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ABSTRACT

Widening the intertrack space is one of the basic elements of shaping the geometric layout
of the railway track. It significantly influences the obtained speed of trains. The solutions
applied so far do not provide favorable kinematic conditions due to the occurring distribution
of curvature along the length of the track. In the paper a new approach is made to the
problem of widening the intertrack space by presenting a thesis that it is necessary to form it
using two joined curves of appropriate curvature distribution in length. It has been assumed
that along the widening length there appear segments of variable curvature in extension
zones of both the curves, whereas in the central zone the curvature is constant. To solve the
problem use has been made of the analytical design technique, employing the identification
of the curvature distribution by different equations. Particular attention has been given to the
nonlinear distribution of curvature, regarded as the most advantageous undertaking. To
obtain a specific final ordinate in the widening the intertrack space it is necessary to obey a
sequential correction procedure of the adopted geometric parameters.

Keywords: Railway track, widening the intertrack space, curvature modelling, analysis of
horizontal ordinates, practical application

1. INTRODUCTION

An enlargement of the track spacing commonly known as widening of the intertrack space is
one of the basic geometric layouts of the railway track. It is most often based on shifting one
of the tracks to a particular distance. The design principles for such systems are specified in
the relevant regulations in force in the given country. In Poland this procedure is carried out
in compliance with the standards established in the seventies of last century by prof. Henryk
Baluch [1, 2]. He expressed disapproval of the method used then, consisting in employing
two circular arcs (opposite ones) without cant, separated by a straight section of the track.
He presented his own propositions relating to the solution of the problem:
- by the use of two circular arcs with cant and four transition curves with gradients due to

cant,
- by means of four transition curves without cant.

The first solution was mainly connected with railway lines dominated by passenger traffic,
whereas the second one was judged to be advantageous in the case of significant cargo
traffic domination. Also appropriate calculation algorithms were prepared, where the cubic
parabolas were applied as transition curves, and regarding the occurrence of cant in the
circular arc – straight-lined gradients due to cant.
The described situation has estabished a routine in Poland for a long time and has continued
this practice to this day, presenting a subject for both the didactic activities and also scientific
investigations (it is possible to mention here paper [3]). In the meantime in Europe in 2010



there appeared also other propositions about the solution of the problem under consideration
[4]:

- by the application of two opposite circular arcs of radii R < 4000 m with four transition
curves (solution applied when the speeds do not exceed 120 km/h),

- by the use of two opposite circular arcs of radii R 4000 m with no transition curves,
- by the use of four transition curves without circular arcs.

As can be seen the first and the last procedure mentioned above correspond to the
proposition given in papers [1, 2], but the solution obtained by the use of circular arc of radii
R < 4000 m a significant speed limit is imposed, as a rule, the radii of 1500 R 2500 m
are applicable. In solutions using circular arcs of radii R 4000 m no cant along the arc is
anticipated, that is also referring to gradients due to cant.

And yet it should be noted that it is possible to make another approach to the problem. The
fact of the intertrack spacing suggests an analogy to the case of linking paralel tracks with
each other using two railway turnouts. This takes place along the length of the diverging
tracks, assuming the shape of opposite arcs. For the reason that in typical geometric
shaping of the diverging track in a railway turnout that has been used since the beginning of
the railway system, a circular arc is employed (with no transition curves). This explains the
occurrence of areas of a turbulent changes of coordinates in the curvature diagram at the
outset and the end of the turnout. That’s why between the ends of the turnouts applied a
straight track segment it is necessary to make used in the rail track connection.

However, in recent years in some countries attempts have been made to smooth the
curvature diagram using the so-called „clothoid segments” on both sides of the circular arc
where the curvature changes linearly very often not reaching the zero values at extension
points [5-7]. In such case the straight track segment becomes useless and the end ordinate
of the first turnout is equal to half the required track spacing. An identical second turnout is
inserted in the paralel track. However, the ends of both the turnouts are connected with each
other.

Taking into consideration the above it is possible to present a thesis on the intertrack space
extension that should be shaped by making use of two connected curves of appropriate
curvature distribution along their length provided with opposite curvature signs (i.e. opposite
arcs), where their end ordinates must reach half the extension values. Of course, the
requirements relating to the turnout crossing angle of 1 : n need not be fulfilled.

