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Evaluation of Eggplant(So/anumspp)Genotypes for Proline Accumulation

indroughtConditions of Ghana

ABSTRACT

Sixteen (16) genotypes of eggplant (Solanumspp) were grown over two years in the Coastal and
Sudan Savannah areas of Ghanato identify proline accumulation response patterns of the
genotypes under dry season and drought-stressed conditions of Ghana. The experiment was
conducted at Savanna Agricultural Research Institute (SARI) experimental farm, Manga, Bawku
(Sudan Savannah Agro-ecology), and University of Ghana, Legon, Accra, experimental farm
(Coastal Savannah Agro-ecology). At each agro-ecology,leaf samples of the genotypes were
collected at the flowering stages of growth, dried, milled and assayed for their proline levels. The
prolinedata for each location and season for the two year period were separately analyzed by
general analysis of variance (ANOVA), for the estimation of the variation among the genotypes in
proline accumulation.Proline which confers tolerance of the crop to variable seasonal and
drought-stressed conditions varied significantly, due to the genotype and genotype x environment
interaction effects on its accumulation. The eggplantgenotypes were observed to develop internal
complementary drought survival mechanisms, by lowering leaf relative water contents (LRWC)
and increasing proline content, thereby enabling plants to withstand periodic drought better.
Thegenotypes A3, A4, A8, A9F, A10 and Bawkul accumulated higher levelsof prolineunder dry
season and drought-stressed conditions of the Coastal and Sudan savannahs, with the associated

high temperatures across locations. These genotypes could be selected on the basis of
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prolineaccumulation, for improved drought tolerance of the crop,andshould be incorporated in

eggplantdrought tolerant improvement programmes in Ghana.

Key Words:Eggplant, Drought, Growth Conditions, Proline Accumulation

1.0 INTRODUCTION

Eggplants(Solanumspp)arecultivated in Ghana as source of food and income, especially for the
small scale farmers [1, 2]. Though widely cultivated ina small scale in Ghana, it is grownin the
Coastal and Sudan savannah agro-ecologies under highly unstable conditions of high
temperatures, erratic rainfall and intermittent drought. Drought stress, in particular, is very
common in crop fields of these agro-ecologies, and it is a major crop developmental and yield-

limiting factor[3, 4].

Few eggplant genotypes are predominantly cultivated in the Coastal and Sudan savannah agro-
ecologies of Ghana, and may be considered as adaptive under those environmental conditions.
The stable and adaptable genotypes that are considered superior in unfavorable environments
similar to that of Coastal and Sudan savannah agro-ecologies of Ghanahave been identified with

an ability to efficiently accumulate specific stressed-induced bio-active compounds [5-8].

In drought stress conditions, plants reduce and lose turgor, andaremost susceptible during the
reproductive phase, when brief periods of water shortage could greatly reduce yield [9-11]. The
reduction or loss of turgor in plants subjected to stress conditions triggersseveral physiological
and/or chemical responsesin them [12,13]. The accumulation of proline is the primary
physiological trigger in plants that activates a complex of a sequence of adaptive events correlated

to the level of stress, plant tolerance and plant growth stage (14, 3]. In plants, the accumulation of
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cellular solutes, such as proline has been one possible means for overcoming osmotic stress

caused by loss of water [15, 16].

However, the levels of prolinein plants are properly regulated, according to environmental
conditions [17]. It is mainly accumulated under drought-stress conditions but can be accumulated
under high temperature stresses [18].In drought stress conditions, most plants increase proline
accumulation at flowering stages than at the vegetative stages [19, 20]. The proline accumulation
in plants under stressed conditions, therefore, becomes a survival mechanism in plants, which
greatly determine their adaptability to varying environments andlargely influence their desirable

traits performance and stability over time and location [21].

Plants are able to adapt and resist stress because the accumulated proline regulates and reduces
water loss from dehydrated cells [22, 23]. Its biosynthesis also enables plants to survive under
stress conditions by assisting plants to maintain the photosynthetic efficiency and the overall
survival and productivity [24]. In general, there is better survival and performance of plant species
that accumulate proline under stress conditions. Proline, therefore, plays important role in

adaptation and survival of plants under drought and temperature stresses [25,27].

