4	Yassmin M. Shebany ^{1,2} , Eman G. El-Dawy ¹ and
5	Youssuf A. Gherbawy ¹ .
6	
7	¹ Botany Department, Faculty of Science, South Valley
8	University, Qena, Egypt.
9	² Biological Department, Faculty of Science, Taif University,
10	Taif, Saudi Arabia.
11	*Corresponding author: yoyomsh@yahoo.com .
12	, <u>, , , , , , , , , , , , , , , , , , </u>
	sponding Author
	n M. Shebany, Ph.D.
	Department
_	of Science
South V	alley University
Qentas I	Egypt
E-m tei l:	yoyomsh@yahoo.com.
20	
21	
22	
23 24	
25	
26	
27	
28	
29	
30	Abstract

Potential of different fungi species in biodegradation

field of phenolic compounds.

Phenolic compounds are dominant pollutants in terrestrial and freshwater environmental, that have toxic effects on living organisms at low concentrations, because it has the ability to persist in the ecosystem. So bio-removal is a good technique that employs the metabolic potential of microorganisms in order to clean up the environmental pollutants and turned into less dangerous or harmless substances. This work aims to the isolating of different species of fungi from wastewater of factories and coast of the red sea to test the ability of these fungi to degrade phenolic compounds. Ten species of fungi and sterile mycelium are used to remove phenol and its derivatives at different concentrations (0.4%, 0.6% and 0.8%). All fungi species have the ability of removing phenol and their derivatives, but P.chrysogenum, Saccharomyces sp. and sterile mycelium exhibited low ability to break down of hydroxyl-benzene, 2-naphthol and 1,3 dihydroxy benzene, respectively.

45 46

47

48

31 32

33

34 35

36

37

38

39 40

41

42

43

44

Key words: Biodegradation, phenolic compounds, fungi, chlorophyll pigment.

Introduction

49 50

51 52

53

54

55

56

57 58

59

60

61

62

63

Due to the release of phenolic compounds from agro-industrial operations, these compounds have become widespread in the world as environmental pollutants. Many of these aromatic compounds are toxic to the living system and their presence in the aquatic and terrestrial habitats often have serious ecological consequences. Where natural phenolic compounds are considered one of the most important and dangerous pollutants of the current environment [1]. Many industrial effluents and residues contain the structure of phenolic compound such as waste of ships, paper factories, aluminum factories, wine-distillery, olive oil extraction, green olive debittering, cork preparation, wood debarking, coffee production, coal gasification, coke-oven batteries, refinery and petrochemical plants and other industries that produce things such as synthetic chemicals, herbicides, pesticides, antioxidants, pulp-and-paper, photo developing chemicals, etc. [2-10].

These compounds are stable and even at low concentration they may be toxic towards living organisms and cause unfavorable chemical changes in water and soil as inhibiting the sunlight penetration and decrease the photosynthetic activity of acquatic system [11]. Phenolic compound is the most toxic and it can persist in the ecosystem for long time due to its long range transportation, bioaccumulation in human and animal tissue and biomagnification in food chain [12]. Many serious diseases are caused by pollution phenol for both human and animal who inhalation and dermal contact such as cardiovascular diseases and severe skin damage, while ingestion can cause serious gastrointestinal damage and death. Even short-term application of phenol to the skin can produce blisters and burns in animals [13]. For these reasons several physico-chemical methods are used to remediate phenolic wastes such as ozonisation, adsorption, reverse osmosis, electrolytic oxidation, photocatalysis [14]. While all these methods have failing, so some of these methods are very costly like ozonisation, electrochemical, reverse osmosis and photochemical, but the disadvantage of physical adsorption is the elimination of sludge [15], bioremediation by using microbial cells to resolve phenol contamination problem consider one of the cheapest possible solutions [16-19].