2. FUNDAMENTAL ASSUMPTIONS

In contrast to the solution by the use of circular arcs with cant and transition curves with
gradients due to cant, it does not seem sensible to differentiate the height of the track rails in
view of the maintenance problems (in widening the intertrack space the cant values cannot
be large). However, the solution using four transition curves with no cant requires an
application of the circular arc segments. Nevertheless, the fundamental question should
become the proper configuration of the curvature along the length of the entire geometric
layout. This is a significant factor responsible for the speed of the train.

In the proposed solution it is only necessary to take into consideration half of the geometric
layout. Values of the abscissa for the second half are determined by taking advantage of the
symmetry axis which appears at the point connecting both the curves, whereas the ordinates
of that zone come from the difference between the spacing value and the ordinates of the
first curve.



In the analysis of a half of the geometric layout the same conditions shoud be fulfilled as for
the turnout diverging track. For the reason that the solution by using two circular arcs
(opposite ones) with no cant is unimportant for us, an assumption is made that along the
length of spacing there appear segments of variable curvature in the extreme areas and that
in the central zone the curvature is constant (which means the circular arc is used). To
obtain a correct solution it is necessary to satisfy some kinematic conditions and to
determine the end ordinate being equal to half of the assumed extention value.

The curve length of the intertrack spacing has been divided into three zones:
 initial zone of length l1 provided with a variable curvature,
 central zone of length l2 provided with a constant curvature,
 end-zone of length l3 provided with the variable curvature.
Of course, there are different variants of solutions connected with the curvature values and
the lengths of some specific zones.

An assumption is made that the kinematic parameters determine the value of the circular arc
radius and the length of segments of variable curvature for a given travelling speed of trains.
The length of the arc part of a constant curvature is implemented using an iterative method
until the assumed final ordinate is obtained. The analytical method of design [8-11] was used
in the analyzes.

3. EXISTING POSSIBILITIES OF SOLVING THE PROBLEM

There are two basic variants in shaping the curvature in extreme areas of the geometric
layout, linear (Fig. 1) and nonlinear (Fig. 2).

Fig. 1. An example of diagram with segments of linear curvature: k1 = 1/20000 rad/m,
l1 = 60 m, k2 = 1/4000 rad/m, l2 = 55 m, l3 = 50 m, k3 = 1/12000 rad/m



Fig. 2. An example of curvature diagram with nonlinear segments: k1 = 1/20000 rad/m,
l1 = 60 m, k2 = 1/4000 rad/m, l2 = 55 m, l3 = 50 m, k3 = 1/12000 rad/m

As already mentioned the linear variant is now used in shaping the diverging tracks in
railway turnouts. The nonlinear variant has been proposed in paper [12], which provides
theory of both the analyzed variants, along with the determination of parametric equations in
extreme curve zones of the Cartesian coordinate system. However, there arises a crucial
question as to the choice of parameters, namely k1, k2 and and l1, l2 and l3, that would be
most advantageous in a given situation.

Fig. 3. The most advantageous diagram of nonlinear curvature segments: k1 = 0,
l1 = 70 m, k2 = 1/4000 rad/m, l2 = 25 m, l3 = 70 m, k3 = 0



The number of variants applicable to practical use is largely limited by the dynamic analysis
presented in paper [13]. A dozen instances of the application of linear and nonlinear
curvature segments are given attention in the paper. Definitely the most advantageous
solution characterized by the least values of dynamic interactions (accelerations) has
appeared to be the case with nonlinear curvature segments of equal length and zero
curvature at the outset and the end of the geometric layout. Figure 3 illustrates the curvature
diagram in length for such a situation. Therefore further considerations are concentrated on
the assumption that curvatures k1 = k3 = 0 and that its curvature diagram is symmetric in
length (i.e. length l1 = l3). Under this circumstances it is worthwhile to introduce the
denotation k2 = k .