The physiological responses of plantsin drought-stressed conditions such as increases or decreases
inproline accumulationare useful indices of drought tolerance [28, 29]. Such physiochemical
studies eggplant genotypes under varying environments in Ghana are vital to ascertain the
physiological behavior of existing materials in the plant genetic pool [30]. In such studies, desirable
genotypes could be identified and selected for farmers and for crop improvement purposes based

on their physiological traits competencies across environments.
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However,there is limitedstudy on the influence of varying soil moisture conditions onproline
accumulation ineggplantsacross agro-ecologies in Ghana. It is in this light that a study was
conducted to assesseggplant genotypes for proline accumulation under varying soil moisture

conditions of two most drought-stressed agro-ecologies of Ghana.

2.0 MATERIALS AND METHODS

2.1 The Study Areas

The experiment was carried out at Savanna Agricultural Research Institute (SARI) experimental
farm, Manga, Bawku in the Sudan savannahagro-ecology and University of Ghana, Legon, Accra
experimental farm in the Coastal savannah agro-ecology. Manga, Bawku is located in the North-
Eastern corner of the Upper East Region of Ghana, on Latitude 11°11'and 10°40'N and Longitude
0°18' W and 0°6'E, at an altitude of 249 meters above sea level, with atopography of gently sloping
terrain of gradient 1-2%. The University of Ghana experimental farm is located in the north-east of
the Greater Accra region of Ghana, on Latitude 5°38'45"N and Longitude 00°11'13"E at an altitude

of approximately 300 meters above sea level.

2.2 Climatic Data Collection
Climatic data (Table 1) was collected during the respective rainy and dry seasons of 2012-2013

and 2013-2014 at each experimental site of Legon and Manga. Within the study period, Legon site

81 recorded 5 months of dry season and 7 months of rainy season whereas Manga site was

82 7 months of dry season and 5 months of rainy season. Until flowering of the plants, temperature,

83 relative humidity and sunshine data were collected daily at the University of Ghana, Legon-Accra on



84 Hobo Pro data loggers (Pocassett, ME, USA), whereas those of Manga-Bawku were taken from on-

85 farm weather station. The rainfall data from both experimental sites was collected using on-farm rain

86 gauges.
87 Table 1. Location and seasonal differences in monthly average climatic data per year from
88  Manga-Bawku and Legon-Accra experimental farms during the 2012-2014 experimental period
Location Manga-Bawku Experimental Farm
Climatic Rainfall Temperature Relative humidity Sunshine
Parameter (mm) (°C) (%) (Hours)
Year / 2012-13 2013-14 2012-13 2013-14 2012-13 2013-14 2012-13 2013-14
Month
Oct-April 0.2 0.2 29.8 30.7 50.4 50.2 8.5 8.4
May-Sept. 114.1(4) 102.9(3) 27.7 28.1 80.7 80.1 6.4 6.4
Yearly Mean 47.6(4) 43 (3) 28.3 29.4 63.1 62.6 7.5 7.4
Location Legon-Accra Experimental Farm
Climatic Rainfall Temperature Relative humidity Sunshine
Parameter (mm) (°C) (%) (Hours)
Year / 2012-13 2013-14 2012-13 2013-14 2012-13 2013-14 2012-13 2013-14
Month
Nov-March 25.4(2) 12.8(2) 27.6 28.4 75.1 73.4 5.8 6.4
April-Oct. 89.5(4)  56(3) 27 27.2 78 76 5.7 5.8
Yearly Mean 62.0(3) 37.6(3) 27.3 27.6 76.5 74.9 5.8 6.2
89 ()* = Mean days of rainfall
90
91 2.3 Sampling and Analysis of Soil
92  Samples of soil were randomly collected at 0-30 cm depth from six (6) different locations of the
93  experimental plots at Legon, Accra and SARI, Manga. The soil samplesof each experimental plotin
94  the rainy and dry seasons were accordingly combined, air-dried and then sieved through a 5mm
95  mesh.
96
97 The organic matter content of the soil was analyzed following [31]. The method for the
98 determination of nitrogen was the Macro - kjeldhal [32] and that of phosphorus was the P-Bray
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No. 1. The sieved soil samples were also used to determine particle sizes, exchangeable bases and
pH.Soil bulk density was determined by collecting samples at six (6) different locations in each of
the experimental sites using core samplers. The soil samples were analyzed in duplicates, and the