The oxidative activities of microorganisms are the principal reason for the biological treatment of industrial wastewaters. Filamentous fungi may be an important supply of phenol degrading species [20]. Fungi are known for their wide incidence and also the outstanding capability of degrading advanced and inert natural products such as lignin, chitin and cellulose. Fungi adopt additional simply than bacterium and are capable to grow in extreme conditions, like nutrient deficiency, low pH, restricted water, etc. [21]. And not on the least, there comes the ability of fungi to survive within the presence of varied xenobiotics that turn to be toxic to variety of different microorganisms.

The purpose of this study was to investigate the ability of the different species of fungi to degrade some phenolic compounds, usually present in agro-industrial effluents and the effect of input and output degradation on chlorophyll pigments of *chlorella* sp.

Materials & Methods

Samples collection

- 95 Ten samples of wastewater were collected from different sites of red sea beach and
- factories in Upper Egypt during summer 2017. Wastewater samples were collected in
- 97 sterile bottles (100 ml) and in plastic bags, respectively, transferred directly to the
- laboratory and preserved at 4°C until used.

99 Fungal isolation and identification

- Fungi were isolated from the wastewater collected from red sea beach and factories
- in Upper Egypt using Czapek-Dox salts medium. water samples were suspended by
- vortexing and allowed to stand for several minutes. 1 ml portion was plated onto the
- 103 Cz media containing 12 mg/mL tetracycline and streptomycin solution respectively
- in order to suppress the growth of bacterial colonies then incubated at room
- temperature for 7 days. The sample was subcultured three times to obtain a pure
- 106 culture, which was transferred to a Cz slant and stored at 4 °C [22]. The most
- 107 common fungi were recultivated using Czapek's Dox medium until pure colonies
- were obtained. These fungi were identified by microscope using the methods
- described by [23].

110

116

Microorganisms

- Eighteen isolates belonged to 6 genus and 10 species (Alternaria alternate,
- 112 Aspergillus flavus, A. fumgatius, A. niger, A. terreus, Cladosporium cladosporioides,
- 113 penicillium aurantiogriseum, P. chrysogenum, Phoma sp., Saccharomyces sp. and
- sterile mycelium) were isolated from wastewater and used for degradation of phenol
- and its derivatives.

Biodegradation media

- Biodegradation was conducted on 4 combined media with 3 concentrations of phenol
- and their derivatives (0.4%, 0.6% and 0.8%), containing the following ingredients
- as single carbon and energy sources: hydroxy benzene, 2-naphthol, 4-nitrophenol
- and 1,3 dihydroxy benzene. The total concentration of phenolic compounds in each
- 100 ml were 0.4%,0.6% and 0.8%. Media contained also Chapek-Dox salts (in %), as
- 122 follows: NaNO3 0.2, KH2PO4 0.1, KCI 0.05, MgSO4.7H2O 0.05,
- FeSO4.7H2O –0.001. The starting pH of culture media was 5.5 [24].

124 Determination of phenol degradation potential

- The isolates showing growth on Chapek-Dox salts were used for further studies on
- bioremediation of phenol. Ten ml Chapek-Dox salts broths were inoculated with a 8-

- d-old culture of the isolates, and the flasks were incubated under shake culture
- condition on a rotary shaker for 8 days at 28° C. After an appropriate incubation
- period, the cells were removed by centrifugation and the cell-free supernatants were
- used for estimation of residual phenol. The residual phenol was estimated by [25].
- Folin Ciocalteau reagent
- The method employed the Folin –Ciocalteau phenol reagent (BDHL td) which was
- attended by the method of [26]. The general method involved the successive addition
- of 1.5 ml sodium carbonate (200 g⁻¹) and 0.5 ml Folin-Ciocalteau phenol reagent to
- 135 10 ml sample. After 60 min at 20° C, the absorbance was measured at 725 nm against
- distilled water and correct for the absorbance of a distilled water reagent blank.
- % Phenol Removal Efficiency (PRE) = 100 × 100
- Wherever, Ci is the initial concentration of phenol (mg/L) and Cf is the final
- concentration of phenol. All experiments of phenol biodegradation were done three
- times; the results were expresses as average \pm standard deviation (SD) [27].
- 141 Biological assay:
- 142 *Chorella* sp. test
- Each extract of Aspergillus niger and Penicillium chrysogenum (0.05 mg) was
- applied to 0.8 cm diameter filter paper disc (Whatman No.3), each disc was placed in
- test tube contained 10 ml of *Chorella* sp. The tubes were kept at a temperature of 25
- $\pm 1^{\circ}$ C. A control tube with only *Chorella* sp. was also made, which incubated for 8
- 147 days.