The modelling of the variable curvature segments along the length of the turnout diverging
track makes it possible to make an analytical record in the form of function k(l), where
parameter l denotes the position of a given point along the length of the curve. The
equations of the coordinates of the connection sought can be written in parametric form [9]:

( s )) (cox l dll   (1)

( n )) (siy l dll   (2)

The function of the tangent inclination angle Θ(l) is determined from the formula

( ) ( )l k l dl   (3)

A method currently in use (among others, in commercial programmes in aid of design [14,
15]) to determine coordinates x(l) and y(l) is the numerical integration of functions cos ( )l
and sin ( )l . From the practical point of view it provides a sufficient accuracy. However, the
above approach has a fundamental drawback – every geometric occurrence has to be
analyzed individually and the use of any generalization is here very inconvenient. If a
problem is to be viewed in a more general way, it is necessary to make use of the analytical
technique, which in principle is general and complete. The paper offers universal analytical
equations for particular zones of widening the intertrack space.

4. CHOICE OF THE APPLIED TYPE OF THE NONLINEAR CURVATURE

The application of the nonlinear curvature sections indicates that in the initial zone is bound
by the following boundary conditions:

(0) 0k   1k l k
(4)

1

'(0) kk C
l

  1' 0k l 

and the differential equation

(4) ( ) 0k l  (5)

where 1k
R
 , and the numerical factor 0C  .



In consequence of solving the differential problem (4), (5) we have
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while the tangential slope angle function Θ(l) is described by the relation
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At the end of initial zone, for l = l1 , the value of angle  1
6
12
Cl kl

  .

Fig. 4. Examples of curvature diagrams along the length of the initial zone for selected
values of coefficient C (k = 1/1000 rad/m, l1 = 50 m)

Figure 4 gives examples of curvature diagrams along length for some selected values of
coefficient C. As can be seen the monotonic curvature is due to the curves for 0;3C . The
curve for C = 0 is characterized by the most moderate feature, but as in the case of other
curves, the accomplishment of satisfying the condition imposed on preserving the
permissible value of speed of acceleration change makes it necessary to elongate it in
relations to the adopted linear curvature.

While searching for the most advantageous curve out of the analyzed ones, one should
primarily take into consideration the criterion of the least required length. The length is
determined by the permissible value of the speed of acceleration change, which besides the
trains speed, is directly connected with the curvature derivative.
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Figure 5 illustrates diagrams of curvature derivative along the length of curves for which
0;2.5C .

Fig. 5. Examples of diagrams of curvature derivative along the initial zone length
for selected values of coefficient C (k = 1/1000 rad/m, l1 = 50 m).

The most significant here is the maximum value of the derivative which can be obtained from
the condition
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2(2 3) 6( 2)''( ) 0C k C kk l l
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From equation (9) it follows that the abscissa of the point presenting the maximum function
k’(l) is

0
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
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(10)

which used in Equation (8) determines the maximum function k’(l).

2

1

(2 3)max '( )
3( 2)
C kk l C
C l

 
   

(11)

As it appears by the use of this procedure one can find the max k’(l) when 1.5C  . In other
cases the largest value of function k’(l) appears at the initial point (Table 1).



Table 1. Effect of coefficient C on the maximum value of curvature derivative

Coefficient C Arc radius
R [m]

Length
l1 [m]

Abscissa
l0 [m]

max k’(l)
[rad/m2]

0 1000 50 25.000 0.00003
0.5 1000 50 22.222 2.78E-0.5
1.0 1000 50 16.667 2.67E-0.5
1.5 1000 50 0 0.00003
2.0 1000 50 0 0.00004
2.5 1000 50 0 0.00005
3.0 1000 50 0 0.00006

From Equation (11) it follows that for C = 0, the 1max '( ) 3 / 2k l k l , thus on account of the
permissible value of the speed of acceleration change the length of the extreme segment is
to be 50% bigger than the one of the linear curvature. While for C = 1 the 1max '( ) 4 / 3k l k l ,
which means that the length of the extreme segment should be greater than for the linear
curvature only by . Therefore, on the basis of the performed analysis it follows that the
most advantageous solution is the use of coefficient C = 1. This leads to the following
equations for k(l) and Θ(l):
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   (12)
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At the end of the initial zone the tangential inclination angle  1 1
7
12

l kl  .