results of the soils’ physical and chemical analysis are shown in Table 2.

Table 2: Soil characteristics at 0-30 cm depth from Manga-Bawku and Legon-Accra

Locations Manga-Bawku Experimental Farm  Legon-Accra Experimental Farm

Soil Characteristics Rainy Dry Mean Rainy Dry Mean
Season Season Season Season

Physical

Sand (%) 84.1 75.3 79.7 58.7 70.3 64.5

Silt (%) 1.5 2.9 2.2 6.3 9.0 7.7

Clay (%) 14.4 21.8 18.1 349 20.7 27.8

Bulk Density (g/cm®) 1.7 1.5 1.6 1.5 1.4 1.5

Chemical

pH1:1 H20 6.6 6.2 6.4 5.8 5.3 5.5

Nitrogen (%) 0.12 0.13 0.12 0.13 0.15 0.14

Organic Matter (%) 0.57 0.88 0.73 1.16 1.57 1.37

Available P. (ppm) 3.70 413 4.13 4.28 5.15 4.72

EC = Electrical Conductivity

The Coastal and Sudan agro-ecologies of Ghana differ in climatic and edaphic characteristics, and
crop growth and performance are often influenced by those characteristics. The soils of both
locationsare sandy, low in organic matter and water-holding capacities (Table 2). These

characteristics influence the loss of soil nutrients and soil moisture as well as soil drying.

2.4 Soil moisture content determination

Soil moisture content at the Legon and Manga Experimental farms was determinedfollowing
standard procedures and methods. The sampled soils were weighed and measured at different
pressure plates of 0.3 bars and 15 bars, and oven-dried at 105 °C for 48 hours to constant weights

before weighing [33, 34]. The soil moisture content values for Legon and Manga in the rainy

6
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season were 68% and 63%; dry season (irrigated) were 57% and 53% and under water-stressed

were 26% and 24%.

2.5Planting Materials

Fourteen (14) eggplant (Solanumaethiopicum) genotypes were obtained from the Department of
Crop Science, University of Ghana, Legon and Plant Genetic Resources Research Institute (PGRRI)
of the Council for Scientific and Industrial Research (CSIR), Bunso and two popular local genotypes
of bitter eggplant (Solanumincanum) commonly cultivated in Bawku area, were obtained from
aneggplant producing farmer in Bawku. The sixteen (16) eggplantgenotypes were grown in two
successive rainy and dry seasons’ conditions of Coastal Savannah and Sudan Savannah agro-
ecological zones in 2012 and 2013, and 2013 and 2014. Experimental procedure for the trials on

the 16 genotypes was the same across seasons and locations.

2.6Treatments and experimental design

The genotype, rainy season, dry season, water-stressed and location (Legon and Manga) were the
main treatments. There were sixteen (16) genotypes, three (3) soil moisture conditions and two
(2) locations, giving ninety-six (96) treatment combinations. After ploughing and harrowing, the
experimental fields were laid out in Randomized Complete Block Design (RCBD) with three (3)

replications in both rainy and dry seasons.

Plant-to-plant spacing within a row was 80 cm and planting in both years was done in May-June,
and November-December, coinciding with the onset of rainy season and dry season of 2012-2013
and 2013-2014. In both seasons, transplants at four weeks were applied with a compound

fertilizer N: P: K (15-15-15) at the rate of 250kg\ha, till flower initiation.
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2.7Leafsampling, drying and milling

Twelve (12) uppermost leaves were sampled from four recorded plants per genotype per
replication at 50% flowering in both the rainy and dry season experimentsand were oven-dried at
50 °C for 72 hours. During the dry season, leaves were sampled at 50% flowering under well-

watered and ten-days of water deprivation (stress) conditions.

