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Abstract

This article deals with the evaluation of some integrals involving error-, exponential- and algebraic
functions with an objective to derive explicit expressions for the second and third order correction
terms in the approximation of the modified error function, playing important role in the study of
Stefan problem. The results obtained here appear to be new and resolve the lack of desired
monotonicity property in the results presented by Ceretania et al.[1].Results derived here seem
to be useful for the researchers working with Stefan problems.

Keywords: Modified error function; Error function; Nonlinear ordinary differential equation; Approximation

1 Introduction

The understanding of phase-change processes are important for scientists and engineers due to their
appearance in a wide variety of situations, both in natural and industrial processes. The mathematical
modelling of such precesses, melting and freezing in particular, as moving boundary problem and
their analysis have been exercised since the nineteenth century(1-4).

Cho and Sunderland (5) in 1974 studied a phase-change process for a semi-infinite material
(one-dimension) with a (linear) temperature dependent thermal conductivity and appears to be a
good approximation for several materials (6). In such work, the solution to the (differential) equation
involved in the model was obtained through an auxiliary function having resemblance to the error
function erf(x)(7). Consequently, such function was designated as modified error function (MEF). In
spite of the applications in the studies of several phase-change processes (8-16), theoretical aspects
e.g. existence and uniqueness, domain of definitions etc. of MEF was overlooked. In their studies
(17,18) and references therein, Tarzia and his collaborators investigated the mathematical aspects of
MEF as mentioned above.

In their study (18), the MEF has been represented as a series solution

O5(z) =D dnlx)s", z>0. (1.1)
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of the nonlinear boundary value problem
({1406 ®s(z)} 5(z)] +2 = 5(z) =0 (1.2)

D5(0) =0, Ps(o0) =1. (1.3)
An approximation s ,,, of the MEF, ®;5(x) which is the m-th partial sum, is given by

Usm(@) =Y ¢a(x)d", x>0, m e No. (1.4)
n=0

The authors in (18) obtained first and second order corrections ¢:(z) and ¢2(z) involved in the
approximations ¥s 1 (x) and ¥;»(x) of the(MEF for § > —1. But it is observed that U5, (z) appears
to be better approximation than ¥s »(z), which is not desirable. The reason could not be addressed
completely. Although the two corrections ¢o(z) and ¢1 (x) was presented as explicit analytical function,
the second order correction ¢-2(z) could not be derived explicitly, rather it is obtained in terms of
integrals involving products of exponential and error functions. The authors suggested that the
numerical implementation of the integrals present in ¢2(z) might introduce non-negligible perturbations.
During numerical experiment it is found that the order of magnitude of ¢2(z) was greater than that of
¢1(z), which raises uncertainty over the convergence of the series (1.1).

To avoid this undesirable property, the authors in this paper have derived explicit expression of
¢2(zx) involving exponential and error functions: Furthermore, the explicit expression of the next order
correction ¢3(z) has been obtained by the evaluation of some integrals involving error function and
exponential function. In the course of this derivation some recurrence relation have been obtained,
which are not available in the literature yet. With these expressions it is observed that the order
of magnitude of the corrections decreases order by order, thus resolves the apparent problem of
monotonicity of the successive correction terms that is necessary for the convergence of the series
in (1.1). Hence, the inconsonance which arisen in (18) has been dispelled.

2 Approximate Solution

Use of expansion (1.4) in Eqg.(1.2) with boundary condition (1.3) suggests that the leading order
correction ¢o(x) is solution to the equation [1]

$(x) + 2z g(z) =0 (2.1)
with
$0(0) =0, ¢o(c0) = 1. (2.2)
The higher order corrections ¢, (x), n € N are solutions to the equation
Pn(x) + 22 ¢h(x) = A1 () (2.3)
with
¢n(0) =0, ¢n(c0) = 0. (2.4)
Here, A,,_1(z) is given as
Ap1(z) = = > {¢h1(2) dni(z) + dr1(x) ¢ (2)}. (2.5)
k=1