5. ANALYTICAL SOLUTION OF THE PROBLEM

5.1 Solution of the Problem for the Initial Zone

Equations k(l) and Θ(l) relating to the initial zone have been determined at point 4. With
respect to the adopted coefficient C = 1, relations (12) and (13) are in force. Function Θ(l)
makes it possible to determine parametric equations x(l) and y(l) of this widening curve zone
by taking advantage of relations (1) and (2). To expand functions cos ( )l and sin ( )l into
Maclaurin series use has been made of the Maxima program [16] followed by integration of
respective terms.

2 2 2 2 4 2
5 6 7 8 9

2 3 4 5 4 6
1 1 1 1 1 1

5 3( )
40 36 504 96 3456 864
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l l l l l l

 
       
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3 3 3
3 4 5 7 8 9

2 3 3 4 5
1 1 1 1 1 1

( )
6 12 20 336 192 2592
k k k k k ky l l l l l l l
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      (15)

5.2 Solution of the Problem for the Central Zone



Within the zone of the circular arc, i.e. for 1 1 2,l l l l  , there appears a constant curvature

( )k l k (16)

and function Θ(l) is described by the relationship

1
( 6)( )
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   (17)

The value of angle Θ(l) at the end of the circular arc is  1 2 1 2
6
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    ; for

coefficient C =1, value  1 2 1 2
7
12

l l kl kl    .

The circular arc equation can be noted in the form of explicit function . The methods of
its presentation is here analogical to papers [8, 10,11]. The scheme presenting the position
of the circular arc is given in Figure 6. It is assumed that the circular arc length is

(measured along the very arc). Its radius is , whereas the tangential inclination at the
initial point .

Fig. 6. Diagram illustrating the position of the circulat arc

The coordinates of the arc mid-point are determined as follows

  1
1 2

11
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sx x l R
s

 


(18)

 1 2
1

1

1
Sy y l R

s
 


(19)

The circular arc equation is



 22( ) S sy x y R x x    ,    1 1 2,x x l x l l  (20)

For the reason that the angle of return of tangents of the circular arc is α = l2 / R, the
formula for the tangential angle of indication to the arc at its end, i.e. for x(l1 + l2), can also be
denoted as Θ(l1 + l2) = Θ(l1) + α . Hence it follows that the value of the tangential inclination
at this point is s2 = tan[Θ(l1) + α]. In order to determine the circular arc end coordinates it is
necessary to find out first the coordinates of point M (Fig. 6). Finally the following are
obtained

   1 2 1 2 2
1 2

1 1tan
2 1 1

x l l x l R
s s

  
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5.3 Solution of the Problem for the Final Zone

An assumption is made for the following boundary conditions

 1 2k l l k   1 22 0k l l 
(23)
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1
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  

and the differential equation (4-2). The solution of the differential problem (4-2), (5-10) is as
follows
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The equation of the tangential inclination angle has the form
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At the end of the widening curve, the value of angle Θ(l) is   1 21 2
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6
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respect to coefficient C = 1 value   1 21 2
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For C = 1 the values of the numerical coefficients are
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On expanding functions  cos l and  sin l into Taylor series using the Maxima program
[16] and after the integration of respective terms it is possible to obtain parametric equations:

           
2 3 4

2 3 4 5
0 0 0 0 0 00 0 0 0 0sin sin

2 6 24 120
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where 0 1 2l l l  ,  0 1 2l l    .

6. EXECUTION OF THE INTERTRACK SPACE WIDENING

Point 5 provides calculation equations relating to the first intertrack space widening curve
which is a half of the designed geometric layout. The execution of the intertrack space



widening makes it necessary to introduce a second curve equipped with opposite curvature.
In equations describing functions k(l) and Θ(l) relating to this curve, it will be more
advantageous to make use of abscissa  1 24 2l l l l   , which enables us to employ, after
some modification, equations valid for the first curve.