Four (4) leaves from the sampled twelve (12) leaves for proline determination were picked
immediately after excision from plants and cleaned well for leaf relative watercontent (LRWC)
following [35] and [36]. Theremaining eight(8) of the sampled leaves per treatmentper location

were oven-dried at 50 °C for 72hours.

The dried leaves from each location were bulked according to genotype and growth condition and
ground into composite powders through a 1 mm mesh sieve fitted in the mill (Type: Fritsch,

Schmeasal, AZ 15 ZVK-2005, Germany).

The composite leaf powders of the rainy season, dry season and stressed conditions were
packaged in air-tight black polythene containers and stored in a freezer for analysis. The powdered

leaf samples were used for determination of proline content.

2.8Determination of proline content in leaf samples

The proline content of leaves was estimated colorimetrically by the acid-ninhydrin method,
following [37]. Samples of dry leaf powder were weighed 0.5g and homogenized in 10 ml of 3%
aqueous sulfosalicylic acid. The homogenate was filtered through Whatman No. 1 paper and made
up to 50 ml with distilled water. Prolinestandard concentrations of 5-100

ug/ml were prepared. One milliliter (1 ml) each of the filtrate (extract) and proline standards was
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pipetted into test tubes before adding 1ml acid ninhydrin and 1ml glacial acetic acid and mixed
thoroughly. The mixtures were incubated for an hour at100 °C in water bath to develop colours.
The test tubes were immediately cooled in an ice bath and vigorously vortex

before adding 4 ml toluene reagent.

The chlomophore containing toluene was aspirated from the aqueous phase, and then warmed to
room temperature (25 °C) and the absorbance read in a UV/Vis spectrophotometer at wavelength
520 nm, using toluene as blank. The proline concentration was calculated from a standard curve

and computed on dry weight basis as pmole proline/g of dry leaf weight [37] asfollows:

(ug proline/mL—Toluene/mL )x Initial dilutionx 5

moleproline g dry weight =
Hmoleproline g™ dry weig 115.5 x Sample weight

2.9Analysis of proline content data

The proline concentration data was analyzed using GenStat Statistical Software (12thEdition). The
data for each location and season for the two years were separately analyzed by general analysis
of variance (ANOVA), for the estimation of the variation among the genotypes in the measured
traits. Where ANOVA showed significant differences in proline, the mean values were separated

by the Least Significant Difference (LSD) at probability level of 0.05.

MSE
The coefficient of variation (% CV) was calculated as = 3 x 100; where MSE = Error mean

square;and X = Mean, from analysis of variance



177

178

179

180

181

182

183
184

3.0 RESULTS

Proline content in eggplant leaves at 50% flowering varied depending on the genotype, location
and growth condition (Table 3). During rainy season conditions, location and genotype x location
interaction effects onproline concentration were not significantly different (P = 0.05). The location
and genotype x location interaction effects under dry-season conditions significantly (P = 0.05)

affected the average proline levels of the genotypes.

Table 3: Proline accumulation in leaves ofeggplant genotypes at flowering in rainy,
dry season and drought-stressed conditions of two locations for two years

Condition Rainy Season Dry Season Drought-Stressed
Location Manga Legon Mean Manga Legon Mean Manga Legon Mean

Genotype (ug/g dry weight) (ug/g dry weight) (ug/g dry weight)

