
 

 

 EPIDEMIOLOGICAL MODEL FOR PEDIATRICS PATIENTS WITH LEPROSY 1 
INFECTION 2 

 3 

Abstract 4 
Leprosy Infection (LI) is a long-term chronic infectious disease caused by the bacterium 5 
Mycobacterium leprae or Mycobacterium lepromatosis. This infectious disease has caused 6 
the public issue in many countries around the globe. The disease is prevalent among the 7 
adults, although there are now cases of the minor contacting this disease through household 8 
contact which is the primary source of infection such as (babysitters, neighbors). The 9 
emerging and reemerging diseases have led to a revived interest in infectious diseases in 10 
which mathematical models have become important tools in analyzing the spread and control 11 
of infectious diseases. Mathematical models are used in comparing, planning, implementing, 12 
evaluating and optimizing various detection, prevention therapy, and control programs, the 13 
model provides conceptual results such as threshold and basic reproduction number. In this 14 
paper, the Passive Immunity Pediatrics (M) - susceptible- Exposed-infected-recovered-15 
susceptible (MSEIRS) model was adopted to depict the spread of infections in our 16 
environment. 17 
Keywords: Mathematical Model, Basic Reproductive Number, Pediatrics Patients, 18 
Leprosy Infection. 19 
 20 
1.0 Introduction 21 
The model uses the principles of epidemiological models, the idea is to investigate the 22 
particular details of an infection and express how individuals are progressing through a set of 23 
states at different rates.  Leprosy is spread through a cough or contact with fluid from the 24 
nose of an infected person. [1] It occurs more commonly among those living in the rural area 25 
with extreme poverty, although, it is not highly contagious. Although, tuberculosis (TB) is not 26 
as prevalence as it was before now; the doctors do not take TB disease serious even when 27 
evaluating patients who have symptoms. [2] This resulted in the delay in diagnosis of TB disease 28 
in patients and the patient may sick and possibly infectious for a prolonged period [3] There are 29 
two main types of leprosy disease which are based on the number of bacteria present: 30 
paucibacillary and multibacillary.[4] The two are differentiated by the number of poorly 31 
pigmented, numb skin patches present, with paucibacillary having five or fewer and 32 
multibacillary having more than five. Also, acid-fast bacilli can be used in the diagnosis 33 
biopsy of the skin or the use of polymerase chain reaction for detecting the DNA. 34 
 35 
The greatest risk factor for been infected is been in contact with another case of leprosy, been 36 
in contacts with people living with leprosy are five to eight times more likely to develop 37 
leprosy than members of the general population. Other risk factors are conditions that reduce 38 
immune function, such malnutrition other illness, or host genetic differences which may 39 
increase the risk of developing leprosy (5). These led to the need to development an effective 40 
and efficient epidemiological model that can be used to reduce the factors that are responsible 41 
for the prevalence of the disease in other to reduce leprosy infection.  The epidemiological 42 
model which involves the individuals transition from a Passive Immunity to Susceptible state 43 
to Latent period to an Infectious one to a Recovered state at a certain rate, and become 44 
Susceptible again at a different rate. This model is called the MSEIRS model, because 45 
individuals move between them M (Passive Immunity in paediatrics), E (Latent period) S 46 
(Susceptible) and I (Infectious states) R (Recovered).  47 
The Passive Immunity for pediatrics - Susceptible – Latent - Infected – Recovered- 48 
Susceptible (MSEIRS) model was introduced by Kermack and McKendrick, in 1927 (6).  In 49 



 

 

the model, the population is divided into three distinct groups of: the Passive Immunity for 50 
Infant (M), Latent period (E), Susceptible (S), Infected (I) and Recovered (R) where M, E, S, 51 
I and R represent the number of children in each of the groups respectively and the total 52 
populationܰ ൌ ܯ  ܧ  ܵ   ܫ    ܴ. The Susceptibles are those who are not infected and 53 
not immune, the Infecteds are those who are infected and can transmit the disease, and the 54 
Recovered are those who are immune to re-infection. The characteristic feature of LI is that 55 
immunity after infection is temporary, such that the recovered can become susceptible again 56 
if all the risk factors are still present. 57 

2.0 Mathematical Model Formulation 58 
Passive immunity is an immunity obtained from external source: immunity from disease 
acquired by the transfer of antibodies from one person to another, e.g. through injections or
between a mother and a fetus through the placenta looking at the case of infection spread on 
the population, there is an arrival of new susceptible population. In this type of situation,
births and deaths rate must be included in the model. The differential equations represent the
model which indicates the rate of change of number of individuals in each compartment with 
respect to time. Below is the Schematic diagram for the single age class M - Passive 
Immunity Infant, S- Susceptible, E – Latent period, I – Infectious, R – Recovered (MSEIRS)
model for LI transmission (4).  

