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Abstract

The gene regulatory network (GRN) is essential to life, as it governs all levels of
gene products that enable cell survival and numerous cellular functions. Wagner’s
GRN model, which has mathematical roots origin from the Ising model and neural
networks, is a powerful computation tool that helps integrate network thinking
into biology, and motivated a new research theme focusing on the evolution of
genetic networks. However, except the formal mathematical foundation described
in [1], few papers have focused on providing further mathematical analysis of the
model. Moreover, network characteristics of Wagner’s GRN model when varying
key parameters are unclear. Therefore, in this paper, I present a convergence
analysis of Wagner’s GRN model by using the Markov chain theory. I show
mathematically that if we consider the evolution process as an optimisation
process, then the probability of finding the optimal configuration (a certain target
phenotype) converges to probability one. In addition, I investigate network
characteristics such as stability, robustness and path length in initial populations.
I find that generally small networks with a sparse connectivity have a higher initial
stability. The robustness is also observed to be higher in initial stable networks
with a low network connectivity. These results are partly explained by the pattern,
as shown in this paper, that small networks with a sparse connectivity generally
have a shorter path length and, therefore, they are not only able to quickly reach
equilibrium phenotypic states but also more likely to resist genetic perturbations.
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1 Introduction

Understanding the history of life is to uncover mechanisms underlying the evolution of innovation
at different life scales, ranging from molecular to cellular to tissue and organ levels [2]. One of the
most important forms of innovation can be attained through regulation, which refers to a process that
controls a gene product at a particular time and place [3]. In particular, the transcriptional regulation,
which is mediated by the binding of proteins to specific DNA sequences or cis-regulatory elements,
is essential to life as it governs all levels of gene outcomes that enable cell survival and numerous
cellular functions [4]. However, the evolution of transcriptional regulation is extremely difficult to study
experimentally as summarised in [2].

In the past decades, researchers have made tremendous efforts in modelling regulatory networks
using computational approaches. Kauffman introduced the basic boolean networks to study the
behaviour of large, randomly constructed nets [5, 6]. Shmulevich et al. further developed the probabilistic
boolean networks to include global dynamics and cope with uncertainty [7]. Petri nets initially proposed
by [8] are used to study large metabolic networks. Friedman et al. introduced Bayesian networks as
a probabilistic framework for discovering interactions between genes based on multiple expression
measurements [9]. Differential equations are used to study network dynamics by explicitly modelling
the concentration/activity changes of molecules over time [10].

However, these network models focuses on modelling a specific network or genetic pathway
to gain a quantitative understanding of the complex system. Therefore, these models typical require
precise measurements of the concentrations or activities of gene products modelled through biochemical
parameters, for example, binding affinities of transcription factors, dissociation constants of the receptors
and ligands, or rate constants of enzymes kinetics [11]. The quantitative information, however, is
largely unknown due to limitations of current biochemical techniques [12]. Therefore, researchers
have focused on developing more quantitative computational models to discover general principles
that emerge from dynamics of genetic networks [11, 13, 12].

One of the most well-established abstract models was proposed and developed in two seminal
papers in the mid-1990s, where Andreas Wagner explicitly modelled the developmental process in the
system [1, 14]. The many-to-one mapping mechanism of genotype to phenotype in Wagner’s gene
regulatory network (GRN) model enables genes to buffer against and even exploit likely variations in
the genome [12]. This mechanism is crucial for evolutionary innovations, because genotypes which
control gene-gene interactions can change profoundly without affecting phenotypes which represent
gene activities or expression concentrations [2]. Wagner’s GRN model motivates research on the
evolution of genetic networks, and has been successfully employed to study many fundamental
evolutionary and ecological questions [15, 16, 17, 18, 19, 20, 21, 22, 23, 11, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52] (See [12]
for an in-depth review).