Al 0.44a 0.37ab 0.41a 0.78bc 0.55bc  0.67c 3.92bc 1.82d 2.87d
A2 0.40a 0.33b 0.37ab 0.83ab 0.65ab 0.74ab 4.22ab 3.65a 3.93a
A3 0.42a 0.40a 0.41a 0.82ab 0.72a 0.77a 4.30ab 3.64a 3.98a
A4 0.30b 0.38ab 0.34bc 0.88a 0.69a 0.78a 4.12b  3.85a 3.99a
A6B 0.43a 0.40a 0.42a 0.82ab 0.70a 0.76a 4.02b 3.90a 3.96a
A6F 0.37a 0.29bc 0.39a 0.84a 0.68a 0.76a 4.43a 2.94bc 3.69bc
A7 0.46a 0.42a 0.44a 0.80b 0.74a 0.76a 4.30ab 3.07bc 3.68bc
A8 0.42a 0.40a 0.41a 0.85a 0.66a 0.76a 4.22ab 3.78a 4.00a
A9A 0.45a 0.40a 0.42a 0.74c 0.65ab 0.70bc 3.96b  3.55a 3.76a
A9F 0.37a 0.29bc 0.33bc 0.83a 0.72a 0.77a 4.31ab 3.79a 4.05a
A10 0.44a 0.40a 0.41a 0.75¢ 0.70a 0.73a 441a 3.75a 4.08a
Al1 0.22b 0.41a 0.32bc 0.81b 0.71a 0.76a 4.31ab 3.51a 3.91a
Al12 0.31b 0.43a 0.37ab 0.87a 0.67a 0.77a 4.22ab  3.65a 3.71b
Legonl 0.42a 0.40a 0.41a 0.78bc 0.72a 0.75a 437a 3.52a 3.95a

Bawkul 0.45a 0.38a 042a 0.81b 0.71a 0.76a 4.42a 3.5la 3.97a
Bawku2 0.47a 0.40a 0.43a 0.84a 0.6lbc 0.72ab 4.20b 2.46¢c  3.33c

10
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Mean 0.40 0.39 0.39 0.81 0.68 0.75 4.25 3.37 3.82

%CV 15.3 11.6 14.4 4.7 9.2 7.6 4.3 18.2 12.4
Means with different letters in a column are significantly different at P = 0.05.
LSD (5%) (Proline):Location (Rain-fed = 0.03ns; Dry season = 0.02**; Drought-stressed = 0.12*%*)
Genotype x Location (Rainy season = 0.11ns; Dry season = 0.09*%*; Drought-stressed = 0.48*%*). ns
= Not significant; ** =Significant at 1% levels of probability.

Under drought-stressed conditions, the location and genotype x location interaction effects on the
proline contents of the genotypes were significant (Table 3). At each location, the rainy and dry
season conditions did not have significant effects on genotype proline levels; whereas drought-
stressed conditions at each location significantly (P < 0.001) affected genotypes’ proline
accumulation. Generally, the proline levels of the genotypes in the dry season of growth were
higher than that of the rainy season, whereas the levels of proline in genotypes under drought-
stressed were about ten-fold higher than those in the rainy season and about five-fold higher than
those under dry season conditions. In general, the proline levels of the genotypes across the

growth seasons and conditions were consistently higher at Manga than at Legon.

Under drought-stressed conditions (Table 3), the Manga site recorded proline levels ranging from
3.93 ug/gDW in Al to 4.43 ug/gDW in A6F; the levels atLegon ranged from 1.72 ug/gDW in Al to
3.91 ug/gDW in A6B. Across locations,the genotypes proline levels ranged from 2.87ug/gDW in Al
to 4.08 pug/gDW in A10. The site means ranged from 3.36 pug/gDW at Legon to 4.24 pug/gDW at
Manga. The highest six proline accumulating genotypes in drought-stress conditions across the
locations,in the order of highest was A10 (4.08 ug/gDW), A9F (4.05 ug/gDW), A8 (3.99 ug/gDW),

A4 (3.98 ug/gDW), A3 (3.97 ug/gDW) and Bawku1l (3.96 pug/gDW).

