Estimation of malaria parasite densities by different formulas in Thailand

- 1
- 2

3 Abstract

Introduction: Although there are many methods in malaria diagnoses e.g., quatitative buffy
coat (QBC), rapid diagnosis tests (RDTs), serological tests and molecular diagnosis methods
such as PCR, but microscopy still remains the gold standard for malaria diagnosis. Estimation
of malaria parasite density can be carried out by using assumed white blood cells (WBC) and
red blood cells (RBC) counts.

9

Objective: The aims of this study were to determine malaria parasite densities calculated by
 assumed WBC and RBC counts; and to compare their reliability with absolute WBC and
 RBC counts.

13

Methods: The clinical presentations and laboratory findings of specimens collected from 512 uncomplicated falciparum and vivax malaria patients admitted to Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand were utilized and analysed for estimation of malaria parasite densities by using different formulas.

18

Results: Parasite densities calculated by WHO recommended assumed WBC of 8,000 / μ L, and assumed RBC counts of 4.7×10^{6} - 6.1×10^{6} / μ L and 4.2×10^{6} - 5.4×10^{6} / μ L for males and females respectively led to overestimation, and resulted in low reliability when compared to the absolute WBC and RBC counts. Parasite densities calculated by assumed WBC of $5,900/\mu$ L in thick blood; by assumed RBC of $4.8 \times 10^{6}/\mu$ L for male and $4.3 \times 10^{6}/\mu$ L for female in thin blood film respectively gave more precise estimation.

25

26 Conclusion: Assumed WBC and RBC counts for calculating malaria parasite densities have 27 to be adjusted to use in Thailand for more precise estimation. Parasite densities calculated by 28 assumed WBC and RBC used in other malaria endemic countries might need further re-29 evaluation.

30

31 *Keyword:*

- 32 Malaria, parasite, density, estimating, formulas, Thailand
- 33

34 Introduction

Malaria is the most important blood-borne protozoan disease of human transmitted by female 35 Anopheles mosquitoes. In 2017, an estimated 219 million patients of malaria occurred 36 worldwide and most 200 million malaria patients were in the WHO African Region, followed 37 by the WHO South-East Asia Region with 5% of the patients and the WHO Eastern 38 Mediterranean Region with 2% [1]. There were an estimated 435,000 deaths from malaria 39 globally in 2017 [1]. Early diagnosis and treatment is crucial in management of malaria. 40 Parasitological diagnosis carried out by conventional microscopy remains gold standard for 41 malaria diagnosis, although, there are many modern methods to diagnose malaria nowadays. 42 43 Microscopy can also estimate parasite density in patients' own white blood cells (WBC) and red blood cells (RBC) by thick and thin blood films respectively. Determining parasite 44

density level is important in severity classification, clinical management, monitoring drug 45 46 efficacy and predicting prognosis of malaria. Currently, there are different counting methods and calculation formulas of parasite density. Although using absolute counts of WBC and 47 RBC of a patient is more accurate in parasite density estimation, assumed counts of WBC and 48 RBC recommended by WHO [2,3] are widely used in many malaria endemic areas because 49 50 automated hematological analyzers (AHAs) are expensive and required regular maintenance, reliable power supply, and trained operators Thus, they are unavailable in many health 51 facilities in those areas. Assumed WBC counts of 8,000/µL was the average WBC value of 52 an African country, Nigeria [4]. Technical reports from Africa, South America and Papua 53 54 suggested that parasite densities calculated by this assumed WBC count might be underestimated, similar, or overestimated comparing with those calculated by assumed WBC 55 56 count [5].

57 The aims of this study were to clarify assumed WBC and RBC counts in order to 58 estimate malaria parasite densities; and compare them with those calculated from absolute 59 WBC and RBC counts (derived from AHAs).