The value of the corrections ¢, (x) (n € N) in the expansion (1.1) can be calculated by using two fold
integration given as

bn(z) = /O et /0 t e An_1(s) ds dt + cn.1 erf(z). (2.6)
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Here, ¢, 1 is the integration constant and erf(z) is error function defined as((7)

erf(z / Cat 2> 0. (2.7)
Y
Now the solution of Eq.(2.1) with boundary condition (2.2) is given by
do(z) = erf(z). (2.8)
With the use of ¢o(z), we can calculate Ap(x) and ¢1(x) from (2.5) and (2.6) respectively as
2
4e7 " g2
Ao(z) = - {ﬁ zerf(z) —e } (2.9)
1 —x? 2 —2¢2
¢1(x) = {2 —2Vme P rerf(s) —merf(z)’ —2e } + c1,1 erf(x). (2.10)
Using the boundary cond|t|on (2.4) we have
ey = 52 (2.11)
Using this value of ¢; 1 in (2.10) one gets
b1 () = 2i [{w erf(z) + 2} erfc(z) — 2 Vr z e erf(z) — 2 ¢ 72| (2.12)
s

Here erfc(z) = 1 — erf(x) is the complimentary error function((7). To obtain the expression for ¢2(x)
we present the following definition and theorems.

Theorem 1. The integral involving exponential and error function can be represented as

/OZ —v erf(y)dy_—2\/>{ (fxm, f)—%tan‘l(%)}. (2.13)

Here T'(z,a) is Owen T-function defined as|(7)

2 2
a exp{iz 1+t )}
1 2
dt.

T(z,a) = o =D (2.14)
0
Proof. Differentiating (2.14) w.r.t z and using the transformation z t = v/2 7, we get
dl'(z,a) 1 + t2)
e = f—/ z exp }dt
Va 22
= ex ex d 2.15
-5 =" ;23 =) exp(—r) dr (2.15)
z a z
= 2\ﬁexp( )erf(ﬁ).
Further substitution of a z = /2 y followed by integration with respect to y over [0, z] provides
z 2
Y — L
/0 exp( 0 )erf( Ydy = Qa\f{T( ) 27Ttan (a)}. (2.16)
Choice of a® = % gives the result presented in the statement of the theorem. O
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Lemma 1.
1 T \2
T(z,1) = g{l —erf( ) 2
Proof. We use the following property of Owen T-function((19)

T(z,1) = < G(2)(1 - G(2))

N | =

2
where G(z) = = f_zoo e~z dt.

Now the substitution % = ¢’ converts G(z) into the following form.

G(z) = % /\/5 67t’2dt/
1 /0 —t'2 /% —t/2 /]
= — e dt’ + e dt
ﬁ |: — o0 0
1 z
— 5 [rred(S)]

Substituting the value of G(z) in (2.17) one can obtain the relation stated in the lemma.

Lemma 2.

/ e_zzerf(x)d:r = %erf(l’)%
0

Proof. For A =1 in Theorem 1 we have

/Ie**erf(x)dx = 72\/7?{T(\/§m,1)7%tan’1(1)}.

0

Using the result obtained in Lemma 1 the statement in this lemma can be proved.

Definition 1. We define the notation I,,, ., x(z) as follows
Im,n,)\(m) :/ eiAtZtnerf(t)mdt.
0

Lemma 3. From Definition-1 it can be observed that
1

’ —At? n m _
/0 e e (bt)"dt = 1t T, (00)

where b € R is constant.