 

An additional feature of LI is employed. By this Newborn babies whose mothers are immune 59 
are taken into consideration. As a result, these children are protected by the antibodies present 60 
in their mothers. Thus, group M of children who are completely protected by these antibodies 61 
are considered. The ratio of these newborn babies M is equal to the ratio of the general 62 
population that is immunized after recovering from infection. Protection reduces and these 63 
children M become susceptible at a rate . Under the above assumptions, the following are the 64 
results. 65 
 66 
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 71 
  Table 1 the description of parameters used in the model 72 

Parameter Description Unit 

S Susceptible population Number/unit time 

Μ  Birth rate of the children i.e the mortality 
rate 

Number  /  unit 
time

I Infected population Number/unit time 



 

 

R Infected population that Recovered Number/unit time 

M Passively immune infants Number/unit time 

μ Birth rate of the children i.e the mortality 
rate 

Number/unit time 

 rate of loss of immunity Number/unit time ߛ

 Rate of loss of infections Number/unit time 

ß Transmission parameter (constant rate) Number/unit time 

R0 Basic reproduction number Number/unit time 

Σ Contact number Number/unit time 

Ε Rate of loss of protection by maternal 
antibodies 

Number/unit time 

 The unit time is (per year) 73 
 74 
3.0 Model Analysis  75 
3.1 Two Classes of Epidemiology Models  76 
Two different epidemiological models were formulated and analysed, they are Epidemic 77 
models and Endemic models. Epidemic model describe rapid outbreaks that occur in less than 78 
a year due to the availability of some risk factors, while endemic models are used for 79 
studying diseases of longer periods, during which there is a renewal of susceptible by births 80 
or recovery from temporary immunity.  81 
 82 
 83 
3.0 The Virus – Free Equilibrium  84 
 85 
 At equilibrium point 86 
 87 

ܯ݀

ݐ݀
ൌ
݀ܵ

ݐ݀
ൌ
ܧ݀

ݐ݀
ൌ
ܫ݀

ݐ݀
ൌ
ܴ݀

ݐ݀
ൌ 0 

Thus we have, 88 
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 93 
From equations 3.1, 3.2, 3.3, 3.4 and 3.5 simultaneously, we obtained the Virus – free 94 
equilibrium  95 
From equation 3.3 96 

ܧߪ െ ܫߤ  െ ܫݒ ൌ 0 



 

 

Since the infection Free State is known to be diseases free, then, 97 
I = 0, Thus 98 
 99 
This become 100 

ܧߪ ൌ 0, ݅. ܧ ݁ ൌ 0 
From equation 3.4 101 

ܫݒ െ ܴߤ  െ ܴߛ  ൌ 0 
Since, I=0, the equation becomes 102 

െሺߤ  ሻܴߛ  ൌ 0 
Thus, R =0 103 
Summary, I= 0, E =0 and R = 0 104 
 From equation 1.0 105 
ߤ                    െ ܯߝ  െ ܯߤ  ൌ 0 106 
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      108 
This gives 109 

ܯ ൌ 
ߤ

ߝ  ߤ 
 

            110 
From equation 3.1 111 

εM െ  βSI െ  μS   γR ൌ 0 
Since I = 0 and R =0, this reduces to  112 

εM െ  μS ൌ 0  
εM ൌ  μS 
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ߤ
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 115 
Finally for, virus free equilibrium, the solution set is as follows: 116 
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 117 
 118 

3.2 Establishing Local stability for Virus- free equilibrium 119 

We linearize the system of equations given, using the Jacobian matrix approach to obtain: 120 