Determination of pigments (chlorophyll a, chlorophyll b and carotenoids):

- Pigment fractions were determined spectrocolorometrically according to [28]. A
- known volume (10 ml) of *Chorella* sp. suspension was centrifuged at 3000 rpm and
- the growth medium was decanted. Pigments were extracted in hot methanol (70°C)
- for 10 minutes. Cell debris was removed by centrifugation and the clear supernatant,
- which contains the pigments was aspirated and diluted to a definite volume. The
- extinction coefficient was measured using spectrophotometer (Spectronic 601)
- against a blank of methanol at the wavelengths of 452, 644 and 663 nm. Taking into
- consideration the dilution made, the content of pigment fractions (µg/ml algal
- suspension) were calculated using the following equations [29]:

158 Chlorophyll $a = 10.3 E_{663} - 0.918 E_{644}$ 159 Chlorophyll $b = 19.7 E_{644} - 3.87 E_{663}$ 160 Carotenoids = $4.2 E_{452.5} - [0.0264 Chl. a + 0.4260 Chl. b]$ **Statistical analysis**

The experimental data were subjected to multivariate analysis of variance using anova. Means were compared using Duncan's test at the 5% level using the SPSS program (SPSS Inc., Chicago, IL, USA).

Results

Ten species and sterile mycelium belonging to 6 genera were collected in the present study (table, 1). Aspergillus was represented by 4 species, and Penicillium was displayed by 2 species, while the other genera were introduced by one species. Saccharomyces was the common genus in this studies, which comprising 46.68% of total fungi and recovered from 20% of the total samples. Aspergillus (A. flavus, A. fumigatus, A. niger and A. terreus) followed by Saccharomyces sp., which contributed by 16.67% of total fungi and isolated from 40% of total samples. *Penicillium* ranked the third place in the count, which comprising 13.33% of total fungi. The remaining species (Alternaria alternata, Cladosporium cladosporioides, Phoma sp. and sterile mycelium) were contributed collectively 23.33% of total fungi and isolated only from one sample.

Table (2) explained the Effect of different species of fungi on degradation of phenol derivatives at 0.4% concentrations, so the results showed that the ability of different fungi species on biodegradation of phenol derivatives were differed according to the type of phenol derivatives, so hydroxy-benzene and 1,3dihydroxy benzene exhibited the highest biodegradation by fungi species, but 2-Naphthol and 4-Nitrophenol showed the moderate bio removal by fungi species. The highest degradation of 1,3dihydroxy benzene was done by *Cladosporium cladosporioides* (90.40 %). While the lowest bio removal occurred by sterile mycelium for 1,3dihydroxy benzene (1.01%).

In general, table 3 showed that the ability of fungi species to degrade the phenol

In general, table 3 showed that the ability of fungi species to degrade the phenol derivatives at 0.6% concentrations, so all species of fungi exhibited the degradation of phenol compounds by different proportions. Fungi species degrade phenol derivatives

in range between 1.1 to 87.08 %). *A. flavus* appeared highest ability for analysis of 1,3dihydroxy benzene compound (87.08), while *Saccharomyces* sp. showed lowest

degradation of 2-Naphthol compound (1.1%).