Wagner’s GRN model, which has mathematical roots origin from the Ising model [53] and neural
networks [54] (see a nice review article of [13] on gene network family tree), has helped integrate
network thinking into biology, and motivated a new research theme focusing on the evolution of
genetic networks. Except the formal mathematical foundation described in [1], few papers have
focused on providing further mathematical analysis of the model. Moreover, network characteristics of
Wagner’s GRN model when varying key parameters are unclear. Therefore, in the following sections,
I first summarise the implementation details of Wagner’s GRN model. Next, I provide a convergence
analysis of Wagner’s GRN model by using the Markov chain theory. Finally, I investigate network
characteristics of Wagner’s GRN model such as stability, robustness and path length.
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2 Wagner’s Artificial GRN Model

In Wagner’s GRN model,the genotype is presented as a network which contains interactions among
transcriptional genes [14, 15, 18, 43, 46, 12]. Formally, for each individual in a finite population
of size M , an N × N matrix W can be considered as an artificial gene network that contains the
regulatory interactions among N genes. Each element wi,j (i, j = 1, 2, · · · , N) represents the
regulatory effect on the expression of gene i of the product of gene j. The connectivity parameter
c determines the proportion of non-zero elements in the network W . Through gene interactions
the regulatory effect acts on each gene’s expression pattern. This can be denoted by a state
vector S(t) = (s1(t), s2(t), · · · , sN (t)) where si(t) represents the expression pattern of gene i at
time t. Each value of the expression state si(t) can be varied continuously between −1 (complete
repression) and +1 (complete activation). For a given gene regulatory network W , the dynamics of S
for each gene i can be modelled by the following equation

si(t+ 1) = f

(
N∑
j=1

wi,jsj(t)

)
, (2.1)

where f(x) is a sigmoidal function, which is normally defined as in [15, 18]: f(x) = 2
/
(1 + e−ax) −

1, where a is the activation constant determining the rate of change from complete repression to
complete activation.

A novel feature of Wagner’s GRN model is that it introduces the selection for phenotypic stability
[12], which is defined as the progression from an arbitrary initial expression state to an equilibrium
expression state (reaching a fixed pattern) by iterating Equation (2.1) a fixed number of times, devT .
If a given network W can achieve stability over this developmental time period, it is termed stable,
otherwise it is labelled unstable. An equilibrium expression state can be reached when the following
equation is met:

1

τ

t∑
θ=t−τ

D (s(θ), s(t)) ≤ 10−4, (2.2)

where D(s,s) =
∑N
i=1 (si − s

′
i)

2
/
4N measures the difference between the gene expression pattern

s and s, and s is the average of the gene expression levels over the time interval [t−τ, t−τ+1, · · · , t],
where τ is a time-constant characteristic for the developmental process under consideration. An
example of Wagner’s GRN can be found in Figure 1.

For networks that achieve developmental stability (reaching an equilibrium state, sEQ), then the
fitness can be calculated as [15]:

F (sEQ) = exp

(
−D(sEQ, sOPT)

σ

)
, (2.3)

where σ is the selection pressure that we imposed on the population during evolution. sOPT is usually
set to be the initial state, i.e., s(0). D(sEQ, sOPT) is the phenotypic distance between the equilibrium
state and the optimal state.

In typical evolution of Wagner’s GRN model, an individual is chosen at random to reproduce either
by cloning itself, if asexually, or by recombining two parent networks, if sexually, and then subject to
mutation. Next, the offspring network is subject to the selection of stability — if the offspring network
cannot achieve developmental stability, then it will be wiped out from the population immediately.
For the stable offspring network, the survival probability is based on its fitness calculated by using
Equation (2.3). This process is repeated until the same size of offspring population as in initial
population is formed.
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Figure 1: An example of Wagner’s gene regulatory network. This example is
re-used from [12]. (A) Network representation of regulatory interactions among
five genes. Open and filled circles represent genes that are completely activation
(+1) or repression (−1), respectively. The initial gene expression pattern is s(0) =
(−1,+1,−1,+1,+1). This example network is stable as it can reach an equilibrium
pattern, which is sEQ = (−1,−1,+1,+1,+1) by iterating Equation (2.1) using the
sigmoidal mapping function with a = 100. (B) Interaction matrix (W ) represents the
network in (A). Each element in row i and column j, i.e., wij (i, j = 1, 2, · · · , 5),
represents the regulatory effect on the expression of gene i of the product of gene
j.

3 Convergence Analysis

In Wagner’s GRN model, the evolution process has three operators: mutation, recombination and
selection. Therefore, the evolution process to find a target phenotype can be regarded as an optimisation
process where the goal is to minimise D(sEQ, sOPT) such that individuals’ phenotypic state is close
to the optimal phenotypic state. Suppose that the initial population have M individual networks and
the search space is N dimensions.