Evaluating the Jacobian matrix at the virus – free equilibrium E give 121 

   122 
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ێ
ێ
ێ
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ߝ െߚI െ μ 0 െܵߚ 
0 ܫߚ െμ െ  ܵߚ 0
0 0 0 െμ െ  0
0 0 0  െμ െ ے

ۑ
ۑ
ۑ
ې

ൌ  0 123 



 

 

We defined the characteristic polynomial equation for the J(E) solve for the eigen valves, to get: 124 
After a while, the eigenvalues  λ1, iൌ1,2,3,4,5 are given as  125 
 ଵ = ‐µ 126ߣ
ଶߣ  ൌ  ‐µ ‐ 127 
 ଷ ൌ   ‐‐µ 128ߣ
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where 131 

ܣ ൌ  ඥߤଶݒଶ െ ߪݒଶߤ2  ଶߪଶߤ  ߝଶݒߤ2 െ ߝଶݒߤ2 െ ߪߝݒߤ4  ߪߚߝߤ4  ଶߪߝߤ2  ݒଶߝଶ

െ ߪଶߝݒ2  ߪߚଶߝ4  ߝଶߪଶ 

From the results above, ߣଵ, ൏ 0, ହߣ  ଷ ൏ 0 ,andߣ  , ଶ൏0ߣ ൏ 0 provided 132 
 133 
ଶݒଶߤ െ ߪݒଶߤ2   ߤଶߪଶ  ߝଶݒߤ2  െ ߪߝݒߤ4  ߪߚߝߤ4   ଶߪߝߤ2   ݒଶߝଶ  െ ߪଶߝݒ2 134 
ߪߚଶߝ4  ߝଶߪଶ   0  135 
 136 
That is,  137 
ଶݒଶߤ െ ߤଶߪଶ  ߝଶݒߤ2  ߪߚߝߤ4  ଶߪߝߤ2  ݒଶߝଶ  ߪߝଶߝ4   ߝଶߪଶ   ߪݒଶߤ2  ߪߝݒߤ4 138 
 139  ߪଶߝݒ2
So also,  ߣସ must be less than zero, i.e, ߣସ ൏ 0 140 
 141 
hence, 142 
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which   implies that , 144 
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That is 146 
ܣ  ൏ ଶߤ2 െ ݒߤ  െ ߝߤ2 െ ߪߤ  െ ߝݒ െ  147    ߝߪ 
Finally, the result is 148 

  ܴ ൌ


ଶஜమ ାஜାଶஜఌ ାஜ ାఌ ାఌ
൏ 1    149 

 150 
 A has been defined earlier above. 151 
Where R0 is the basic reproduction number, which is an important threshold in modelling of 152 
infectious diseases, since it tells us if a population is at risk from a disease or not. Thus, 153 
whenever R0 < 1the new cases (i.e. incidence) of the disease will be on the decrease and the 154 
disease will eventually be eliminated.  155 
Based on foregoing, the Basic Reproduction number (R0) for our model is less than unity i.e 156 

ܴ ൌ
ܣ

2μଶ   μ 2μߝ   μ   ߝ   ߝ
൏ 1 

Then, I(t) decreases monotonically to zero as t → ∞. Therefore, the virus – free equilibrium is 157 
locally stable. 158 
 159 
Local Stability for Virus – Endemic State: 160 
 161 
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This gives  163 
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In this scenario, the state is assumed to be virus endemic, I >0 169 
From equation 3.6 170 
ߤ െ ܯߝ  െ ܯߤ ൌ 0           171 
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From equation 3.9 173 
ܧߪ െ ܫݒ ܫߤ  ൌ 0 

i.e ,  174 
ܧߪ ൌ ሺߤ   ܫሻݒ

Hence, 175 
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ߪ
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From equation 3.10 176 
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 179 
From equation  3.8 180 
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Thus,  185 

         ܵ ൌ  ቀ
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Substitute for M,E,R and S in Equation  3.7    190 
ܯߝ െ ܫܵߚ  െ ܵߤ  ܴߛ  ൌ 0  191 
That is: 192 
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Solving for I yields: 193 
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 The above yields, 196 
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Also, 199 
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 201 
For mathematical acceptability, (ME, SE,  EE,  IE,  RE ) > 0 202 
Thus, 203 
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Let, 205 
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Hence, 210 
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         ൌ െሺߤ  ܣሻሺߛ െ ሻܤ  0  211 
 212 
       ൌ   െሺߤ  ܣሻߛ  ߤሺܤ  ሻߛ  0  213 
ߤሺܤ    =          ሻߛ  ሺߤ   214 ܣሻߛ
 215 
Dividing through by A , we then have, 216 