60 Materials and Methods

62 Study Site and Enrollment Procedures

63

61

This study was conducted at the Hospital for Tropical Diseases (HTD), a tertiary healthcare 64 facility, in Bangkok, Thailand. Patients meeting the following criteria were included in the 65 66 study: (i) males or females, aged >15 years; (ii) admitted for the treatment of falciparum or vivax malaria (iii) microscopically confirmed diagnosis for asexual-stages of either 67 uncomplicated P. falciparum or P. vivax mono-infection (iv) conducted complete blood count 68 (including absolute WBC and RBC) by AHAs upon admission; (iv) no history of antimalarial 69 therapy during a month prior to admission. We excluded severe malaria patients regarding to 70 WHO (2015) [5] and patients with histories of significant concomitant diseases. 71

72

73 Clinical Management, Laboratory Investigations, and Data Collection

74

75 Patients were evaluated and managed according to the standard hospital practice. Falciparum malaria patients were treated with oral artemisinin-based combination therapies (ACTs). 76 Vivax malaria patients were treated by oral chloroquone followed by primaquine for 77 hypnozoite eradiacation. Parasite density levels (ring to schizont forms) were evaluated using 78 thick and thin blood films stained with Giemsa. Baseline clinical manifestations, 79 demographic information, and laboratory data were examined and recorded. The parasite 80 density of asexual forms/µL was calculated from (i) absolute WBC and RBC derived from 81 AHAs, (ii) using WHO recommended assumed WBC count of 8,000 / μ L [2] and other 82 assumed WBC / μ L, (iii) using assumed RBC count of 5x10⁶ / μ L (for male), 4.5x10⁶ / μ L for 83 female), and other assumed RBC counts. Therefore, parasite density was calculated as 84 85 follows:

86 87

88	Parasite density/ μ L = <u>No. of parasites counted</u> x absolute or assumed WBC of patient
89	No. of WBC counted

- 90
- 91

or

92	Parasite density/ μ L = <u>No. of parasite counted</u> x absolute or assumed RBC of patient
93	No. of RBC counted
94	

95 Ethical Approval

96 This study was approved by the Ethics Committee of Tropical Medicine, Mahidol University,

97 Bangkok, Thailand (Approval number: MUTM 2014-064-01.)

98 Statistical Analysis

99

Statistical analysis was carried out using SPSS for Windows, version 16. Quantitative data was tested with Wilcoxon signed-rank test to compare two related samples, Man-Whitney *U* test for difference between two groups and Kruskal-Wallis test for more than two groups of patients. Reliability analysis was carried out to measure the overall consistency of the items that were used to define a scale. The Wilcoxon signed-rank test was used to compare paired patient data with a two-tailed significance level of P <0.05.

106

107 **Results**

Demographic data of studied patients

109

Among 512 cases of malaria infected patients, 425 (83%) and 87 (17%) patients were males 110 and females respectively (Table 1). These patients were aged between 14 and 76 years with a 111 median age of 25 years at presentation. Patients in 2^{nd} decade (≤ 20 years) and 3^{rd} decade of 112 life (21-30 years) were 181 (35.4%) and 205 (40%) respectively accounting for 75.4% of 113 studied population. The rest of the patients (24.6%) had age >40 years. Regarding to 114 115 ethnicity, 42 (8.2%) patients were Thai whereas 312 (60.9%), 101 (19.7%), 51 (10%), 3 (0.6%) and 3 (0.6%) were Myanmar, Karen, Mon, Laos, and Cambodian respectively. 116 117 Among the 512 patients, 251 (49%) were infected with P. falciparum and 261 (51%) with P. vivax. There were 204 (48%) and 47 (54%) male and female patients respectively. Out of 118 119 425 male patients, there were 204 (48%) infected with P. falciparum and 221 (52%) with P. 120 vivax. In 87 female patients, there were 47 (54%) and 40 (46%) infected with P. falciparum 121 and *P. vivax* respectively.

122

123 WBC counts

124

Mean of absolute WBC was $(6,051\pm 1,954)/\mu$ L in the studied population. 71 (13.9%) patients had leukopenia whereas 432 (84.4%) patients had normal WBC. Leukocytosis was observed only in 9 (1.8%) patients. The normal range for WBC counts in most laboratories were 4,000-11,000/ μ L.

