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Abstract: 

The present article investigates natural convection Couette flow through a vertical porous 
channel due to combined effects of thermal radiation and variable fluid properties. The fluid 
considered in the model is of an optically dense with all its physical properties assumed constant 
except for its viscosity and thermal conductivity which are temperature dependent. The flow 
equations are simplified using non-linear Rosseland heat diffusion and as a consequence it 
resulted to high non-linearity of the flow equations. Adomian decomposition method (ADM) is 
used to solve the emanating equations and the influences of the essential controlling physical 
parameters involved are presented on graphs, tables and were discussed. In the course of 
investigation; it was found that both the fluid velocity and its temperature within the channel 
were seen to increase with growing thermal radiation parameter while the fluid’s velocity and 
temperature were observed to descend with increase in thermal conduction of the fluid. 
Similarly; the fluid velocity was found to increase with decrease in the fluid viscosity.  To 
validate the accuracy of the present investigation; the results obtained here in have been 
compared with a published work where good agreement was found. 

Key words:  Couette flow; Variable viscosity; Variable thermal conductivity,   
  Thermal radiation; Porous channel; ADM. 

1.0 Introduction: 

Couette flow is a phenomenon in fluid flow which occurs due to the movement of bounding 
surface surrounding the fluid. In 1984, Yosutomi1 reported that this method has been used in 
hydrodynamics lubrication in fluid machinery involving moving parts as a fundamental method 
for measurement of viscosity and as a mean of estimating the drag force in many wall driven 
applications.  

Studies of convective heat transfer flows through porous media has been conducted by many 
researchers in view of its application in sciences and engineering; particularly in the utilization of 
geothermal energy, high performance building insulation, crude oil extraction in petroleum 
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industries, solid matrix exchangers, chemical catalytic reactor, underground disposal of nuclear 
waste materials and many others. In the flow of viscous fluid, when varying viscosity property 
included, the flow characteristics change substantially compared to the constant case (Gray2 
1982)). The study of Macosco3 (1994) stated that when a fluid is under working conditions, the 
fluid can be subjected to extreme conditions such as high temperature, pressure and shear rate 
and as a consequence its viscosity is affected. Kafousius and Rees4 (1995) concluded that when 
viscosity of any working fluid is sensitive to temperature variation, the effect of temperature-
dependent viscosity has to be considered otherwise considerable errors may results in the heat 
transfer characteristics. Other correlated studies can be seen in Iyer et al.5 (1997), Ingham and 
Pop6 (1998), Neild and Bejan7 (2013), Urbano and Nasuti8 (2013), Daniel9 (2017) and Prenay et 
al.10 (2019).  

Boundary layer flows with temperature-dependent thermal conductivity has been studied by 
investigators owing to its numerous applications in engineering technology as in the extrusion of 
plastic sheets, polymer processing, spinning of fibers, cooling of elastic sheets etc. Cooling 
procedure has to be controlled effectively as the quality of final products in manufacturing 
industries relies on the rate of heat transfer. In heat sink/ source applications; materials of high 
thermal conductivity are widely used while those of low conductivity are used as insulators. For 
example, liquid metals having Prandtl number in the range 0.01 – 0.1 are generally used as 
coolants because of their high thermal conductivity. The studies of Van den Berg et al.11 (2005) 
has shown that variable thermal conductivity can delay secular cooling of mantle with constant 
viscosity model while that of Sharma and Aisha12 (2014) disclosed that thermal conduction 
increases with decrease in Prandl number. Similar interrelated studies can be observed in 
Dubuffet13 (1999), Hofmeister14 (1999), Starlin et al.15 (2000), van den Berg et al16. (2001), 
Rihab et al.17 (2017) and Blas18 (2019). 