Table 4. Appeared the potency of different species of fungi on degradation of phenol compounds, where the ability of degradation of phenol and their derivatives increased with increased the concentration of phenol based on the results detected in many species of fungi. All species exhibited the potency to degrade phenol and their derivatives, but the potency differed from species to species, and from derivatives to derivatives. So Cladosporium cladosporioides showed the highest degradation of hydroxyl benzene (95.00%), while sterile mycelium appeared the lowest degradation of 1,3dihydroxy benzene (1.59 %).

In this study, we choose two species of degraded fungi of phenol and their derivatives (*A.niger* and *P.chrysogenum*) at different concentration of phenol to find out the ability of input and output of phenolic compounds degradation on photosynthetic pigments of chlorella sp. (table, 5). Furthermore the value of chlorophyll pigments was increased under output effects of phenolic compounds degradation than input bioremoval. The results in table 5 explained that the highest value of chlorophyll was showed at concentration 0.8% of 2-naphthol which degrade by *P.chrysogenum* (12.83 mg/g fresh wt.), followed by concentration 0.8% of hydroxyl-benzene which removal by *A.niger* (12.05 mg/g fresh wt.). While low value of photosynthetic pigments of chlorella sp. was observed at concentration 0.4% for control sample (3.75 mg/g fresh wt.).

Discussion

The ability of microorganisms to eliminate injurious chemicals from contaminated environments powerfully depends on the presence of different compounds. Most industrial wastes embrace totally different organic mixtures creating vital the investigation on the microbic destruction of composite substrates. The bioremoval or degradation of one or all elements are often delayed and/or discontinued depending on the composition of the studied mixture. Wastewaters from oil refineries, mining business and variety of industrial chemical syntheses contain several aromatics as phenol, cresols, nitrophenols, etc. [30]. The metabolism of aromatic compounds,

222 notably phenol and their derivatives explained in prokaryotic 223 microorganisms[31,32]. Ten species and sterile mycelium belonging to 6 genera were collected in the present study. Aspergillus was represented by 4 species, and 224 225 Penicillium was displayed by 2 species, while the other genera were introduced by 226 one species. Aspergillus, Penicillium and Neurospora attack aromatics and a variety 227 of soil and wood-rotting fungi dissimilate the aromatic polymer lignin, as well as 228 other plant phenolics [33]. Another fungus, the Penicillium strain Bi 7/2 has been shown the ability of growth on phenolic compounds as sole source of carbon and 229 energy, including protocatechuic and gallic acids [34]. 230 Aspergillus (A. flavus, A. fumigatus, A. niger and A. terreus) was followed 231 Saccharomyces sp., which contributed by 16.67% of total fungi and isolated from 232 40% of total samples. Three species of fungi (H. bergeri, F. oxysporum and A. flavus 233 234 var. coulmnaris) were the most common fungal species from the 25 samples of soils collected from the three Governorates (El Gharbia, Kafre El Sheikh and El-Menofia) 235 236 [13]. From results in tables (2, 3 and 4), we have a tendency to showed that every one 237 238 fungal species used have the ability to degrad the phenol and their derivatives. The 239 microorganisms have the flexibility of removing phenol depended on the action of 240 sort of enzymes. In bioremoval of phenol under aerobic conditions, the degradation is started by oxygenation in which the aromatic ring is initially monohydroxylated 241 242 by a mono oxygenase phenol hydroxylase at a position ortho to the pre-existing 243 radical to compose catechol. Catechol is that the main intermediate ensuing from metabolism of phenol by completely different microbic strains. Betting on the sort of 244 245 strain, the catechol then undergoes a ring break down which will occur either at the ortho position so initiating the ortho pathway that results in the formation of succinyl 246 Co-A and ethanovl radical Co-A or at the meta position so initiating the meta 247 pathway that results in the formation of pyruvate and acetaldehyde¹. The results 248 249 obtained from this investigation explained that, in generally the ability of different 250 species of fungi for degradation of hydroxyl-benzene, 2-naphthol and 4-nitrophenol 251 increased with increased the concentration of phenol and their derivatives. A lot of fungi species have ability to degrade phenol. Consequently, two species of fungi (252 253 Mucor sp. and Rhizopus sp.) have the ability with highest degardation of phenole at initial concentration 100 mg/l. There is a relationship between the ability of fungi to analyze phenol with its concentration [27]. Many species of fungi produce extracellular enzymes for the metabolism complex carbohydrates into simple carbohydrates used by fungi as a source of sugar, for this reason, it has become possible to degrade pollutants such as phenol [35].