130 Absolute RBC counts

131

129

Mean of absolute RBC counts was $(4,632,227\pm 815,103)/\mu$ L. Normal range of RBC counts in most laboratories were $4.5x10^{6}-5.8x10^{6}/\mu$ L in male and $4.2x10^{6}-5.4x10^{6}$ RBC/ μ L in female respectively [3,6]. RBC counts of 306 (60%) patients were normal whereas 178 (35%) patients had reduced. Increased RBC counts were found in 28 (5%) patients.

Table 2 showed absolute RBC counts were different between male and female (P <0.001), and *Plasmodium* species (P <0.001). The RBC counts of the male patients were higher than of female patients. RBC counts of falciparum malaria patients was lower than of vivax patients. RBC counts were different (P <0.001) among ethnic groups. Thai patients had higher RBC counts than Myanmar, Karen, and Mon (P <0.001). RBC counts in Myanmar patients were also higher than Karen (P=0.044) and Mon (P=0.036) ethnic groups.

142 **Parasite counts**

143

Among 512 samples, asexual forms of *P. falciparum* and *P. vivax* were found in 251 and 261
 patients respectively. Table 3 showed both parasite densities calculated from using absolute

146 WBC derived from AHAs and assumed WBC count of 8,000 μ /L [2] with 200 WBC

147 microscopy counted respectively.

Parasite density estimated by assumed WBC count of $8,000/\mu$ L compared with absolute WBC counts showed that 439 (85.7%) patients were overestimated; and 70 (13.7%) patients were underestimated with (P <0.001). Estimating parasite densities by other assumed WBC counts of 4,000; 5,000; 6,000; 7,000; 9,000 and 10,000/ μ L were shown in Table 4.

Assumed WBC counts of 4,000 and 5,000/ μ L showed significantly underestimated (P <0.001) and assumed WBC counts of 7,000; 8,000; 9,000 and 10,000/ μ L showed significantly overestimated (P <0.001). Parasite density calculated by assumed WBC count of 6,000/ μ L did not show significantly different from parasite density calculated by absolute WBC count (Table 5).

To obtain a more precise assumed WBC value to estimate parasite density, parasite density was estimated by assumed WBC counts of 5,500; 5,800 and 5,900/ μ L and compared with parasite densities calculated by absolute WBC counts (Table 6).

160 Table 7 showed estimated parasite densities calculated with assumed WBC counts of 161 5,800; 5,900 and 6,000 WBC/ μ L were similar to absolute parasite densities. Parasite density 162 estimated with assumed WBC count of 5,900 showed the most similar value (P=0.925) with 163 absolute parasite density.

164

165 Assumed RBC counts

166

Parasite densities calculated by using absolute RBC count and estimating parasite densities calculated by assumed RBC counts from 4.7×10^6 - 5.2×10^6 RBC/µL were shown in Table 8. Since reference values of RBC counts are not the same between males and females, parasite densities between male and female patients were estimated separately by assumed RBC count.

172 In Table 9, parasite density estimation with assumed RBC counts of $4.7 \times 10^6 /\mu$ L and 173 $4.8 \times 10^6 /\mu$ L showed no significant difference with absolute RBC counts (P=0.126 and 0.608 174 respectively). Assumed RBC count of $4.8 \times 10^6 /\mu$ L showed mostly similar to parasite density 175 calculated with absolute RBC count.

176 In females, parasite densities calculated by absolute RBC and assumed RBC counts 177 from $4.2x10^{6}$ - $4.7x10^{6}$ /µL was shown in Table 10. Parasite density estimations were highly 178 reliable between assumed RBC counts of $4.2 x10^{6}$ - $4.4x10^{6}$ /µL.

Table 11 showed assumed RBC counts $\geq 4.6 \times 10^6$ RBC/µL were found to be significantly overestimated (P <0.01) in parasite density. Assumed RBC counts of 4.2 $\times 10^6$ /µL-4.5 $\times 10^6$ /µL showed no significantly different parasite density calculated by absolute WBC count (P >0.05). Assumed RBC 4.3 $\times 10^6$ /µL showed the most similar to absolute parasite density in females (with highest P value in Table 11).