Entropy generation is a measure of destruction of the available work done by a system; when it 
occurs it resulted to the emission of heat in the form of electromagnetic rays termed as “thermal 
radiation”. Thermal radiation is of fundamental importance in system maintenance as in human 
body for temperature regulation, heat source or sink application in electric cookers, drying of 
agricultural products, warming of houses e.t.c. For minimization of radiation effects on free 
convection flows especially in working medium that requires liberation of heat to the 
surrounding environment. Rosseland19 (1931) m gave an expression for radiative heat flux which 
was later simplified by Sparrow and Cess20 (1978) and is being widely used in the study of heat 
transfer with thermal radiation by scholars In view of this innovation, some researchers have 
adopted it and can be viewed in  Elbasbeshy and Bazid21 (2000), Schlicting and Mahmud22 

(2002), Ibanez et al23. (2003), Makinde24 (2005), Makinde et al.25 (2007), Makinde and Ogulu26 
(2008) and Ibrahim and Makinde27 (2011). In some of the above mentioned studies, the authors 
discussed the effect of thermal radiation using linearized Rosseland heat diffusion and this was 
later faulted by Magyari and Pantokratoras28 (2011) on the basis that it does not reflects the real 
mechanism in heat transfer characteristics in most boundary layer flows with thermal radiation 
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and they therefore gave alternative approach using non-linear Rossland heat diffusion. In 
apprehension of this achievement, correlated studies can be observed in Yabo et al.29 (2016), Jha 
et al.30 (2017) and Ajibade and Bichi31 (2018). 

This paper investigates variable fluid properties on steady natural convection Couette flow 
through a vertical porous channel. In particular; the variable fluid properties considered are that, 
the viscosity and thermal conductivity assumed variable status following Carey and Mollendorf32 
(1978) with the radiative heat flux adopting non-linear Rossland heat diffusion.  

 

2.0  Mathematical formulation: 

The schematic diagram below in figure 1 consists of an infinite vertical channel formed by two 
parallel plate stationed h distance apart. The channel is filled with an optically dense viscous 

incompressible fluid at the expense of radiative heat flux of intensity rq ; which is absorbed by 

the plates and transferred to the fluid. The fluid’s physical properties are assumed constant 
except for its viscosity and thermal conductivity which are temperature dependent. Since the 
fluid is an optically dense; the radiative heat flux of Rosseland heat diffusion can be utilized to 
analyze the energy equation in the flow formation. The ݔᇱ-axis is taken along the channel in the 
vertically upward direction, being the direction of the flow while the ݕᇱ-axis is taken normal to it 
and the effect of radiative heat flux in the ݔᇱ- direction is considered negligible compared to that 

in the ݕᇱ- direction. The temperature of the plate kept at 0' y  rise to wT  and thereafter 

maintained constant while the other plate at  hy '  remain at 0T . Also , the plate at  0' y  

moves at its own plate impulsively at uniform velocity '
0u Mu  while the other plate remains at 

rest. 

  

 

  

 

 

 

 

 

    Fig 1: Schematic diagram of the problem  

u

݃

0u

0TT 

0V

hy '

 

ᇱݕ

ᇱݔ

0' y

u Mu

wT T  

0V

rq



4 
 

The basic equations in vector form governing the flow of viscous incompressible fluid are: 

  Conservation of mass 
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Conservation of momentum 
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Conservation of energy 
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The flow is considered two dimensional and fully developed so that  0,, vuv 


 with the flow 

direction assumed along the 'x   so that equation (1) reduces to: 

  0
dy

dv
                    (4) 

Integrating equation (4) gives  0V   ( a constant) which represents the velocity of suction /injection. 

On utilizing Makinde et al.25 (2007) and incorporating the effect of both variable fluid viscosity 
and thermal conductivity, the governing momentum and energy equations at steady sate are thus:  
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where the radiative heat flux  rq  has the form:  
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Following Carey and Mollendorf32 (1978); the fluid viscosity    and thermal conductivity  k  

are respectively of the form:  
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The following initial and boundary conditions for the velocity and temperature fields are 
employed: 

 hyforTTu  '
0

'' 0,0      (9) 
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The meanings of all the physical quantities involved are given in the nomenclature. 