Proof. Substitution of bt = ¢’ in the integral mentioned in the Lemma converts it into

! /bz _#t’"erf(t’)m dt’

[ e b
bn+1 o

S )

bn+1 m,n, b

(2.17)

(2.18)

(2.19)
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Theorem 2. The integral I .»,»(x) given in (2.18) satisfies the recurrence relation

1 22 ne m . n—1 m
L (z) = —5re 22 Lerf(x) +71mm,_2,x(x)+mlm_l,n_l,m(x) (2.20)

where A > 0, m > 0, n > 1. It may be observed that

Ino(z) = g erf(z) (2.21)
Ioaa(@) = — o NG - ) (2.22)
Lioa(z) = —2\/>{T fAm,—) - —tan_l(%)} (2.23)
Imoa(z) = m erf(z)™m*. (2.24)

Proof.
Im,n,k(x) = /eM?t”erf(t)mdt
0
1 (Td,_
= —%/ () erfya
_ _ n 1 d —At - zi n—1 m d —xt?
- erf(t / dt +2A[ /O dt(t erf(t) ) / e )dtdt]

= fie‘“ﬁx”‘lerf( )" cr-t e_M “Zerf(t)™dt

2A 2A 0
m ¢ 7(A+1)t2tnflerf D™l at
WA ()
1 —xz2 n-1 m n—1 m
= - f —— T —— L 1n_ .
¢ " erf(z)™ + o ; 2,>\($)+)\ﬁ Ln—1,2+1(T)

Results in (2.21), (2.22) are obtained by straightforward integration using the Definition-1 while the
result in (2.23) can be established by using Theorem-1.

Now,
Imor(z) = / " ert(t)me " dt
0
= 2(m7\/jr—1) /Ox :lit(erf( )™t at
= 72(7[7; ) erf(z)™ .
This completes the proof. O

Theorem 3. Using Definition-1 we have the following recurrence relation for A = 0

n+1 2m

Va(n 4 1)

T

n+1

Lnno(z) = erf(z)™ — Im—1n41,1(). (2.25)
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Proof. We use the formula for integration by parts to get

Imno(z) = / t"erf(t)™ dt
0
¢ “ 2m * B 1
= 7erftm’77/ erf(t)™ "t
n+1 ® o Vrn+1) /g ®) ¢
‘,L,n+1 om
= erf(x)” — ————Im—_1.n .
w1 @ T ey e )

O

Theorem 4. The explicit expression for the second order correction ¢2(x) in the approximation of
modefied error function ®s(x) can be obtained as

d2(x) = = [ —-27 erf(:c)z{w erfc(x) — 2} —4e ¥’ { (z® = 3) erf(z) + 7 — 2}
+re e {erf ){m(9 - 22%)erf(z) — 4 + 8} — 4} (2.26)
+{7T (3\/§— +8}erfx —3\[71 erf(\/§m) —2\/7?673E25L‘+47T—8:|.

Proof. From (2.5) one can get,
A@) = —{266(@) 1) + 61(x) (@) + d0(x) O ()} (2.27)
Explicit expressions for ¢o(z), ¢1(x) given in (2.8) and (2.12) have been used to obtained

Avw) = [ o (o - 2) erf(a) + 7 - 2
+ﬁ62x2x{erf(x){ﬂ'(m2 —3)erf(z) + 7 — 2} + 1} — Sﬁx]

(2.28)

Using the integral representation of ¢,,(z) in (2.6) for n = 2, one can obtain the explicit z-dependence
of ¢2 with the help of Lemma-2 and Theorem-2 as

d2(x) = % [ — 4e*” {7r (z® = 3)erf(z) + 7 — 2} —2y/mx
—ﬁe%zx{w (22* — 9) erf(z)* + 4(r — 2)erf(z) + 4} (2.29)

—|—€3w2{ — 2 erf(z)?(r erfc(z) — 2) — 33w erf (V3z) + 4r — 8”
+co21 erf(w).

Use of the boundary condition (2.4) for n = 2, properties of error- and complementary error-functions
provides the integration constant

(3mV3 — 81 +8)

4712

c2,1 = (2.30)
Relations in (2.29) and (2.30) simultaneously recover the statement of Theorem-4. O
The result obtained here appears to be new.