At the first three days, the ability of *Mucor* sp. and *Rhizopus* sp. to remove phenol had appeared slightly difference, because the longtime of acclimation period, where the organisms need a time to adapted for the use of phenol as a sole carbon source. The other reason for this way may be referred to sporulation stage which have a period of time to enter mycelium stage. After the first three days, after the first three days, the increased of phenol degradation by fungi was directly proportional with increase period of incubation. Then, bioremediation efficiency was slightly different. The reveal increased degradation efficiency can be explained by the availability of a carbon source which improves the fungi performances and growth and thereafter, the reduction of carbon source in the solution which is reflected as decrease or an inhibition in the bioremoval process (mortality of the cells) [27].

While the ability of fungi to degrade 1,3 dihydroxy benzene decreased when increased the concentration of it. the results of initial concentration effect of phenol within the range of 10-150 mg L-1. The uptake of phenol increased with the initial concentration up to 120 mg L-1. Then uptake decreased as the initial phenol concentration was increased. The higher uptake at lower concentrations may be due to the presence of more available sites on the adsorbent than the number of phenol ions which are available in solution. The maximum uptake was determined at 120 mg L-1 as 30 mg g-1[36].

Conclusion

The results indicated that a wide range of fungi species have the ability to degrade phenolic compounds. It can be say the bioremoval a wonderful technique for bioremediation of wastewater.

Reference

- 1- Supriya MC, Deva N. Biodegradation of phenol by Aspergillus niger. IOSR. J.
- 286 Phar. 2014; 4 (7):11-17.
- 2- Field JA, Lettinga G. Treatment and detoxification of aqueous spruce bark
- 288 extracts by *Aspergillus niger*. Water Sci. Techn. 1991; 24(3-4):127-137.
- 3- Borja R, Martin A, Maestro R, Luque M, Duran MM. Enhancement of the
- anaerobic digestion of wine distillery wastewater by the removal of phenolic
- inhibitors. Biores. Techn. 1993; 45(2): 99-104.
- 4- Brand D, Pandey A, Roussos S, Soccol CR. Biological detoxification of coffee
- 293 husk by filamentous fungi using a solid state fermentation system. Enzyme
- 294 Microb. Techn. 2000; 27(1-2):127-133.
- 5- Lesage-Meessen L, Navarro D, Maunier S, Sigoillot JC, Lorquin J, Delattre M,
- Simon JL, Asther M, Labat M. Simple phenolic content in olive oil residues as a
- function of extraction systems. Food Chem. 2001; 75(4):501-507.
- 298 6- Minhalma M, de Pinho MN. Tannic membrane interactions on ultrafiltration of
- cork processing wastewaters. Separation and Purification Techn. 2001; 22-23(
- 300 1):479-488.
- 7- Aggelis G, Ehaliotis C, Nerud F, Stoychev I, Lyberatos G, Zervakis GI.
- Evaluation of white-rot fungi for detoxification and decolorization of effluents
- from green olive debittering process. App. Microbio. Biotech. 2002; 59 (2-3):
- 304 353-360.
- 305 8- Marrot B, Barrios-Martinez A, Moulin P, Roche N. Biodegradation of high
- 306 phenol concentration by activated sludge in an immersed membrane bioreactor.
- 307 Biochem. Engin. J. 2006; 30:174-183.
- 9- Bodalo A, Gomez JL, Gomez M, Leon G, Hidalgo AM, Ruiz MA. Phenol
- removal from water by hybrid processes: Study of the membrane process step.
- 310 Desalin. 2008; 223: 323-329.
- 311 10-Jayachandran VP, Kunhi AAM. Degradation of 3-chlorobenzoate and phenol
- 312 singly and in mixture by a mixed culture of two orthopathway- following
- 313 Pseudomonas strains. J. Indust. Microb. Biotech. 2008; 5: 120-122.
- 314 11-Przybulewska K, Wieczorek A, Nowak A, Pochrząszcz M. The isolation of
- microorganism capable of phenol degradation. Pol. J. Microb. 2006; 55(1):63-67.