 The following dimensionless quantities as given by Ajibade et al.33 (2011) are adopted: 
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Using equations (7), (8) and (11) in equation (5), the equation for the velocity field in 
dimensionless form is: 
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Substituting equation (8), (11) and (13) in equation (2) and rearranging, the following equation is 
achieved: 
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Again; on using equation (11) in equations (9– 10), the initial and boundary conditions are now: 
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2.1  ADM Solution of the Problem:  
 

Adomian decomposition method popularly known as ADM was introduced by Adomian34 

(1994). This method is based for the search of solutions of differential equations in the form of 

series in which the terms are calculated using recursive relations. Some of advantages over the 

known classical techniques include: 

i.  It does not require discretization of the solution. 

ii. The method avoids perturbation in order to find conditions required for next 

computations  
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iii. The method does not result in any large system of equations neither not is it affected 

by computational round off errors  

iv.  It does not take long time and large amount of computer memory.  

v.     It shows the interactions between the controlling parameters involved in a problem. 

Equations (12) and (14) subject to the boundary conditions (15) and (16) are solved by ADM as 
follow: 
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Where ' (0)A f   and ' (0)B   are assumed values to be determined based on the boundary 

condition in equation (10).  
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Setting   0 ( ) 1y By    and   1
0 ( ) 1 2 ( ) ( )u y M yA GrL y y          (30) 

then 1( )nu y  and 1( )n y   for  0n  are determined using the recursive relations: 
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    (32) 

For details on ADM refer to Adomian34 (1994). 

 

2.2 Convergence of the ADM solution and termination criterion of the problem: 

Adomian34 (1994) and Cherrault35 (1990) have discussed intensively on the convergence of 
ADM. Nevertheless; to verify the convergence of the ADM solution in the present problem; the 
method of ratio test is deployed. Using computer algebra package the following terms were 
obtained at 

1.0,1.0,1.0,10,1,0,1.0,1,5.0   TRGrcMy    as: 
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 6
3210 1073132042123.4,6230003468323.0,1703022291.0,5124042184.0    

0 1 2 31.190089496, 0.02996349680, 0.001461778228, 0.00004598585703u u u u       (33)  

and 

31 2

0 1 2

0.03323591473, 0.02036569716, 0.01243599122
 

  
    

  

31 2

0 1 2

0.02517751556, 0.04878530159, 0.03145884659
uu u

u u u
  

          (34) 
 

Numerical values in equation (30) shows that  

                                1lim 1 


j

j

j f

f
,  for 0j   Robert36 (2010)       (35) 

 
 Hence the ADM solution of the present problem converges. For a meaningful series solution, 
the series needs to be truncated at a point such that the contribution of any additional term is 
negligible to the final solution. As such a termination criterion is used such that the series is 

truncated whenever ,i iu   . For the present problem, we have chosen 4105.3  . 

Considering this assumption, the solution for u and   are thus truncated after the 3rd terms. Due 
to huge size of the computed ADM solution, the solutions are not displayed here rather they are 
used for numerical computations for the purpose of discussing the result. 
 

2.3 Nusselt number and Skin friction: 

Following Kay37 (2017), the Nusselt number on the channel plates stationed at 0y  and 1y  

are respectively evaluated using:  

   00 )(1  ydy

d
yNu


 
and    11 )(1  ydy

d
yNu

       (36) 

 
while the skin frictions on the channel plates  are calculated via: 
 

    
00 )(1  ydy

ydu
y  and     

11 )(1  ydy

ydu
y     (37) 

    
2.4 Results and Discussion:  
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The present article investigated variable fluid properties and thermal radiation effects on natural 
convection Couette flow through a vertical porous channel using nonlinear Rosseland heat 
diffusion. Computer simulation was conducted on the solution of the flow equations considering 
the influence of the essential physical parameters involved and the results are presented in figure 

2 – 11 and on tables I - III. For the purpose of discussion of this result, the value of TR  and   are 

taken within the range 0 , 1TR    for which the solution of the governing equations are 

convergent. Similarly, the values for   ,  and  M has been chosen arbitrarily between 0.1 – 3 

while that of Gr are selected as 10, 12 and 14.      