To derive third order correction term ¢3(z), we recall (2.5) to obtain

= —{¢1@)* + 205 (@)65(2) + 9§ ()2(2) + 61 ()61 () + do(2)d5 (@)} (2:31)
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Use of explicit expression for ¢;(z), i = 0, 1,2 into the above expression yields a large expression in
x which has been split into five parts as

5
As(x) =Y Asy(z) (2.32)
k=1

where

—2g2

_ 322
Agq(z) = —¢ (82> +6vV3+m—28+ 20) — 18:5/32 (m — 2z — Ze 4’ (72*+4), (233

s 2 ke

—x _922
Asa(z) = [T;f{ﬂ' (82> +6v3+m—36) + 20} — %(w —-2) (z* - 2) 234
2 (1302 - 32) |erf(a), '
Az z(z) = [Gir;‘iz (r—2) (2 —3) — 8‘:”2 (102" — 512> 4 48) ]erf(x)Q, (2.35)
Asale) = S= (4o — 3622 + 59) erf(x)?, (2.36)
Ags(z) = Jﬁ‘%{ﬁ m erf (v3z) — 2m + 4. (2.37)
Accordingly, we write ¢3(z) as
ds(x) =3 b3 () + cs1 erf(x) (2.38)
k=1
where . .
b3.x(x) = / et / e Ay 1 (s) ds dt. (2.39)
0 0

Using Definition-1 and the values of A, 1 (x), k = 1,2,...,5 given in (2.33)-(2.37) we can express the
integrals fot 682A2,k(5) ds, k=1,2,...,5 as follows.

g 8 1 20
/0 e A2,1(8) ds = 7; 1072,1(t) - ﬁ (6\/§+ ™ — 28 + ?) 1070,1(25)

18 14 8
——5(m=2) Ioa2(t) = — lo2:3(t) = — lo0.3(1), (2.40)

T2 ™ s

b 8 1 20 12
/ ¢ Ara(s)ds = < hso(t) + (=5 (6VB+m—36)+ =5 ) hao(t) — 5 (m—2) Liaa(t)
0 T2 T2 T2 ™
24 26 64
+7(W - 2) 1170,1(t) - — 1173’2(15) + — [171’2(1‘), (2.41)
s T2 T2
b 6 18 10
/ ¢ Aog(s)ds = O (m—2) Igot) — “o(r —2) Inao(t) — 22 Las(t)
0 T2 T2 T
51 48
+— 1272’1(1‘,) - — [2’0’1(15), (242)
s i
P 2 18 59

A ds = —=1 t)— — I )+ —— 1T t 2.43
/0 e 2,4(s) ds N 3,5,0(t) 7 3,3,0(t) + N 3,1,0(t), ( )
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t
/ 682A275(8) ds = %(ﬂ' — 2) I()’l,()(t) — \/75 [1,170(\/§t). (244)
0 T2 m2
We now derive the explicit expressions of I,,, . (t) for various values of m, n, A appearing in (2.40)-
(2.44) by the use of Lemma-2, Lemma-3, Theorem-2 and Theorem-3. Then using the obtained results
and the definition of ¢s i (x) given in (2.39) one can find the expressions of ¢3 1 (z), k =1,2,...,5in
terms of I, .2 (z) @s

9 /m 7 4 9 /m
Baae) = — (5~ 1) Do) + g alona@) + 5lora() = (G~ 1)ooa(®)
12 10 3V3 1 31
+(m — =~ o - ﬁ)h,o,l(l«) - 18?11,0%(\/%), (2.45)