- 316 12- Atlas RM, Bartha R. In Microbial Ecology: Fundamentals and applications. 4th
- Edition.Benjamin Cummings Science Publishing California. 1998.
- 318 13- Abd El-Zaher EHF, Mahmoud YAG, Aly MM. Effect of different concentrations
- of phenol on growth of some fungi isolated from contaminated soil. Afr. J.
- 320 Biotechn. 2011; 10(8):1384-1392.
- 321 14- Weir BA. Phenol treatment. Sci. Engin. 1991; 51:338-344.
- 322 15-Udayasoorian C, Prabu PC. Biodegradation of phenols by ligninolytic fungus
- 323 *Trametes versicolor*. J. Biol. Sci. 2005; 5(6):824-827.
- 324 16-Celik GY, Aslim B, Beyatli Y. Enhanced crude oil biodegradation and
- rhamnolipid production by *Pseudomonas stutzeri* strain G11 in the presence of
- Tween-80 and Triton X-100. J. Envir. Biol. 2008; 29: 867-870.
- 17-Laowansiri S, Vinitnantharat S, Chaiprasert P, Ha SR. Anaerobic degradation
- kinetics of reactive dye with different carbon sources. J. Envir. Biol. 2008; 29:
- 329 309-314.
- 330 18-Santos VL, Andrea SM, Braga DT, Santoro MM. Phenol degradation by
- Aureobasidium pullulans FE13 isolated from industrial effluents. J. Hazard.
- 332 Materials. 2009; 16:1413-1420.
- 19-Shen J, Rui H, Yu H, Wang L, Zhang J, Sun X, Li J, Han W, Lu X.
- Biodegradation of 2,4,6-trinitrophenol (picric acid) in a biological aerated filter
- 335 (BAF). Biores. Techn. 2009; 11:1922-1930.
- 20-Mendonça E, Martins A, Anselmo AM. Biodegradation of natural phenolic
- compounds as single and mixed substrates by Fusarium flocciferum. Elect. J.
- 338 Biotechn. 2004; 7 (1):30-37.
- 339 21-Atagana HI. Biodegradation of phenol, o-cresol, m-cresol and p-cresol by
- indigenous soil fungi in soil contaminated with creosote. World J. Microb.
- Biotechn. 2004; 20:845-849.
- 342 22- Sahebnazar Z, Shojaosadati SA, Mohammad TM, Nosrati M. Biodegradation of
- low-density polyethylene (LDPE) by isolated fungi in solid waste medium.
- 344 Waste Management. 2010; 30:396–401
- 23- Watanabe T. Pictorial atlas of soil and seed fungi, morphologies of cultured fungi
- and key to species. CRC Press, Lewis Publishers Inc., USA. 1994.