         

Fig	2: Temperature	proϐiles	for	different	values	of	c              Fig	3: Velocity	proϐiles	for	different	values	of	c                               

ሺ߶ ൌ 0.1,			, ்ܴ ൌ 0.1, ߶ ൌ 0.1, ߳ ൌ 0.1, c = {0.1, 0.5, 1})      ሺ߶ ൌ 0.1, ்ܴ ൌ 0.1, Gr ൌ 10, ߣ ൌ 0.1,M ൌ 0.1,	 

   ߶ ൌ 0.1, ߳ ൌ 0.1, c = {0.1, 0.5, 1}) 

Figure 2 and 3 displayed the effects of suction parameter (c) on the velocity and temperature of 
the fluid within the channel where the figures show that both the temperature and velocity 
decreases with growing c. These behaviors are accredited to the decrease in thermal diffusivity 
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of the working fluid with growing c.                      

      

Fig	4: Temperature	proϐiles	for	different	values	of	்ܴ				       Fig	5: Velocity	proϐiles	for	different	values	of	்ܴ					      

ሺ߶ ൌ 0.1, c ൌ 0.1, ߳ ൌ 0.1,.		…்ܴ ൌ 0.01, __்ܴ	=0.4,         ሺ߶ ൌ 0.1, c ൌ 0.1, ߣ ൌ 0.1, Gr ൌ 10,M ൌ 1, ߶ ൌ 0.1, 
			்ܴ ൌ0.8)                                                                          ߳ ൌ 0.1,-.-.-்ܴ= 0.001,	. . . ்ܴ= 0.4, ___ ்ܴ= 0.8) 

 

The effect of thermal radiation parameter (்ܴ) on the fluid temperature is naked in figure 4 where 
the figure shows that the temperature within the channel increases with increase in ்ܴ. The 
resulting effect of this has transferred to increase the velocity of the fluid within the channel as 
graphed in figure 5. These attitudes are inclined to the decrease in thermal conduction of the 
fluid in the channel. 

                         

			Fig	6: Temperature	proϐiles	for	different	values	of		߳  										Fig	7: Velocity	proϐiles	for	different	values	of	߳				       
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 ሺ߶ ൌ 0.1, c ൌ 0.1, ்ܴ ൌ 0.01, ……߳ =0.1,               ሺ߶ ൌ 0.1, c ൌ 0.1, ߣ ൌ 0.1,M ൌ 1, ்ܴ ൌ 0.01, 

  ___߳ =0.4,  . - . - ߳ =0.5) .…߳ =0.1, ___߳ =0.4,  . - . - ߳ =0.5) 

Figure 6 and 7 presents the effect of thermal conduction parameter (߳) on the velocity and 
temperature of the fluid within the channel where it is eyed from the figures that, an increase in ߳ 
contributes to the decrease in the temperature and velocity of the fluid within the channel. This is 
attributed to the decrease in thermal conduction of the fluid which act to diminish the influence 
of the applied boundary temperature and thus causing a decrease in the thermodynamics and 
hydrodynamics of fluid within the channel.  

 

                     
  Fig	8: Velocity	proϐile	for	different	values	of	  

ሺ߶ ൌ 0.1, c ൌ 0.1,M ൌ 1, Gr ൌ 10, ߳ ൌ 0.1, ்ܴ ൌ 0.1, . . .  ൌ 0.1, ____ ൌ 0.4,.-.-.-.-. ൌ 0.7ሻ 

 

Figure 8 depicts the influence of viscosity variation parameter ( ) on the fluid velocity in the 
channel where it is seen that the velocity of the fluid escalate with increase in  . This is credited 
to the decrease in the fluid’s viscosity within the channel. 
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 																			Fig	9: Velocity	proϐile	for	different	values	of	Gr 

            ሺ߶ ൌ 0.1, c ൌ 0.1,M ൌ 1,  ൌ 0.1, ߳ ൌ 0.1, ்ܴ ൌ 0.1, . . . . Gr ൌ 10, ____Gr=12,  .-.-. Gr=12)  

   

The effect of varying Gr is pictured in figure 9 where the figure shows that the fluid velocity 
within the channel increases with ascending Gr. This is accredited to the increase in the 
buoyancy force of the fluid molecules within the channel and hence an increase in the fluid 
velocity. 