The phenotypes of individual networks at the gth generation can be represented as S(g) =
[s1, s2, · · · , sj , · · · , sM ], where sj = (s1, s2, . . . , sN ) is a individual’s phenotype at equilibrium in N
dimensional solution space. Suppose S = RN be the solution space, SM be the population space.
Without loss of generality, suppose that the optimisation goal of the evolution process described in
Wagner’s GRN model is to find the target phenotype, formally defined as: Given f : S→ R find S∗ ∈ S
such that f(S∗) 6 f(S). Here, the objective function can be defined as D(sEQ, sOPT).

The basic operators in Wagner’s GRN model are described as follows.

Definition 1. Mutation Operator: Mutation operator, TM : SM → S, operates on non-zero entries in
individual’s genotype with mutation rate µ and can change individual’s phenotype sj into s′j , and can
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be given as

xj =

{
s′j if mutate,
sj otherwise.

Then, its probability distribution is

P {TM (sj) = xj} =
{

µ xj = s′j
1− µ xj = sj

Definition 2. Recombination Operator: Recombination operator, TR : SM → S, operates on all
individual networks by segregating rows in genotypes of two randomly selected parental networks
and the resulting offspring network can have a new phenotype s′′j , and can be given as

yj = s′′j

Then, its probability distribution is

P {TR(sj ,xj) = yj} = 1

Definition 3. Selection Operator: Selection operator, TS : SM → S, operates on the candidate
solution by preserving the phenotype with better fitness value, and can be given as

sj(g + 1) =

{
yj if f(yj) 6 f(sj),
sj otherwise.

Then, its probability distribution is

P {TS(sj ,yj) = yj} =
{

1 if f(yj) 6 f(sj),
0 otherwise. (3.1)

Definition 4. Optimisation Process: Based on the operators defined in Definitions 1–3, the optimisation
process can be defined as

S(g + 1) = {sj(g + 1) = TS ◦ TR ◦ TM (S(g)); j = 1, 2, · · · ,M} .

Definition 5. Optimal Value and Optimal Population Set: Define F (S) = min{f(sj); j = 1, 2, · · · ,M}
as the optimal value of the population S = [s1, s2, · · · , sM ]. Define M∗ = {S|F (S) = min{f(s); s ∈
S}} as the optimal population set.

Theorem 6. In the optimisation process, evolutionary direction of the population is decreasing monotonically,
that is, F (S(g + 1)) 6 F (S(g)).

Proof. According to Equation (3.1), the selection operator can be considered as a greedy strategy
in which the phenotype with the best fitness can always be preserved in the next generation. In the
optimisation process, the optimal value for the objective function therefore is decreasing monotonically.

Lemma 7. In the optimisation process, the population sequence {S(g); g ∈ N+} is a Markov chain.

Proof. According to Definition 4, the optimisation process can be represented as the following iteration
of population:

S(g + 1) = T (S(g)) = TS ◦ TR ◦ TM (S(g)),

where TS , TR, and TM do not depend upon which states the chain was in before the current state g,
that is, S(g + 1) only depends on S(g). Thus, {S(g); g ∈ N+} is proved as a Markov chain.

Here, I only consider the selection for the target phenotype, i.e., sOPT, as the main selection
operator.
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Lemma 8. In the optimisation process, the Markov chain, {S(g); g ∈ N+}, is a time-homogeneous
irreducible aperiodic Markov chain.

Proof. According to Lemma 7, the transition probability of the population Markov chain is expressed
as

P
{
T (S(g))j = sj(g + 1)

}
= P {TM (sj(g)) = xj}×

P {TR(sj(g),xj) = yj} × P {TS(sj(g),yj) = yj} .

For ∀ X(g) ∈ SM , ∃ xj and yj , it holds that:

P {TM (sj(g)) = xj} > 0,

P {TR(sj(g),xj) = yj} = 1 > 0,

P {TS(sj(g),yj) = yj} > 0.

Therefore, P{T (S(g)) = xj(g + 1)} > 0, and S(g + 1) only depends on S(g). Thus, the transition
probability is given as

P {T (S(g)) = x(g + 1)} =
M∏
j=1

P
{
T (S(g)) = s(g + 1)j

}
.

Therefore, P{T (S(g)) = (g+1)} > 0, and S(g + 1) only depends on S(g). Hence, the Markov chain,
{S(g); g ∈ N+}, is a time-homogeneous irreducible aperiodic Markov chain.

