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Abstract

A continuous two step method using trigonometric function ba-
sis is developed and used to produce two discrete methods which are
simultaneously applied as numerical integrators by assembling them
into a block method with trigonometric basis for solving oscillatory
initial value problems(IVPs). The stability property of the method is
well discussed and the performance of the method is demonstrated on
some numerical examples to show accuracy and efficiency advantages.
Keywords: Two step block method. Initial value problems, Trigono-
metrically fitted method, First order system

1 Introduction

This paper considered the class of second order differential equation of the
form

y′ = f(x, y), y(a) = y0, x ∈ [a, b] (1)

with oscillatory solutions where f : <× <m → <m, y, y0 ∈ <.m
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In the field of ordinary differential equations, a nontrival solution to an
ordinary differential equation

F (x, y, y′, · · · , y(n−1)) = y(n)

is called oscillating if it has an infinite number of roots.The differential equa-
tion is oscillating if it has an oscillating solution. The number of roots carries
information on the spectrum of the associated boundary value problems. For
example the differential equation y′′+y = 0 is oscillating as sinx is a solution.

Oscillatory Initial Value Problems usually occur in area such as quatum
mechanics, biological sciences, classical mechanics and celestial mechanics. A
lot of numerical methods based on polynomial and non polynomial basis have
been developed for solving this important class of problems( Odejide and
Adeniran[1], Adeniran, Odejide and Ogundare[2], Adeniran and Ogundare
[3], Hairer and Wanner[4], Hairer[5], Sommeijer[6], Jator et. al[7], Ngwane
and Jator[9]).

This paper construct two step method with trigonometric basis, which
provides two discrete methods that are combined and applied as block two
step method with trigonometric basis which take the frequency of the solution
as a priori knowledge.

We adopt the approach given in Nwagene and Jator [9] and Jator, Swindle
and French[7], where the continuous two step method with trigonometric
basis is used to generated the main and one additional method which are
combined and used as a two step block method to simultaneously produce
approximations.

{yn+1, yn+2} at block of points {xn+1, xn+2},

h = xn+1−xn, n = 0, · · · , N −1 on a partition [a, b], where h is the step size,
n is the grid index and N > 0 is the number of steps. The block methods gen-
erates approximations {yn+1, yn+2} to the exact solution {y(xn+1), y(xn+2)}

The paper is organized as follows. In section 2, we derive a trigonometric
basis representation U(x) for the exact solution y(x) which are used to gen-
erate two discrete methods which are combined to solve (1). The analysis
and implementation of the new method are given in section 3. Numerical
examples are given in section 4 to show accuracy and efficiency of the new
block method. The conclusion the the paper is discussed in section 5.
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2 Derivation of the Method

We derive a two step with trigonometric basis which produces two discrete
methods as by-products.
The main method has the form

yn+1 = yn + h{α0(u)fn + α1(u)fn+1 + α2(u)fn+2} (2)

and the additional method is given by

yn+2 = yn + h{α̂0(u)fn + α̂1(u)fn+1 + α̂2(u)fn+2} (3)

where u = wh, αj, α̂1, j = 0(1)2, are coefficients that depend on the
step-size and frequency. yn+1 is the numerical approximation to analytical
solution y(xn+1).

In order to obtain (2) and (3), we proceed by seeking to approximate the
exact solution y(x) on the interval [xn, xn+h] by interpolation function U(x)
of the form:

U(x) = a0 + a1x+ a2 sin(wx) + a3 cos(wx), (4)

where ai, i = 0(1)3, are coefficients that must be uniquely determined. We
then impose that the interpolating function (4) coincides with the analytical
solution at the end point xn to obtain the equation

U(xn) = yn, (5)

It is also demanded that the function (4) satisfies the differential equation
(1) at points xn+j, j = 0, 1, 2 to obtain the following set of three equations:

U ′(xn) = fn, U ′(xn+1) = fn+1, U ′(xn+2) = fn+2 (6)

The system of equation in (5) and (6) are solved by Cramer’s rule to
obtain aj, j = 0(1)3. Continuous two step method with trigonometric basis
is constructed by substituting the values of aj into (4). After some algebraic
manipulation, our new two step method is of the form:

U(x) = yn + h{α0(w, x)fn + α1(w, x)fn+1 + α2(w, x)fn+2}, (7)

where w is the frequency, αj(w, x), j = 0(1)2 are continuous coefficients.
The continuous method (7) is used to generate the main method of the
form (2) and an additional method of the form (3) by evaluating (7) at