                        

Fig	10: Velocity	proϐile	for	different	values	of	M 

 ሺ߶ ൌ 0.1, c ൌ 0.1,  ൌ 0.1, Gr ൌ 10, ߳ ൌ 0.1, ܴ଴ ൌ 0.1, . …M ൌ 0.1, ______M ൌ 0.5, .-.-.- M = 1) 
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Figure 10 reflects the effect of varying the velocity of the moving boundary on the fluid velocity 
within the channel. The figure demonstrated that the velocity of the fluid increases with increase 
M. This is practically true that in no-slip regime, the thin film of the fluid adjacent to the moving 
plate moves with the velocity of the moving plate. 

 

      

Fig	11: Temperature	proϐile	for	different	values	of	߶         Fig	12: Velocity	proϐile	for	different	values	of	߶ 

ሺܯ ൌ 1, c ൌ 0.1,  ൌ 0.1, Gr ൌ 10, ߳ ൌ 0.1, ்ܴ ൌ 0.1,					 		ሺܯ ൌ 1, c ൌ 0.1,  ൌ 0.1, Gr ൌ 10, ߳ ൌ 0.1, ்ܴ ൌ 0.1, 

…… . . ߶ ൌ 2,  ____߶ ൌ 4, -.-.- ߶ ൌ 6ሻ    _____߶ ൌ 2,  . െ. െ.െ߶ ൌ 4, ……. ߶ ൌ 6ሻ 

The effect of temperature difference parameter ሺ߶ሻ is shown in figure 11 and 12. These figures 
displayed that the velocity and temperature of the fluid within the cahnnel increases with 
increase in ߶. This is owing to the decrease in ambient temperature of the fluid in the channel.  

 

 
 
 
 Table I: Nusselt number on the channel plates. 

TR   = 0.01,  = 0.1, 

 c = 0.1 

0Nu           1Nu       

  = 0.04,  = 0.1,  

c = 0.1 

0Nu        1Nu     

 = 0.04,  = 0.4,  

c = 0.1 

0Nu         1Nu     

 = 0.04,  = 0.4,   

 c = 0.4 

0Nu        1Nu     

0.01 1.03354      0.94317 1.02032    0.92850 1.00723      0.93737 1.1999      0.73108 
0.04 1.00392      0.96424 0.97840    0.94748 0.93906      0.97863 1.08756    0.79980 
0.06 0.970875     0.97511 0.95426     0.95945 0.90514      1.00234 1.03279    0.83811 
0.08 0.95023      0.98557 0.93271    0.97090 0.87807      1.02349 0.98932    0.87162 
0.1 0.93166      0.99563 0.91341     0.98184 0.85651      1.04243 0.95456    0.90107 
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The effects of varying physical parameters on Nusselt numbers is presented on Table I. The table 

displayed that for some fixed values of  ,   and c ;  0Nu  decreases with increase in TR  while 

1Nu  increases with increase in TR .  For small increase in  ; both 0Nu  and 1Nu  decreases with 

growth in TR . Furthermore; with slight increase in  , 0Nu  decreases while 1Nu  increases. 

Again, with increase in c, 0Nu  increases while 1Nu decreases. 

  Table II: Numerical values for skin friction on the channel plates 

   = 0.01, TR = 0.01, 

  = 0.1, c = 0.1,  

Gr = 10, M = 1 

   0                   1  

 = 0.04, TR = 0.01, 

  = 0.1, c = 0.1,  

Gr = 10, M = 1 

  0                       1  

 = 0.04, TR = 0.04, 

 = 0.1, c = 0.1,  

Gr  = 10, M = 1 

  0                          1    

 = 0.04, TR = 0.04, 

  = 0.1, c = 0.3, 

Gr = 10, M = 1 

   0                          1  

0.1  2.83322     2.63734 2.81556          2.62253 2.84510             2.66538 2.93564         2.44038 
0.3 3.91679     2.73376 3.89354          2.71849    3.90334             2.75920 4.08705          2.53810 
0.5 5.19877     2.86072 5.17240          2.84718     5.19630              2.87401 5.46283          2.76598 
0.7 7.02756     3.27627 7.00799          3.27001     7.03197             3.26943 8.13084          3.80993 
0.9 11.3904     5.53925 11.4668          5.59259  11.7015             5.65006 33.0152          22.7099 
 