184

185 **Discussion**

186 The median age in this study was 25 years (range 14-76 years) showing that malaria infection

187 could occur in any age groups but it more commonly occurred in those aged 21-30 years old.

188 The WBC count was similar between gender, and *Plasmodium* species whereas RBC count

189 was significantly higher in male and vivax malaria patients.

When calculating parasite density by absolute WBC counts of patients in thick films, 190 mean parasite density in this study was 20,826 parasites/µL (range 16-386,780 parasites/µL). 191 In the study conducted in Brazil, mean parasite density was 7,519 parasites/µL (range 31-192 64,930 parasites/uL) calculated from absolute WBC counts [7]. The study in Ghana, mean 193 parasite density was 49,474 parasites/ μ L (range 15-4,036,350) parasites/ μ L calculated by 194 195 absolute WBC counts [8]. Parasite density estimated by assumed WBC 8,000/ µL [2] showed overestimation in comparing with parasite density estimated by absolute WBC count. 196 197 Similarly, the study of children patients aged 1-8 years in Nigeria [9], study of African children <5 years [10], and the study of mostly adults in Brazil [7], showed overestimation 198 199 of parasite densities when they used WHO recommended WBC count of 8,000 cells/µL to 200 estimate parasite densities. Assumed WBC counts of 5,500 cells/ μ L [7] and 5,100 cells/ μ L 201 [9] respectively could estimate parasite density more precisely. Studies in Ghana [8] and 202 Sudan [11] mentioned underestimation of parasite density when assumed WBC count of 203 $8,000/\mu$ L was used. Assumed WBC count of 10,000 cells/ μ L could estimate parasite density 204 more precisely [8]. However, the study conducted in Papua New Guinea [12], parasite 205 density estimation using assumed WBC of 8,000 cells/µL showed no significat difference 206 with parasite density calculated by absolute WBC counts.

In this study, parasite densities estimated by other assumed WBC counts of 4,000 and 207 208 5,000/µL showed significantly underestimated (P <0.001) and by assumed WBC counts of 7,000; 8,000; 9,000 and 10,000/ μ L showed significantly overestimated (P < 0.001) comparing 209 210 with calculation by absolute WBC count. However, assumed WBC count of 6,000/µL showed no significantly different parasite density calculated by absolute WBC count. To 211 212 obtain a more precise assumed WBC value to estimate more precise parasite densities, 213 assumed WBC counts of 5,500; 5,800 and 5,900 WBC/ μ L were used for estimation and showed similar to absolute parasite density calculated by absolute WBC. Parasite density 214 estimated with assumed WBC count of 5,900 showed the most similar value (P=0.925) with 215 216 absolute parasite density, therefore it might be the most reliable assumed WBC count in this 217 studied population. The possible reason that precisely assumed WBC count in Thailand was lower than WHO recommended assumed WBC might be due to general infections in people 218 219 living in Thailand less than in African country [4] particularly in the past where WHO 220 recommended to use assumed WHO count for malaria density estimation.

In this study, parasite density by assumed RBC count of $5.0 \times 10^6/\mu$ L (for males) and 4.5 $\times 10^6/\mu$ L (for females) showed overestimation, possibly people living in Thailand including Thai and other ethnicities from Myanmar had underlying anemia due to hemoglobinopathy (which is commonly found) [13, 14] and intestinal parasitic infection [15-19] causing lower exactly assumed RBC counts in these population in Thailand.