Respective equations for the second curve are as follows:

- for 1 2 1 22 ,3l l l l l   , i.e. 1 2 1 2, 2l l l l l  

  2 3
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when the same coefficients are obligatory as in equations (24) and (25).
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The second curve of the intertrack space widening is generated in consequence of a double
mirror reflection of the first curve: at first with respect to the perpendicular straight passing
through the entire centre of the system (with abscissa x(2 l1 + l2)). In the next step a paralel
straight passing through the value of the ordinate in the centre of the system (i.e. through y(2
l1 + l2)). Coordinates of the analyzed curve are determined by means of the following
equations:
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- for    1 2 1 23 , 3 2x x l l x l l  

The tangent inclination at the initial point of the circular arc is  11 tan ls       , while

at the end point  12 tan ls    . The coordinates of the arc centre are determined for

point  ,S SS x y .
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The equation of the circular arc is

 22( ) S Sy x y R x x    ,    1 2 1 23 , 3 2x x l l x l l   (38)

and the coordinates of the circular arc end are as follows
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     
   

(39)

    1 2
1 2 1 2

2 2
1 2

3 2 3 tan
2 1 1

s sy l l y l l R
s s

  
     
   

(40)

- for    1 2 1 23 2 , 4 2x x l l x l l   , i.e. 10,l l

   
2 2 2 2 4 25 6 7 8 9

1 2 2 3 4 5 4 6
1 1 1 1 1 1

5 32 2
40 36 504 96 3456 864
k k k k k kx l x l l l l l l l l
l l l l l l

  
          

   
(41)

   
3 3 33 4 5 7 8 9

1 2 2 3 3 4 5
1 1 1 1 1 1

2 2
6 12 20 336 192 2592
k k k k k ky l y l l l l l l l l
l l l l l l
 

        
 

(42)

7. EXAMPLE OF PRACTICAL APPLICATION

The intertrack space widening is assumed to reach the value of 12 m (e.g. due to an existing
island platform) along the railway line designed for trains travelling at a speed of V = 140
km/h. The solution of the problem will be based on the application of two opposite curves



provided with circular arc segments in the middle part, and segments of nonlinear curvature
in extreme areas. The minimal radius of the circular arc in the mid-part is calculated by the
use of the formula

2

min
1

3.6 per

VR
a

   
 

(43)

where aper – permissible value of unbalanced acceleration.

On the assumption that is aper = 0.85 m/s2, the value of is equal to  1779 m. Further
calculations assume the circular arc radius R = 1800 m as the outset data.

Along the length of the nonlinear curvature segments (where coefficient C = 1) the
transverse acceleration a(l) is desribed by the following formula

2 2 2
2 3

2 3
1 1 1

( )
3.6 3.6 3.6
V k V k V ka l l l l

l l l
            
     

The speed of acceleration change ( )
3.6
V d a l
dl

  is here variable along its length, and

therefore it is necessary to satisfy the condition

3 3 3
2

2 3
1 1

m
1

ax
2

6
m 3

3. .
a

6 3.6 3
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V k V k V kl l

l l l
          



 
  

  


    

where ψper – permissible value of the speed of acceleration change.

It follows from Equation (10) that the value appears at point 0 1
1
3

l l . Thus, finally the

value should be

1
max

3 4
3.6 3 per
V k

l
 


  
 


The formula for the minimum length of the nonlinear curvature segments is

3

1
4

3.6 3 per

V kl


   
 

(44)

Making an assumption that the permissible value of acceleration increment ψper = 0.3 m/s3

(as for single transition curves of linear curvature) one can obtain the condition that
145.218 m. In the calculations made the lengths of the extreme segments l1 = l3 = 146 m are
treated as the output ones. Table 2 presents the procedure of the calculations in which initial
stages the length of the mid-segment is equal to the length of the extreme segments.



Table 2. Comparison of the characteristic values for successively generated variants

l = l1 l = l1 + l2 l = 2 l1 + l2
R

[m]
l1

[m]
l2

[m]
x(l)
[m]

y(l)
[m]

x(l)
[m]

y(l)
[m]

x(l)
[m]

y(l)
[m]

1 1800 146 146 145.966 2.368 291.362 15.177 435.243 39.724
2 2000 131 131 130.980 1.716 261.627 11.002 391.386 28.819
3 2200 119 119 118.987 1.287 237.769 8.256 356.000 21.636
4 2400 109 109 108.992 0.990 217.851 6.350 326.354 16.647
5 2600 101 101 100.995 0.785 201.899 5.034 302.562 13.198
6 2800 94 94 93.996 0.631 187.930 4.049 281.695 10.618
7 3000 88 88 87.997 0.516 175.950 3.312 263.782 8.686
8 3000 88 80 87.997 0.516 167.958 2.951 255.804 8.091
9 3000 88 70 87.997 0.516 157.967 2.530 245.830 7.378