11
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There were significant genotype and genotype and environment interaction effects on proline

synthesis in eggplants grown across seasons of the Coastal and Sudan savannah agro-

ecologies.The drought-stressed conditions of both locations were also associated with low leaf

relative water contents of the genotypes (Table 4) but with higher variability (CV = 13.3%) among

genotypes than the dry season variability (CV = 8.5%). The proline content in the leaves of the

genotypes also increased as leaf relative water contents decreased (Tables 3 & 4). This indicates

an inverse relationship between leaf water content and proline levels in eggplants.

Table 4: Leaf relative water content (LRWC) of eggplant genotypes at flowering under rainy, dry

season and drought-stressed conditions of two locations for two years

Condition  Rain season Dry season Water-stressed

Location Manga Legon Mean Manga Legon Mean Manga Legon Mean
Genotype % % % % % % % % %

S

Al 78.4d 82.7c 80.5f 63.4b 75.2b 69.3b 47.7b 51.0b 49.3b

A2 78.7d 80.4c 79.5f 63.3b 753b 69.3b 48.2b 50.7b 49.5b

A3 84.2b 84.8bc 84.5¢ 61.1c 73.7b 67.4c 52.6a 60.7a 56.4ab
A4 835b 77.2d 80.4f 63.2b 759a 69.5b 47.4b 51.7b 49.6b

A6B 80.1c 79.4d 79.8f 63.5b 75.0b 69.2b 48.9b 53.8b 51.3b

A6F 85.8a 78.0d 81.9e 67.3a 77.2a 72.3a 50.5b 58.7a 54.6ab
A7 81.0c 87.0ab 84.0c 65.7b 73.4b 69.5b 53.6a 60.5a 57.0ab
A8 77.1d 849b 81.0e 66.2b 75.4a 70.8b 54.0a 61.5a 57.8a

A9A 843b 85.8b 85.1c 64.5b 739b 69.2b 54.0a 61.8a 57.9a

A9F 773d 86.3b 81.8e 653b 73.2b 69.3b 53.4a 58.1a 55.7ab

12
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A10 80.3c 86.5ab 83.4d 70.3a 75.2b 72.7a 53.8a 50.6b 52.2b
All 81.5c 85.4b 83.5d 648b 76.8a 70.8b 51.5a 62.5a 57.0ab
Al2 77.4d 86.5ab 82.0e 63.1b 75.0b 69.1c 51.8a 57.9a 54.9ab
Legonl 79.5c 849b 82.2e 69.0a 74.1b 71.6a 53.1a 52.4b 52.7b
Bawkul 87.4a 89.3a 883a 643b 76.1a 70.2b 54.4a 65.0a 59.7a

Bawku? 87.6a 86.5ab 87.0b 68.9a 78.0a 73.5a 56.0a 63.1a 59.6a

Mean 81.5 84.1 82.8 65.3 75.2 70.2 51.9 57.5 54.7
%CV 4.9 4.9 5.1 6.0 3.4 8.5 9.3 143 133
Means with different letters in a column are significantly different at P = 0.05.

LSD(5%) (LRWC at flowering): Rainy season (Location= 0.4**;Genotype x Location = 1.7*%*);
Dry season (Location = 0.9**; Genotype x Location = 3.4**); and, Drought-

stressed(Location=1.69**; Genotype x Location = 6.8**). ** = Significant at 1% level of probability.

The reduction in moisture content of leaves in the dry season could also be due to the utilization
of the moisture to build proline and other leaf constituents.The accumulation of proline enable
plants to maintain low water potentials, and this condition in plants could trigger the
accumulation of other compatible osmolytes as well as chlorophyll and allows additional water to
be taken up from the environment, and hence help in buffering the immediate effect of water
deficit within the leaf [38, 39].In dry conditions, the proline in garden egg remained active and so

some amount of water retention was made possible (Table 3&4).