226

227 **Conclusion**

The application of assumed WBC count of 8 000 cells/uL and assumed RBC counts of 5.0 228 $x10^{6}$ /µL and $4.5x10^{6}$ /µL for males and females respectively to estimate parasite densities in 229 230 malaria patients led to overestimated parasite densities and resulted in low reliability when compared to absolute WBC and RBC counts from the AHAs. Calculating by new assumed 231 232 WBC 5,900/ μ L in thick blood film; assumed RBC counts of 4.8 x10⁶ / μ L and 4.3 x10⁶ / μ L for male and female patients respectively in thin blood films for estimating parasite densities 233 234 will provide more precised parasite densities in Thailand where malaria is endemic. However, assumed WBC and RBC counts may differ in other countries due to other national normal 235 236 WBC and RBC values which are effected by many factors in different population in the 237 world.

238 **Competing interests**

239 We declare that no competing interests exist.

240 **References**

- 1. WHO . World malaria report 2018. Geneva: WHO; 2018.
- 242 2. WHO. Basic malaria microscopy. Geneva: WHO; 2010. Accessed 28 November 2018.
 243 Available:
- http://apps.who.int/iris/bitstream/handle/10665/44208/9789241547826_eng.pdf?sequenc
 e=1 (accessed 28 November 2018).
- 246 3. WHO. Malaria parasite counting. Geneva: WHO; 2016. Accessed 20 November 2018.
- Available: http://www.wpro.who.int/mvp/lab_quality/2096_oms_gmp_sop_09_rev1.pdf
 (accessed 28 November 2018).
- Dowling Ma, Shute GT. A comparative study of thick and thin blood films in the diagnosis of scanty malaria parasitaemia. Bull World Health Organ. 1966; 34: 249–67.
- 5. WHO. Guidelines for the treatment of malaria. 3rd ed. Geneva: WHO; 2015.
- Argy N, Kendjo E, Augé-Courtoi C, Cojean S, Clain J, Houzé P, et al. Influence of host
 factors and parasite biomass on the severity of imported *Plasmodium falciparum* malaria.
 PLoS One. 2017; 12(4): e0175328. doi: 10.1371/journal.pone.0175328.
- Alves-Junior ER, Gomes LT, Ribatski-Silva D, Mendes CR, Leal-Santos FA, Simões
 LR, et al. Assumed white blood cell count of 8,000 cells/μL overestimates malaria
 parasite density in the Brazilian Amazon PLoS One. 2014; 9(4): e94193. doi:
 10.1371/journal.pone.0094193.
- 8. Adu-Gyasi D, Adams M, Amoako S, Mahama E, Nsoh M, Amenga-Etego S, et al.
 Estimating malaria parasite density: assumed white blood cell count of 10 000/μl of
 blood is appropriate measure in Central Ghana. Malaria Journal. 2012; 11: 238. doi:
 10.1186/1475-2875-11-238.
- 9. Jeremiah ZA, Uko EK. Comparative analysis of malaria parasite density using actual and assumed white blood cell counts. Ann Tropical Paed. 2007; 27(1):75-9.
- 10. Olliaro P, Djimdé A, Karema C, Mårtensson A, Ndiaye JL, Sirima SB, et al.
 Standardised versus actual white cell counts in estimating thick film parasitaemia in
 African children under five. Trop Med Int Health. 2011; 16(5): 551-4. doi:
 10.1111/j.1365-3156.2011.02738.x.
- Haggaz AD, Elbashir LM, Adam GK, Rayis DA, Adam I. Estimating malaria parasite
 density among pregnant women at central Sudan using actual and assumed white blood
 cell count. Malar J. 2014; 13: 6. doi: 10.1186/1475-2875-13-6.
- Laman M, Moore BR, Benjamin J, Padapu N, Tarongka N, Siba P, et al. Comparison of
 an assumed versus measured leucocyte count in parasite density calculations in Papua
 New Guinean children with uncomplicated malaria. Malar J. 2014; 13: 145. doi:
 10.1186/1475-2875-13-145.
- 13. Bancone G, Gilder ME, Chowwiwat N, Gornsawun G, Win E, Cho WW, et al.
 Prevalences of inherited red blood cell disorders in pregnant women of different ethnicities living along the Thailand-Myanmar border. Wellcome Open Res. 2017; 2: 72. doi: 10.12688/wellcomeopenres.12338.2.
- Para S, Mungkalasut P, Chanda M, Nuchprayoon I, Krudsood S, Cheepsunthorn CL. An
 Observational Study of the Effect of Hemoglobinopathy, Alpha Thalassemia and
- Hemoglobin E on *P. vivax* Parasitemia. Mediterranean J of Hematol Infect Dis. 2018:
- 283 10(1): e2018015. doi: 10.4084/MJHID.2018.015.