Table II reflects the effect of varying parameters on the skin frictions between the working fluid 
and the channel plates. It is viewed from the table that for some fixed values of parameters; the 
skin friction on the plates increases with increase in  . Furthermore; with small increase in   , c 

and TR ; the skin friction on all the plates increases with increase in  .  

  
3.0 Validation of the result: 

To authenticate the validity of the result; the present result on setting  0, 1Tc R M      is 

compared with that of the published work of Jha and Ajibade (2010) on relaxing heat absorbing/ 
generating parameter and the comparison is tabulated below: 

  Table III:   
   
Jha and Ajibade38 (2010)  when  S = 
0 

 

Present study when 0 TR  and M = 1 

   y        y         yu         y         yu  

 0.1      0.9000      1.1850      0.9000      1.1850 
 0.3      0.7000      1.3000      0.7000      1.3000 
 0.5      0.5000      1.1250      0.5000      1.1250 
 0.7      0.3000      0.7600      0.3000      0.7600 
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 0.9      0.1000      0.2650      0.1000      0.2650 
       
Numerical values in table III above show that the two studies have good agreement between 
them.                          
5.0 Conclusion:  
Natural convection Couette flow through a vertical porous channel with thermal radiation and 

variable fluid properties effects was investigated using non-linear Rosseland heat diffusion, 

Adomian decomposition method and computer algebra package where results were presented 

and discussed. The major findings of the investigation are: 
 

i. The velocity and temperature of the fluid within the channel were found to decrease 

with increase in suction parameter. 

ii. Both the fluid velocity and temperature in the channel were discovered to descend 

with increase in thermal conduction parameter. 

iii. A decrease in the fluid viscosity was realized to ascend the fluid velocity within the 

channel. 

iv. Increase in thermal radiation parameter was recognized to rise both the fluid’s 

temperature and velocity within the channel.  

 
6.0 Nomenclature and Greek symbols: 
  

 Symbols   Interpretation                                                 Unit 

      ݉              ᇱ          Dimensional lengthݕ 
                 Dimensionless length          ݕ 

 g             Gravitational acceleration   ݉ିݏଶ 

 k             Thermal conductivity    ܹ/݉ܭ 
 T                       Dimensional temperature   ܭ           

 h            Dimensional channel width   ݉ 

 ௪ܶ          Wall temperature    ܭ 

 ଴ܶ		         Ambient temperature     ܭ 
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,ݑ    ଵିݏ݉                Dimensional velocity          	ݒ
      Kinematic viscosity                     ݉ଶିݏଵ 

 ଵିݏThermal diffusivity    ݉ଶ             ߙ 

      Absorption coefficient   

 ଵିܭ             Volumetric expansion coefficient             ߚ 

 ଵିݏDynamic Viscosity                             ݇݃݉ିଵ     ߤ 

           0     Ambient fluid viscosity            ݇݃݉ିଵିݏଵ                                

      Thermal conductivity variation parameter   

           0k     Ambient thermal conductivity   

 ௥            Radiative heat flux    ܹ݉ିଶݍ 

 pc     Specific heat capacity at constant temperature 

      Density of the fluid    3kgm  

 Gr     Grashop number 

 H     Heat source/sink parameter 

      Temperature difference parameter  	ܭ 

 θ              Dimensionless temperature    

      Stefan-Boltzman constant   1JK  

              Viscosity variation parameter    

                 Set of real numbers 
 c    Suction parameter 
 S    Heat generation/absorption parameter 
 R    Buoyancy force distribution parameter 

 0Nu     Nusselt number on the heated plate 

 1Nu     Nusselt number on the cold plate 

 0     Skin friction on the heated plate 

 1     Skin friction on the cold plate 

 M    Constant 
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