13
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4.0 DISCUSSIONS

The concentration of proline in the leaves of eggplant genotypes depended on the soil moisture
levels of the rainy season, dry season and drought-stressed conditions of Manga and Legon (Table
3). With the exception of the rainy season, the dry season and drought-stressed conditions
significantly (P = 0.05) affected the proline levels in the genotypes. The growth conditions of
Manga resulted in higher levels of proline in plants than Legon, indicating that environmental
conditions of Manga triggered higher proline synthesis than Legon. Seasonally, the dry season
conditions enhanced proline synthesis than rainy season, suggesting that the rainy season and for

that matter, higher moisture conditions do not trigger proline synthesis in eggplants.

This is an indication thatproline accumulation may result from both induction of proline
biosynthesis and/or inhibition of its oxidation [40, 41]. The induction of proline biosynthesis is
activated by the enzyme pyrroline-5-carboxylate synthetase, and proline is inhibited from

degeneration by the enzyme proline dehydrogenase [40, 22, 42].

Plants accumulate proline when exposed to abiotic stresses such as drought [43, 44], as well as
varying temperatures [45]. The high proline accumulation in the eggplant genotypes during the
dry season and drought-stressed conditions could be attributed to lack of adequate water supply
or due to high sunshine and temperatures at that period. During the dry season, temperatures
were generally high across ecologies (Table 1), and so temperature increases in addition to low
soil moisture or drought stress trigger and significantly increasedproline synthesis through

enhanced activities of the biosynthetic enzyme, pyrroline-5-carboxylate reductase.
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High proline accumulation is part of physiological responses to intense stress, and has been
indicative of higher capability to resist drought [46-49].This is an indication that during drought
stress, eggplants generally have inherent ability to counteract or minimize the effects through
proline accumulation. It is also suggestive that, the production of proline is probably a common

response of eggplant under drought-stress.

The osmotic adjustment through the accumulation of cellular solutes, such as proline, has been
suggested as one of the possible means for overcoming osmotic stress caused by loss of water [15,
16, 50]. In this study, proline content in the leaves of eggplant genotypes tended to increase as
leaf relative water contents decreased (Tables 3 & 4), indicatingan inverse relationship between

leaf water content and proline content in eggplants.

The proline levels enable plants to maintain low water potentials, and it is this condition that
triggers the accumulation of other compatible osmolytes and allows additional water to be taken
up from the environment, and hence help in buffering the immediate effect of water deficit within
the leaf [38, 39]. The drought-stressed conditions of both locations were associated with low leaf
relative water contents of the genotypes (Table 4) suggesting that the accumulation of proline is

probably a mechanism to withhold water during periods of water stress[38].

Regardless of the growth conditions of the crop, there were significant differences (P = 0.05)
among genotypes in proline accumulation, suggesting that garden egg genotypes differ in their
abilities to synthesize proline. The variation in the genotypes proline levels across locations was
higher under drought-stressed conditions (CV = 12.4%) than the dry season conditions (CV = 7.6%)

(Tables 3), and this clearly indicates the influence of drought-stressed conditions on
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prolineaccumulation in eggplants.Though there were location specific genotypic differences, the
highest six proline accumulating genotypes under drought-stressed conditions across locations,
were A3, A4, A8, A9F, A10 and Bawkul, and this present great opportunity in drought tolerant
improvement programmes in garden egg under Coastal and Sudan savannah agro-ecologies of

Ghana.

5.0 Conclusion

Proline as a bioactive compound, confer tolerance of many plants genotypes to drought or
moisture stressed conditions. Eggplant genotypes at reproductive phase varied in their proline
accumulation ability under drought or moisture stressed conditions.Under drought conditions, the
crop genotypes might have developed internal complementary drought survival mechanisms by
lowering leaf relative water contents (LRWC) and increasingproline concentrations, thereby

enabling genotypes to withstand periodic drought better.

The information on genotypic differences in proline accumulation is useful in the survival and
productivity of eggplant, and could be useful in settingthe crop breeding objectives. Though there
were location specific genotypic differences, the highest six proline accumulating genotypes under
drought-stressed conditions across locations, were A10, A9F, A8, A4, A3and Bawkul. This may
present a great opportunity in drought tolerance improvement programmes in eggplantfor

improved performance in drought-prone agro-ecologies of Ghana.
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