284	15.	Punsawad C, Phasuk N, Bunratsami S, Thongtup K, Viriyavejakul P, Palipoch S, et al.
285		Prevalence of intestinal parasitic infections and associated risk factors for hookworm
286		infections among primary schoolchildren in rural areas of Nakhon Si Thammarat,
287		southern Thailand. BMC Public Health. 2018;18(1): 1118. doi: 10.1186/s12889-018-
288		6023-3.
289	16.	Suntaravitun P, Dokmaikaw A. Prevalence of intestinal parasites and associated risk
290		factors for infection among rural communities of Chachoengsao Province, Thailand.
291		Korean J Parasitol. 2018; 56(1): 33-9. doi: 10.3347/kjp.2018.56.1.33.
292	17.	Yanola J, Nachaiwieng W, Duangmano S, Prasannarong M, Somboon P, Pornprasert S.
293		Current prevalence of intestinal parasitic infections and their impact on hematological
294		and nutritional status among Karen hill tribe children in Omkoi District, Chiang Mai
295		Province, Thailand. Acta Trop. 2018; 180:1-6. doi: 10.1016/j.actatropica.2018.01.001.
296	18.	Aziz Ali S, Abbasi Z, Feroz A, Hambidge KM, Krebs NF, Westcott JE, et al. Factors
297		associated with anemia among women of the reproductive age group in Thatta district:
298		study protocol. Reprod Health. 2019; 16(1): 34. doi: 10.1186/s12978-019-0688-
299	19.	Ghanchi NK, Khan MH, Arain MA, Zubairi MBA, Raheem A, Khan MA, et al.
300		Hematological Profile and Gametocyte Carriage in Malaria Patients from Southern
301		Pakistan. 2019;11(3):e4256. doi: 10.7759/cureus.4256.

Characteristics (N)	WBC/µl (SD)	P-value
Jender		
males (425)	6,000 (1,938)	0.308
females (87)	6,301 (2,023)	
Ialaria species		
P. falciparum (251)	6,001 (2,009)	0.453
<i>P. vivax</i> (261)	6,100 (1,902)	
Ethnicity		
Thai (42)	5,705 (2,047)	0.111
Myanmar (312)	6,070 (1,936)	
Karen (101)	5,853 (1,878)	
Mon (51)	6,602 (2,123)	

Table 1. WBC counts among gender, parasite species, and ethnicity in Thailand

Table 2. Absolute RBC counts among gender, parasite species, and ethnicity in Thailand

Characteristics (N)	RBC/µl (SD)	P-value
Gender		< 0.001
Male (425)	4,705,271 (814,376)	
Female (87)	4,275,402 (723,041)	
Malaria species		< 0.001
P. falciparum (251)	4,489,203 (848,185)	
<i>P. vivax</i> (261)	4,769,770 (758,485)	
Ethnicity		< 0.001
Thai (42)	5,096,667 (897,190)	
Myanmar (312)	4,644,103 (802,786)	
Karen (101)	4,493,366 (721,759)	
Mon (51)	4,464,510 (864,850)	
N=number; RBC=red blood	cells; SD= standard deviation	

Table 3. Parasite densities calculated with absolute WBC counts in falciparum and vivax malaria patients

Parameter	Parasites/µL in falciparum malaria patients (N=251)	Parasites/µL in vivax malaria patients (N=261)
Minimum	16	28
25 Percentile	587	3,625
Median	9,040	10,800
75 Percentile	39,520	21,280
Maximum	386,780	115,000
Mean	26,917	14,968
Std. Deviation	42,231	16,336
Std. Error of Mean	2,666	1,011
Lower 95% CI of the mean	21,667	12,977
Upper 95% CI of the mean	32,167	16,960
Geometric mean of parasite	-	
density	4,256	4,254