13 1/3v/3 1 15 10 2 6 2
¢32(x) = 6?10,1,4(@ + P (Tr + - - - + o )Io 1,2(x) + 710 3 Q(I) - (1 — ;)11,1,2(23)
3 2 51 13
+71-3/2 (1 - ;)IO,OB(W) - Wfl,o,a(l’) + 27r73/2h’2 3 3/2 ( )IO 0,1(x)
1 33 15 5 1 1 /10 3\f 18 1
—(-==+=-5 -1 — (=== I
+\/7T'( 2 + 2r w2 4) vo(@) + ﬁ<ﬂ2 + ™ + 2) 12a(2)
2 9 (m 35
s Tan (@) + =75 (5 — 1) Ta0a(@) + 5503 (V30), (2.46)
5 12 ™ 3 ™ 31
¢3,3(:r) = 3 2[0,1,4(17) + W(l — 5)[0’0,3(1,’) — m(l — 5)[0’2,3(1;) _ 5372 11’073(1:)
5 27 T 6 T 18
+77r3/2 Iios(x) + ﬁ(l — 5)]1,1,2(&6) — ﬁ(l — 5)11,372(33) — ?12 1,2(x)
5 12 T 27 T
+;1-2,3,2(517) - 7T5/2 (1 — 5)1-0,071(1') — W(l — 5)1-270’1(1')
+7r3/2 (1 - 5)12,2,1(55) iy (1 - 5)[2,4,1(36) — ﬁl&o’l(m)
44
+5a73 10, (V32), (2.47)
19 1 91 10
924(®) = —grzloral@)+ o grzlosa() + gaphios®) - Grlhas()

1 11 11 1
+W11 a,3(x) + EI2,1,2(1') — ?[2,3,2(58) + ;12,5,2(33)
59

9 1
8fl3 o0,1(x) + mfs,zl(ﬂi) — ﬁf3,4,1($) + ﬁIB,G,l(x)
181237/2 1,0,1 (\[95) (2.48)
P35(z) = 232 Io1,4() — 56/2 (1 - 2)10,2,1(95) i 13/2 L1 (V3z)
T (VB2). (2.49)

We again derive the expressions for I,,, », x(x) for different m, n, A present in (2.45)-(2.49) by using
Lemma-2, Lemma-3, Theorem-2 and Theorem-3 to obtain the explicit expressions for ¢s.x(z), k =
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1,2,...,5 given by

bs1(z) = —Wlﬂz [63 e 1216 ¢ 2" — 6231 — 279 + 27{67r (\/E - 4) +7% 4 20} x
erf(x)” + 324 V3 erf (\/ﬁgg) — 162 /3 merf (\/gx) + 6{31\/5 werf (\/gx)

+81(r — 2) Jerf(z) + 744v/3r T (\/61:, %) ] : (2.50)

bs2(z) = 216 — [54{ (6\/§+7r7 28) +20+e*2z2{ 7 (4x2 +6vV3 47— 28) - 20}
_ﬁez2z{w (4:02 +6v3 47— 30) + 20}erf(m)} +54(r — 2)7 x
{ —6 (e‘uz n 1) erf(z) + 37 erf(z)® + 4v/3 erf (\/ﬁx) } n 7r{117(1 )
—934y/me ¥z erf(z) + 140\/§7r{24 T (\/6$, %)

13 erf(z )erf( ) - 2}} (2.51)

¢33(x) = 72T15/2 {27(7r - 2){7re_m2x (9—- 2952) erf(z)® — 4\/7?6_2362 (1’2 —4) erf(z)
+8y/7 erf(x) — 23\/§ erf (\/gx) - 26739521'} + \/Ee%zz’{ - 120\/Eem2x erf(z)

—45 — 97e®® (102° — 31) erf(:r)Q} + \/E{45 — 457 °erf(z)*

+176\/7r{12 T (\/x, \[) +erf(z) erf (\/x) - 1}}] (2.52)
¢p3a(z) = 21é7r2 { 4z (333 — 362%) — 54\/%973223: (2172 —19) erf(x)

—27re ™ (42" — 402% + 91) erf(z)? — 97%/2e ™" & (42" — 442® + 111) erf(z)?
1
—{2547r\/§{48 T (\/61:, ﬁ) + 3erf(x) erf (\/ﬁm) - 4} + 333}} 7 (2.53)

d3s(x) = o 5/2 {Q\f —da? _””2x{\/§7rerf (\/gac) —27T+4} +ﬁ{\/§7r—9
—~12V37 T (\/éav, ﬁ) - Serf(m){\@ w erf (\/gx) — 37+ 6}}} . (2.54)
Use of (2.50-2.54) in (2.38) and the boundary condition in (2.4) for n = 3, gives
31 = 241 . {(19\f 42)7* + (224 — 90V/3) 7 — 120} (2.55)