4



x = {xn+1, xn+2} and letting u = wh, we obtained the coefficients of (2) and
(3) as follows:

α0 =
1

2

(
−u sin (u)− 2 (cos (u))2 + 2 cos (u)

)
u sin (u) (cos (u)− 1)

α1 =
1

2

(
2u sin (u) cos (u) + 2 (cos (u))2 − 2

)
u sin (u) (cos (u)− 1)

(8)

α2 =
1

2

(−u sin (u)− 2 cos (u) + 2)

u sin (u) (cos (u)− 1)

α̂0 =
(−u+ sin (u))

u (cos (u)− 1)

α̂1 =
(2u cos (u)− 2 sin (u))

u (cos (u)− 1)
(9)

α̂2 =
(−u+ sin (u))

u (cos (u)− 1)

3 Error analysis and stability

3.1 Local truncation error

Taylor series is used for small values of u (see Simos[10]). The coefficient of
(8) and (9) can be expressed as:

α0 =
5

12
+

19u2

720
+

23u4

10080
+

263u6

1209600
+

1033u8

47900160
+

945979u10

435891456000
+ · · ·

α1 =
2

3
− u2

90
− u4

2520
− u6

75600
− u8

2395008
− 691u10

54486432000
+ · · · (10)

α2 = − 1

12
− 11u2

720
− 19u4

10080
− 247u6

1209600
− 1013u8

47900160
− 940451u10

435891456000
+ · · ·

α̂0 =
1

3
+
u2

90
+

u4

2520
+

u6

75600
+

u8

2395008
+

691u10

54486432000
+ · · ·
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α̂1 =
4

3
− u2

45
− u4

1260
− u6

37800
− u8

1197504
− 691u10

27243216000
+ · · · (11)

α̂2 =
1

3
+
u2

90
+

u4

2520
+

u6

75600
+

u8

2395008
+

691u10

54486432000
+ · · ·

The Local Truncation Error(LTE) for methods (2) and (3) are given by

LTE(2) =
h4

24

(
w2y(2)(xn) + y(4)(xn)

)

LTE(3) = −h
5

90

(
w2y(2)(xn) + y(4)(xn)

)
(12)

3.2 Stability

We define the block by block method for computing vectors Y0, Y1, Y2, · · · in
sequence (see Fatunla [11]).Let the η-vector(η = 2 is the number of points
within the block) Yµ, Yµ−1, Fµ and Fµ−1 be given as Yµ = (yn+1, yn+2)

T ,Yµ−1 =
(yn−1, yn)T , Fµ = (fn+1, fn+2)

T , Fµ−1 = (fn−1, fn)T , then the 1-block 2-point
method for (1) is given as:

Yµ =
1∑
i=1

A(i)Yµ−1 +
1∑
i=0

B(i)Fµ−1, (13)

where A(i), B(i) , i = 0, 1 are 2 × 2 matrices whose entries are given by the
coefficient of (2) and (3).

Zero stability
The block method in (13) is zero stable provided the roots Rj, j = 1, 2 of
the first characteristic polynomial ρ(R) is specified by

ρ(R) = det

[
1∑
i=0

A(i)Ri−1
]

= 0, A(0) = −I (14)

satisfies |Rj| ≤ 1, j = 1, 2 and for those roots with |Rj| = 1, the multiplicity
does not exceed 1 (see Fatunla [11]).
Consistency
Our block method in (13) is consistent(it has order p > 1).
The block method is convegent(Convergence = Zero stability+ consistency)
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4 Implementation of the Scheme

Method (2) and (3) are implemented more efficiently as simultaneous inter-
grator for IVPs without requiring starting values and predictors. We proceed
by explicitly obtaining initial conditions at xn+2, n = 0, 2, · · · , N−2 using the
computed values y(xn+2)=yn+2 over sub-intervals [x0, x2], · · · , [xN−2, xN ].
For instance, using equations (12−13), and with n = 0. (y1, y2)

T , are simul-
taneously obtained over the sub-interval [x0, x2], as y0 is known from the IVP
(1). Also for n = 2, (y3, y4)

T are simultaneosly obtained over the sub-interval
[x2, x4], as y2 is known from the previous block, where T is the transpose
and so on. Hence, the sub-interval do not over-lap and the solution in this
manner is more accurate than those obtain in the conventional fashion.

