: ,a: ,a(}:_’alz——’a =
304 u 7220, a 19a

b, =—ka,,b, =0,b, = —k’a,,  and ¢, are arbitraries

If vie <0, then k < 0 and vice versa. Respectively, we obtain:



15q 19 159’

u () =2 (-2 g +V)tanh(—q(x— ot)) + tanh’ (2)’
a 19a 8
159 19 159’
+—q(——,uq +v)coth(z) + i coth’(z) (47)
19c 8 8a
gq= — z:—q(x wt)
19,u
50 19 159’
U, 6t =2 -0 2 g +v) tan(z) - — tan’ (2)
a 19a 8 8a
15 159’
—q(—,uq +v)cot(z) + ] cotS(Z)
19« 8a (48)

v 1
q= _aZ:_q(X_a)t)
\/19;1 4

The travelling solitary wave solutions (47) and (48) can be simplified so that u,(X,t) and

U, (X,1) are obtained respectively.

Family 7.
. 9001 3610 w
0,=0,u=- ~ok=- 7.8, =—.,a =8, =a, =0,
6859w 3600v a (49)
60(38k” 1 + kv 120k’
| = ﬁ, b, =0,b, = o , o and « are arbitaraies
19« a
Since K < 0, it follows that:
0o o 19w , 19w
U, (X,t) = —+—coth(— (X - @t))| 3 —coth” (— (X - wt) (50)
a 2a 60v 60v
Family 8.
9900v° 3610 )
00: = 2,k:— 2,a0:—,al:a2:a3205
6859w 3600v a 1)
60(38k” 1 + kv 120k’
| = (—ﬂ), , =0,b, = # , @ and « are arbitaraies
19c a
Since k < 0, it follows that:
o o 190 , 190
U, (X,t) = ————coth(— (X - at))| 9 —11coth [— (X — wt)] (52)
a 2a 60v 60v

Family 9.



. 900y’ 361w ) 60(38k 1+ V)
00:()’#:_ P == Zaa():_’a]:_—s
6859w 3600v a 19« (53)
1204
a,=0,a,=———,b =b,=b, =0
a
Since k < 0, it follows that:
0 o Yo , Do
U, (X,t) = —+—tanh(— (X — ot))| 3 - tanh”™ (— (X —tw)) (54)
a 2a 60v 60v
Family 10.
. 99001 361w ) 60(38K 1 +v)
OOIO,/J: Z’k:_ zsa():_sal:_—saz_ 5
6859w 3600v a 19« (55)
120
a,=——= b =b =b =0
a
Since K < 0, it follows that:
o 19w , 19w
U, (X,t) = ———rtanh(—— (X - wt))| 9 —11tanh” (—— (X — wt)) (56)
a 2a 60v 60v
Family 11.
. 900y’ 361w ) 60(38k 1 +V)
0,=0,u=~ —ok=- >.8 =—.,8 =————,8, =0,
6859w 14400v a 19« (57)
120
a,=——" b =—ka b, = 0,b, =—k'a,
a
Since Kk < 0, it follows that:
0] -19(361
u,(xt)=— +i(¥ uq’ + v)(tanh(z) +coth(z))
a 2a 7200
6859u0’
+—'uq(tanh3(z) +coth’(2)), (58)
14400
0] 19
q="=.z=—q(x-at)
v 120
Simplifying (58) the travelling solitary wave solution in (50) is obtained.
Family 12.
. 99001 3610’ ) 60(38K 1 +v)
00: = z’k:_ 2’a0:_’al:_—aa2_ b
6859w 14400v a 19a (59)
120
a,=——"= b =—ka,b, = 0,b, = —k'a,
a

Since K < 0, it follows that:

10



U (X1) = @ +1(Myq2 + vj(tanh(z) +coth(z))

a 2a 7200

6859uq°

+—'uq(tanh3(z)+coth3(z)) (60)
14400

By simplifying (60) the travelling solitary wave solution (52) is obtained.

The graphical representation of some travelling solitary wave solutions of (3) is illustrated as

follows:

Figure 2 The plots of travelling solitary wave solutions (32) and (33) when
v=lLu=1o=4(0, =-10).

Figure 3 The plot of travelling solitary wave solutions (52) when v =1L, u =1L, w =4.

Remark: All solutions are tested to satisfy their related PDEs and found to be more generalized
compact forms with nonzero constants of integration; as mentioned in [20].
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4, Conclusion

In this presented work, we have established and successfully employed the modified Extended
Tanh method with Riccati equation for obtaining the solitary travelling wave solutions for a given
class of NLPDEs. The method has the advantage of being direct and concise. In addition, an
enormous variety of solutions was obtained with the aid of Mathematica software.
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