Substituting the derived expressions of ¢s . (z), k = 1,2, ..., 5 and the value of ¢3,; in (2.38) we obtain
the explicit expression for the third order correction ¢s(x) involving error-, complementary error- and
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Owen T-functions as

3(x) = — (xQ — 5)67412 — ze * ™ — m(z® — T
ds(x) = e {32 2 -y ert(a)}

672

67236
N
+2w{6+3\/ 42% 1+ 6 (° — 3) erfc(z H

[20 . {1 +6(a2 — 3) erf(z) + (22 — 1522 + 30) erf(m)Q}

_1‘2

_re - [6{20+7r(4x + 7+ 6v/3 — 30) }erf )+ 97 (7 — 2) (22> — 9) erf(z)?
247T§
72 (da* — 442 +111) erf(z)’ —18(4 — 27 + V3 7 erf(\/gx))]
+241 5 [120+ 7{90V3 — 104 + w(127 +17V/3 + 6) } + 6v/37” erf(v/51)  erfo(x)
—@{zo +6(v3 1 2)m + 1372} erfe(z)? + E(” +6) erfc(x)® — % erfc(z)*
+£{(11W —18) erfc(v/3x) — 1287 T (\/éx, %) } (2.56)

This explicit expression for ¢3(xz) seems to be new, not available in literature.

To exhibit the usefulness of the results derived here we have compared the correction terms
on(z) in (1.4) with the results obtained by Ceretani et al (18) in Fig.1. It is observed that the lack of
monotonicity of successive corrections of MEF presented in (18) disappears.

Over and above, the residual error

ER[W](z) = [{14+6 ¥(2)} ¥'(z)] + 22 ¥'(z)

for the approximate solutions ¥ ; (z) derived here and y;,,(x; d), ¢ = 1, 2 obtained recently by Bougoffa
(19) have been presented in Fig. 2a and Fig. 2.b for § = 0.15 and 0.1, respectively. From a careful
analysis of these figures it appears that the residual errors corresponding to the approximate solution
U5.1(z) derived here seem to be significantly less than the same corresponding to the approximate
solutions presented by Bougoffa (19).

The monotonicity of the ER[¥s,,»](z) corresponding to the approximate solution involving higher
order corrections (m = 2, 3) has also been maintained as evident from the Fig.4.

3 Discussion

The main goal of thisipaper is the derivation of the explicit expressions for the second and third order
corrections in the approximation of the MEF which satisfies Eq.(1.2). Results presented here have
been derived through the evaluation of integrals involving error-, exponential- and algebraic functions.
The plots of successive corrections ¢;(x), 0 < ¢ < 3 show that the order of magnitude is decreasing
term by term with | ¢;;+1 | < 1. ltindicates that the series in (1.1) seems to converge for § < 2.
Most of the results obtained here appear to be new and resolve the lack of monotonicity of successive
corrections in the approximation of MEF appearing in{(18): The results derived here may be useful
for the researchers working in the field of Stefan problems e.g., in the approximations of generalized
error function introduced by Ceretani et al in their recent work((20):

The limitation of this approximation scheme is that the derivation of the explicit expressions for the
next order corrections (¢, (x), n > 4) involves intricate calculations due to the presence of integrals
containing Owen T-functions which are not even manageable with the help of symbolic computations
in a straightforward way. So, an alternative approximation scheme for the modified- and generalized-
error function @ () with higher order accuracy may be desirable.
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Figure 2: ER[¥](x) for yi ,(x;0)(dotted-line), yo ,(x;0)(dashed-line) and ¥s;(x)
(red-line) correspondingto a) d = .15 and b) 6 = .1.
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