	Absoluto			Assumed W	VET			
Parameter	Absolute WBC/µL			μL	μ∟			
	WDC/µL	4,000	5,000	6,000	7,000	8,000	9,000	10,000
Minimum	16	20	25	30	35	40	45	50
25 Percentile	1,036	765	956	1,148	1,339	1,530	1,721	1,913
Median	10,300	7,370	9,213	11,055	128,898	14,740	16,583	18,425
75 Percentile	25,038	17,607	22,009	26,411	30,812	35,214	39,616	44,018
Maximum	386,780	166,357	207 946	249,535	291,125	332,714	374,303	415,892
Mean	20,826	14,398	17,998	21,598	25,197	28,797	32,396	35,996
Std. Deviation	32,312	21,903	27,379	32,855	38,331	43,806	49,282	54,758
Std. Error of Mean	1,428	968	1,210	1,452	1,694	1,936	2,178	2,420
Lower 95% CI of	18,021	12,497	15,621	18,745	21,869	24,993	28,117	31,242
the mean Upper 95% CI of the	23,632	16,300	20,375	24,450	28,525	32,600	36,675	40,750
mean Geometric mean	4,250	2,931	3,702	4,477	5,256	6,038	6,823	7,611

Table 4. Parasite density calculated with absolute and assumed WBC counts from 4,000-10,000/ μ L (N=512)

318 N=number; WBC=white blood cells; SD= standard deviation

- 319
- 320
- 321
- 322

Table 5. Underestimated and overestimated parasite density calculated with different assumed and absolute WBC as the standard (N=512)

324	assumed a	nd absolute WBC as the	standard (N=512)	
	Assumed WBC	Underestimated	Overestimated	P-value
	WBC/µL	N	N	
	5,000	348	156	< 0.001
	6,000	233	270	0.316
	7,000	141	366	< 0.001
	8,000	70	439	< 0.001
	9,000	37	473	< 0.001
	10,000	17	495	< 0.001
325	WBC=white blood ce	lls		
326				
327				
328				
329				
330				
331				
332	Table 6. Parasite de	ensity calculated with abs	solute and assumed WBC	counts from 5,000 to
333	6,000 μL ((N=512)		
	Parameter Absol	ute As	sumed WBC/µL	

	WBC/µL	5,000	5,500	5,800	5,900	6,000
Minimum	16	25	28	29	30	30
25 Percentile	1,036	956	1,052	1,109	1,128	1,148
Median	10,300	9,213	10,134	10,687	10,871	11,055
75 Percentile	25,038	22,009	24,210	25,530	25,970	26,411
Maximum Mean	386,780 20,827	207,946 17,999	228,741 19,799	241,218 20,879	245,377 21,239	249,535 21,599
Std. Deviation	32,311	27,378	30,116	31,759	32,306	32,854
Std. Error of Mean	1,428	1,210	1,331	1,404	1,428	1,452
Lower 95% CI of the mean	18,022	15,622	17,184	18,121	18,434	18,746
Upper 95% CI of the mean	23,633	20,376	22,414	23,636	24,044	24,451
Geometric mean	4,250	3,702	4,089	4,322	4,399	4,477
WBC=white	blood cells					

		~
1	33	8

Underestimated and overestimated parasite density calculated with different assumed WBC counts from 5,000 -7,000 / μ L with the absolute WBC counts as Table 7. the standard (N=512)

Assumed values	Underestimated	Overestimated	P-value
5,000	348	156	< 0.001
5,500	298	203	< 0.001
5,800	259	246	0.343
5,900	245	253	0.925
6,000	233	270	0.316
7,000	141	366	< 0.001