10 3000 88 60 87.997 0.516 147.974 2.143 235.853 6.697
11 3000 88 50 87.997 0.516 137.980 1.788 225.874 6.050
12 3000 88 49 87.997 0.516 136.981 1.755 224.876 5.987
13 3000 88 49.3 87.997 0.516 137.281 1.765 225.175 6,006
14 3000 88 49.2 87.997 0.516 137.181 1.761 225.076 5.999
15 3000 88 49.22 87.997 0.516 137.201 1.762 225.096 6.00052
16 3000 88 49.21 87.997 0.516 137.191 1.762 225.086 5.99989
17 3000 88 49.213 87.997 0.516 137.194 1.762 225.089 6.00008
18 3000 88 49.212 87.997 0.516 137.193 1.762 225.088 6.00001
19 3000 88 49.211 87.997 0.516 137.192 1.762 225.087 5.99995

At the beginning of calculations the final ordinate y(2 l1 + l2) is determined for the adopted R
= 1800 m, l1 = l3 = 146 m and l2 = 146 m. It amounts to 39.724 m, which means that it
significantly deviates from the required value of 6 m (that is, a half of the assumed intertrack
space extension). It turns out that an essential procedure to reduce it, is to increase radius
R. This is an advantageous situation causing simultaneously a possibility of reducing the
lengths of extreme segments according to condition (44).

In an iterative way one can arrive at radius R = 3000 m and adequate lengths l1 = l2 = l3 = 88
m for which the final ordinate is 8.686 m. Further reducing of the ordinate is obtained by
reducing length l2. By appropriate conditions, using the trial method it is possible to find out a
solution for which the final ordinate is 6 m. In the situation analyzed the ordinate is for l2 =
49.212 m. The diagram of the curvature along the entire length of the intertrack space
widening is shown in Fig. 7, while the tangential inclination angle is given in Fig. 8. Fig. 9
illustrates the extension ordinates using the rectangular coordinate system.



Fig. 7. Diagram of curvature along the determined widening intertrack space length
(k = 1/3000 rad/m, l1 = l3 = 88 m, l2 = 49.212 m)

Fig. 8. Diagram of the tangent inclination angle along the length of the determined intertrack
space widening (k = 1/3000 rad/m, l1 = l3 = 88 m, l2 = 49.212 m)



Fig. 9. Diagram of horizontal ordinates along the length of the determined intertrack
space widening (k = 1/3000 rad/m, l1 = l3 = 88 m, l2 = 49.212 m, in non-comparative

scale)

8. CONCLUSION

The method of widening the intertrack space affects significantly the obtained speed of
trains. The solutions applied so far do not provide favorable kinematic conditions due to the
occurring distribution of curvature along the length of the track. Although the binding design
principles for the intertrack space widening were already put into use a dozen years ago
(and are still applicable) it is worthwhile making an attempt at a new approach to the problem
in view of the tremendous progress that has taken place since that time in the calculation
technique.

Taking the above into account a thesis has been submitted relating to the intertrack space
extension which should be formed by the application of two connected curves of appropriate
curvature distribution along this length with opposite curvature signs (that is, with contrary
arcs). An assumption is made that along the length of the widening one can find nonlinear
curvature segments in the extreme zones of both the used curves, whereas, the curvature in
the mid-zone is constant (which means that there appears a circular arc). To obtain a correct
solution it is necessary to satisfy kinematic conditions and to find out the final ordinate of the
first curve equal to a half of the assumed extention value.

To solve the problem an advantage has been taken of the analytical design technique
equipped with curvature distribution using the differential equations and a mathematical
record of ordinates in various zones of the extention curves. The obtained solutions are of a
universal type and make it possible to deal with any curvature values in the circular arc zone
and any arbitrary lengths of respective zones. To obtain a required end ordinate of the
intertrack space widening does not cause any special difficulties, but makes it necessary to
correct the assumed geometric parameters.

The proposed new method of designing the widening of the intertrack space differs
fundamentally from the majority of methods used so far, in which the key significance of the
appropriate curvature formation along the length of the track is not exposed. The practical



application of this method should improve the existing situation by significantly reducing the
disturbances introduced by discussed geometric layout of the track.
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