 ܴ ൌ



 1   217 

More elaborately, we have: 218 
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ଷߤ  ݒଶߤ  ߝଶߤ  ߪଶߤ  ߝݒߤ  ߪݒߤ  ߪߝߤ   ߪߝݒ
 1 

If β 64.5, v = 36,  ε= 13, δ= 91, µ =0.041 are all parameter for a period of one year, then we 219 
have the following expression: 220 
 221 

13 ∗ 64.5 ∗ 91  

ሺ0.041ሻଷ  ሺ0.041ሻଶ36 ሺ0.041ሻଶ13ሺ0.041ሻଶ91  ሺ 0.041ሻሺ36ሻሺ13ሻ  ሺ0.041ሻሺ36ሻሺ91ሻ 
ሺ0.041ሻሺ91ሻሺ13ሻ  ሺ36ሻሺ13ሻሺ91ሻ

 1 

ܴ ൌ 2.944076535  1 

 222 
If R0  > 1 then I (t) increases and reaches its maximum and reduces as ܴ → ∞ . When the 223 
number of children infected increases in this state, it is called the epidemic state. In the long 224 
run, the whole population become susceptible if R0 > 1 225 



 

 226 
4.0 Numerical Solution and Simulation  227 
The MSEIRS model was solved numerically using Runge – Kutta method, Matlab ode45 228 
program was adopted, which is based on an explicit Runge Kutta (4, 5) formula. Runge kutta 229 
of order four is also used in plotting the graphs; it’s a powerful and popular method because 230 
of its accuracy and stability. Also, its simplicity and stability make it one of the most widely 231 
used numerical algorithms for stiff and non-stiff equations, it converges faster than that of 232 
order two or three. 233 

 234 
 Table 2 simulating the MSEIRS model using the following parameter values  235 

Parameters V b0 b1 δ Φ μ γ ζ β R0 
MSEIRS(Virus 
free State 

36 50 0.14 91 0.15 0.041 1.8 13 64.5 0.9515728172 

MSEIRS(Epidemic 
State) 

36 20 0.20 91 0.15 0.041 1.8 13 27 2.944076535 

     236 
These are the parameters used in plotting the graphs: although some of it changes, since they 237 
are the major factors that determining the situations of the environment, whether it is of the 238 
virus –free and endemic state.  239 
  240 
The graph of MSEIRS model is used to monitor our environment in case of an outbreak of 241 
leprosy based dynamics of the number of on changes on a particular model parameter 242 
 243 

 244 
Figure 2 Graphical representation of MSEIRS model between the space of one year with 245 
M0 = 120,  S0 = 100 ,E0 = 82  ,  I0 =67,  ܴ = 46 246 
 247 
Figure 2 shows the graphical representation of MSEIRS model between the space of one 248 
year. In these model, newborn infants of immune mothers that  are protected by maternal 249 
antibodies, but later got infected through babysitter or through the infected neighbours. They  250 



 

recovered after been treated but since, they domicile in the same infected area, the protected 251 
infants become susceptible again.  252 

 253 
Figure 3 Graphical respresentation of MSEIRS model between the space of five years 254 
 255 
Figure 3 shows the graphical representation of MSEIRS model between the space of  five 256 
years. In these model, These set of children were assumed to be of primary school age, they 257 
have the oppourtunity of playing around with their school mates. Some are born are born 258 
completely protected while some are from the infected parents. The protected onces are 259 
infected but recovered through vacination but since they were in the same enviroment they 260 
become susceptible again.  261 
Conclusion  262 
The MSEIRS model is used as a benchmark for modeling infectious disease, since the 263 
existence of a threshold for infection is far from obvious. The model mathematical analysis 264 
was calculated to know if the model is mathematically feasible, also, the local stability was 265 
calculated to know if our enviroment is of virus – free or of an endemic equilibrium. The 266 
threshold value was set through the calculation of the basic reproductive number ܴ which is 267 
an important part of modelling disease to tell us if the population is at risk or not. 268 
. 269 
 270 
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