On the choice of frequency(w), we adopt the method in Vigo-Aguiar
and Ramos [12]. On their paper titled ” On the choice of the frequency in
trigonometrically-fitted method.” use the trigonometrically-fiited method to
obtain an approximate solution to some nonlinear oscillators and also present
a strategy for the choice of frequency in trigonometrically-fiited method.

5 Numerical examples

In order to study the accuracy and efficiency of the developed methods, we
present some numerical experiments:
Example 1.1

y′′ = −100y + 99 sin(x), y(0) = 1, y′(0) = 11 (Adeniran et.al.[2])

Exact solution: y(x) = cos(10x) + sin(10x) + sin(x)

Example(1.2)
We consider the initial value problem

y′′(x) =
(y′)2

2y
− 2y, y(

π

6
) =

1

4
and y′(

π

6
) =

√
3

2
(Alabi et.al[13])

exact solution: y = sin2 x
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Table 1: Showing the exact solutions, computed results and error from the
proposed methods for example 1.1 with h = 1

320
, w = 1

x yExact yComputed error Error in Adeniran et.al.[2]
1

320
1.03388166738420 1.03388166738410 9.99× 10−14 9.170× 10−11

2
320

1.06675678785246 1.06675678785234 1.20× 10−13 -
3

320
1.09859628036501 1.09859628036580 7.90× 10−13 3.0905× 10−10

4
320

1.12937207509627 1.12937207509610 1.69× 10−13 -
5

320
1.15905714081491 1.15905714081441 5.00× 10−13 -

6
320

1.18762550988244 1.18762550988224 2.00× 10−13 4.8987× 10−10
7

320
1.21505230844501 1.21505230844510 8.99× 10−14 -

8
320

1.24131377434580 1.24131377434560 2.00× 10−13 -
9

320
1.26638728387076 1.1.26638728387046 3.00× 10−13 -

10
320

1.29025137290459 1.29025137290430 2.99× 10−13 -

The numerical result for Example 1.1 were presented in Tables 1. The prob-
lem was compared to other existing method. The new two step trigonometric
method displayed better accuracy within the range of integration.
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Table 2: Showing the exact solutions, computed results and error from the
proposed methods for Problem 1.2, h = 0.1, w = 1.

x yExact yComputed Error Error in Alabi et.al[13]
0.1 0.0099667110793792 0.00996671107827122 1.1× 10−12

0.2 0.0394695029985574 0.0394695029786944 2.0× 10−11

0.3 0.0873321925451611 0.0873321924526160 9.3× 10−11

0.4 0.1516466453264171 0.151646645281091 4.5× 10−11

0.5 0.229848847065930 0.229848847017083 4.9× 10−11

0.6 0.318821122761663 0.318821122673452 8.8× 10−11 1.013× 10−08

0.7 0.415016428549879 0.415016428485594 6.4× 10−11 4.782× 10−08

0.8 0.514599761150645 0.514599761134647 1.6× 10−11 1.109× 10−07

0.9 0.613601047346543 0.613601047330533 1.6× 10−10 1.892× 10−07

1.0 0.708073418273572 0.708073418262838 1.1× 10−10 1.196× 10−07

1.1 0.794250558627672 0.794250558333421 2.9× 10−10 3.019× 10−07

1.2 0.868696857770622 0.868696848083653 9.7× 10−09 2.561× 10−07

1.3 0.928444376684474 0.928444372840036 3.8× 10−09 1.435× 10−07

1.4 0.971111170334329 0.971111163223212 7.1× 10−09 1.019× 10−07

1.5 0.994996248300222 0.994996243303974 5.0× 10−09 2.319× 10−07

1.6 0.999147387897376 0.999147386423497 1.5× 10−09 5.892× 10−07

1.7 0.983399096289731 0.983399092298768 4.0× 10−09 1.013× 10−06

1.8 0.948379208167073 0.948379206787865 1.4× 10−09 1.211× 10−06

1.9 0.895483855957207 0.895483801118647 5.5× 10−08 1.287× 10−06

2.0 0.826821810431807 0.826821783609997 2.7× 10−08 1.435× 10−06

The numerical result for Example 1.2 were presented in Tables 2. The
problem was compared to other existing method. The new two step
trigonometric method displayed better accuracy within the range of

integration.
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6 Conclusion

The two step trigonometrically fitted method for solving oscillatory IVPs
generated in this paper is accurate, efficient, consistent and zero stable .
This method is self-starting and require no predictor and requires only two
functions evaluation at each integration step. The method complete favor-
ably with other existing methods ( Alabi et.al[13] and Adeniran et. al.[2]) in
the literature..
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