WBC=white blood cells

4.7 4,700 9,400 18,800 37,600 390,100 29,274 34,947	4.8 4,800 9,600 19,200 38,400 398,400 29,897	4.9 4,900 9,800 19,600 39,200 406,700 30,520	5.0 5,000 10,000 20,000 40,000 415,000 21,142	5.1 5,100 10,200 20,400 40,800 423,300	5.2 5,200 10,400 20,800 41,600
9,400 18,800 37,600 390,100 29,274	9,600 19,200 38,400 398,400	9,800 19,600 39,200 406,700	10,000 20,000 40,000 415,000	10,200 20,400 40,800	10,400 20,800 41,600
18,800 37,600 390,100 29,274	19,200 38,400 398,400	19,600 39,200 406,700	20,000 40,000 415,000	20,400 40,800	20,800 41,600
37,600 390,100 29,274	38,400 398,400	39,200 406,700	40,000 415,000	40,800	41,600
390,100 29,274	398,400	406,700	415,000	6 N.	
29,274		,		423 300	
-	29,897	30,520	21 142	125,500	431,600
34,947		,	31,143	31,766	32,389
, /	35,691	36,434	37,178	37,922	38,665
2,089	2,133	2,177	2,222	2,266	2,311
25,163	25,698	26,234	26,769	27,305	27,840
33,386	34,096	34,806	35,516	36,227	36,937
18,284	18,674	19,065	19,456	19,846	20,237
	,				

354	Table 8.	Parasite density calculated with absolute and assumed RBC counts from 4.7×10^6 -
355		$5.2 \times 10^6 / \mu L$ in male patients (N=280)

359360Table 9.361No. of patients with underestimated and overestimated parasite densities
calculated by different assumed RBC counts from 4.7×10^6 - $5.2 \times 10^6/\mu$ L, with the
absolute RBC count as the standard in male patients (N=280)

Assumed RBC x10 ⁶ /µL	No. of patients with underestimated parasite density	No. of patients with overestimated parasite density	P-value
4.7	157	123	0.126
4.8	140	139	0.608
4.9	127	151	0.008
5.0	110	170	< 0.001
5.1	90	187	< 0.001
5.2	74	204	< 0.001

363 RBC=red blood cells

Parameter	Absolute RBC/µL		F	RBC x10 ⁶ /μ L			
	-	4.7	4.8	4.9	5.0	5.1	5.2
Minimum	2,160	4,700	4,800	4,900	5,000	5,100	5,200
25 Percentile	10,105	9,400	9,600	9,800	10,000	10,200	10,400
Median	17,430	18,800	19,200	19,600	20,000	20,400	20,800
75 Percentile	34,320	37,600	38,400	39,200	40,000	40,800	41,600
Maximum	386,780	390,100	398,400	406,700	415,000	423,300	431,600
Mean	29,687	29,274	29,897	30,520	31,143	31,766	32,389
Std. Deviation	36,211	34,947	35,691	36,434	37,178	37,922	38,665
Std. Error of Mean	2,164	2,089	2,133	2,177	2,222	2,266	2,311
Lower 95% CI of the mean	25,427	25,163	25,698	26,234	26,769	27,305	27,840
Upper 95% CI of	33,947	33,386	34,096	34,806	35,516	36,227	36,937
the mean	55,747	55,580	54,070	54,000	55,510	50,227	50,757
Geometric mean	18,167	18,284	18,674	19,065	19,456	19,846	20,237

Table 10. Parasite density calculated with absolute and assumed RBC counts from 4.2×10^{6} -4.7 $\times 10^{6}/\mu$ L in female patients (N=71)

371 RBC=red blood cells

372

373

Table 11. Underestimated and overestimated parasite density produced with different assumed RBC counts from 4.2×10^6 - 4.7×10^6 /µL, with the absolute red cell count as the standard in female patients (N=71)

Assumed RBC x10 ⁶ /µL	No. of patients with underestimated parasite density	No. of patients with overestimated parasite density	P-value	
4.2	42	28	0.409	
4.3	38	33	0.977	
4.4	37	34	0.395	
4.5	32	38	0.062	
4.6	25	46	0.002	
4.7	19	52	< 0.001	

377 RBC=red blood cells

378