- 347 24- Stoilova I, Krastanov A, Bui H. Biodegradation of mixed phenolic compounds by
- a microbial association of Aspergillus awamori and Thermoascus aurantiacus.
- 349 Elect. J. Envir. Agri. Food Chem. 2008; 7 (12): 2625-2633.
- 25-DOE (Department of the Environment). Analysis of Raw, potable and waste
- 351 water. HMSO. London. 1972.
- 26-Folin O, Ciocalteau V. On tyrosine and tryptophane determinations in proteins.
- 353 J. Biol. Chem. 1927; 73: 627-650.
- 27- Al-fawwaz AT, Jacob JH, Al-Wahishe TE. Bioremoval capacity of phenol by
- green micro-algal and fungal species isolated from dry environment. Intern. J.
- 356 Sci. techn. Res. 2016; 5(02):155-160.
- 357 28-Marker AFH. The use of acetone and methanol in the estimation of chlorophyll
- in the presence of phaeophytin. Freshwater Biol. 1972; 2: 361-385.
- 29-Metzner H, Rau H, Senger H. Untersuchungen Zur Synchronisierbarkeit
- einzelner Pigment-Mangel Mutanten Von Chlorella. Planta. 1965; 65:186–94.
- 30- Powlowski JB, Dagley S. B-Ketoadipate pathway in *Trichosporon cutaneum*
- modified for methyl-substituted metabolites. J. Bacter. 1985; 163: 1126-1 135.
- 363 31-Hinteregger C, Leitner R, Loidl M, Ferschl A, Streichsbier F. Degradation of
- phenol and phenolic compounds by *Pseudomonas putida* EKII. App. Microb.
- 365 Biotechn. 1992; 37: 252-259.
- 366 32-Muller RH, Babel W. Biodegradative properties of alkaliphilic microorganisms
- from building materials of herbicide. Acta Biotechn. 1996; 16:121-131.
- 368 33-Evans WC. The microbiological degradation of aromatic compounds. J. General
- 369 Microb. 1963; 32: 177-184.
- 370 34-Hofrichter M, Scheibner K. Utilization of aromatic compounds by the
- 371 *Penicillium* strain Bi 7/2. J. Basic Microb. 1993; 33(4): 227-232.
- 372 35-Leitão A. Potential of *Penicillium* Species in the Bioremediation Field. Inter. J.
- 373 Envir. Res. Public Health. 2009; 6(4):1393-1417.
- 36-Moyo M, Mutare E, Chigondo F, Nyamunda BC. Removal of phenol from
- aqueous solution by adsorption on yeast, *Saccharomyces cerevisiae*. Inter. J. Res.
- 376 Rev. App. Sci. 2012; 11(3): 486-494.

Table 1. Total counts (TC, calculated per 30 colonies), percentage of fungal counts (%C, 370 alculated per total fungi) and frequency of fungal species (%F, calculated per 10 samples) 380 f various fungal genera and species recovered from 10 samples of wastewater. 381

Genera and species	TC	C%	NCI	F%
Alternaria alternate	3	10.00	1	10
Aspergillus	5	16.67	4	40
A. flavus Link	1	3.33	1	10
A. fumigatus Fresenius	1	3.33	1	10
A. niger Van Teighem	2	6.67	2	20
A. terreus var. africanus Fennell and Raper	1	3.33	1	10
Cladosporium cladosporioides (Fres.) de Vries	2	6.67	1	10
Penicillium	4	13.33	2	20
P. aurantiogriseum Dierckx	3	10.00	2	20
P. chrysogenum Thom	1	3.33	1	10
Phoma sp.	1	3.33	1	10
Saccharomyces sp.	14	46.68	2	20
Sterile mycelium	1	3.33	1	10
Total account	30	100.00		

Table 2. Potency of different species of fungi on degradation of phenol derivatives at 0.4% 386oncentrations, incubated at 28° C for 8 days.

	Degradation (%) of phenol derivatives at 0.4% concentrations					
Species						
Species	hydroxy- 2-		4-	1,3dihydroxy		
	benzene	Naphthol	Nitrophenol	benzene		
Alternaria alternate	85.37	46.02*	40.23	84.37		
A. flavus Link	85.57*	33.88	38.31*	87.08		
A. fumigatus Fresenius	83.11	37.88	54.46	88.02		
A. niger Van Teighem	82.10	19.33	37.97	84.08		
A. terreus var. africanus	87.68	31.07*	42.49*	87.29 [*]		
Cladosporium cladosporioides	87.97	30.58	48.59	90.40		
P. aurantiogriseum Dierckx	84.26	39.26	38.53	87.81		
P. chrysogenum Thom	2.2	31.96	50.51	87.23*		
Phoma sp.	88.05	41.37	43.50*	88.20*		
Saccharomyces sp.	83.94	30.44	16.05	86.65		
Sterile mycelium	87.38	27.14	54.80*	1.01*		

^{*.} The mean difference is significant at the 0.05 level.

Table 3. Potency of different species of fungi on degradation of phenol derivatives at 0.6 393% concentrations, incubated at 28° C for 8 days.

oncentrations 4- Nitrophenol 37.72 73.70	1,3dihydroxy benzene 81.98* 87.08*
ol Nitrophenol	benzene 81.98
37.72	81.98
*	*
73.70*	87.08
	1
77.36	84.55
15.32*	80.52*
37.62*	67.80*
72.03	86.47
81.02*	86.29*
59.38	85.51*
76.80*	72.59*
50.06	84.21*
33.96	82.55
	15.32 [*] 37.62 [*] 72.03 [*] 81.02 [*] 59.38 [*] 76.80 [*]

^{*.} The mean difference is significant at the 0.05 level.

Table 4. Potency of different species of fungi on degradation of phenol derivatives at 3990.8% concentrations, incubated at 28° C for 8 days.

	Degradation (%) of phenol derivaties at 0.8% concentrations					
Species						
Species	hydroxy- 2-		4-	1,3dihydroxy		
	benzene	Naphthol	Nitrophenol	benzene		
Alternaria alternate	89.27	35.33*	67.52	75.82		
A. flavus Link	94.60*	29.90*	51.50	83.82*		
A. fumigatus Fresenius	90.27	25.43	57.52	89.11		
A. niger Van Teighem	66.71	24.75	8.05	65.41*		
A. terreus var. africanus	79.59	30.10	5.58	59.10		
Cladosporium cladosporioides	95.00	37.79	56.64	89.94		
P. aurantiogriseum Dierckx	93.17	32.79*	54.87	91.26		
P. chrysogenum Thom	26.74	34.14	45.84	86.53*		
Phoma sp.	81.71*	22.55*	60.00	24.54		
Saccharomyces sp.	72.88	32.85	46.37	88.42		
Sterile mycelium	93.67	31.33*	46.90	1.59		

*. The mean difference is significant at the 0.05 level.

Table 5. Concentrations of photosynthetic pigments of *chlorella* sp. (mg/g fresh wt) under 406 ffect of input and output of phenolic compounds degradation at different concentrations 40 by *A.niger* and *P.chrysogenum*.

Phenol sources	Concentrations		ts	
		Control	A.niger	P.chrysogenum
hydroxy- benzene	0.4	4.65±0.14	6.77*±0.23	5.53*±0.10
	0.6	5.00±0.00	5.87*±0.04	7.64*±0.22
	0.8	5.34±0.06	12.05*±.0.15	10.23*±0.07
2-Naphthol	0.4	4.87±0.22	4.64±0.07	4.86±0.15
2-1 vap ntnoi	0.6	5.94±0.26	7.47*±0.14	6.49*±0.066
	0.8	3.84±0.11	9.14*±0.04	12.83*±0.22
4-Nitrophenol	0.4	3.75±0.08	4.09*±0.04	4.35*±0.08
4-iviti opiienoi	0.6	6.84±0.051	5.62*±0.04	6.81±0.12
	0.8	6.25±0.10	6.87*±0.13	8.64*±0.06
1,3dihydroxy	0.4	4.33±0.04	4.56*±0.06	4.65*±0.07
benzene	0.6	4.76±0.13	6.11*±0.03	5.22*±0.08
	0.8	5.9±0.05	4.84*±0.09	12.84*±0.17

^{*.} The mean difference is significant at the 0.05 level.