Here, the transition probability of the Markov chain is rewritten as

P {S,R} = P {S (g + 1) = R|S (g) = S} . (3.2)

According to Lemma 8 and Equation (3.2), the population transition probability can be given as

P {S(g + 1) = R|S(g) = S} =


M∏
j=1

P {T (S(g)) = Rj}
∃i0 ∈M∗

s.t. RM = Si0 ,

0 otherwise.
(3.3)

Theorem 9. Let {S(g); g ∈ N+} be the population Markov chain of the optimisation process. Let
M∗0 be a subset of the optimal population set, i.e., M∗0 = {R = (r1, r2, · · · , rM ); rj ∈ M∗}. Then,
{S(g); g ∈ N+} converges to M∗0 with probability one, i.e.,

lim
g→∞

P {S (g) = R|S (0) = S0} = 1.

Proof. Suppose r∗ is the unique optimum value for the given objective function. Then, according to
Equation (3.2) and Equation (3.3), P{S,R} has the following properties:

1) If S, R ∈ M∗0 , then P{S,R} > 0 and P{R,S} > 0. Therefore, the two states S and R are
interconnected, i.e., S↔ R.

2) If S ∈ M∗0 and R /∈ M∗0 , then P{S,R} = 0. Therefore, the two states S and R are not
interconnected, i.e., S = R.

Hence, M∗0 is a positive aperiodic irreducible closed set. For arbitrary initial state, we can obtain
that

lim
g→∞

P {S(g) = R|S(0) = S0} =
{
π(R) R ∈M∗0
0 R /∈M∗0

.

S(g) enters into M∗0 as g → ∞, and satisfies one limiting probability distribution, π(R). Therefore,
limg→∞P{S(g) ∈M∗0 |S(0) = S0} = 1.
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Figure 2: Stability of randomly-generated networks. For each network size
(N = 5, 10, 15, 20, 30 and 40) with each connectivity given from a range of
values in continuous interval ([0.2, 1], step size 0.02), the initial stability (proportion
of randomly-generated gene networks that are stable) was tested based on an
initial 10, 000 randomly-generated gene regulatory networks. The system level
parameters are set to be a = 100, devT = 100 and τ = 10. Shaded areas represent
95% confidence intervals based on 100 independent runs.

4 Network Properties

To gain an impression of properties of initial gene regulatory networks, in this section, I have investigated
the stability, robustness and path length.

4.1 Stability

I first tested the probability of stability in randomly-generated networks. As illustrated in Figure 2,
smaller networks are more likely to be stable. Moreover, the relative frequency of stability in networks
with low levels of connectivity is higher than that of networks with high levels of connectivity. This
is in general accordance with previous work (typically done at connectivity c = 0.75, e.g. [18])
which indicates that larger networks with complex topology tend to be unstable. A similar pattern
is also observed in networks with different values of activation constant a (see Appendix Figure A1).
Generally, when a is small (a = 1), networks have a higher initial stability. Note that pattern is much
more profound for networks with smaller sizes (N = 5, 10 and 15).

4.2 Robustness

Next, I explored the robustness of initial stable networks. That is, I investigated the probability that
stable networks remain stable after a single round of mutation. Given that the initial stable networks
were collected from the original randomly-generated ones, it would seem reasonable to predict that
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Figure 3: Robustness of initial stable networks. For each network size (N =
5, 10, 15, 20, 30 and 40) with each connectivity given from a range of values in
continuous interval ([0.2, 1], step size 0.02), the robustness (proportion of stable
networks after exposure to a single round of mutation) was tested based on an
initial 10, 000 randomly-generated stable gene regulatory networks. The system
level parameters are set to be a = 100, devT = 100 and τ = 10. Shaded areas
represent 95% confidence intervals based on 100 independent runs.

the small stable networks are more likely to break after one mutation round since they contain fewer
pathways and a single mutation, therefore, has a greater proportional effect. However, the results
in Figure 3 show the opposite — the stability of small networks is still high (cf. Figure 2). The
mutation operation is effectively an alternative way of generating new networks, thus, the mutated
networks have the same properties as the initial ones. A similar pattern is also observed in networks
with different values of activation constant a (see Appendix Figure A2). Generally, when a is small,
networks have a higher initial robustness.

4.3 Path Length

In the third sets of experiments, I measured the path length of initial stable networks. Here the
path length refers to the amount of time steps, as used in Equation (2.2), that the network takes
from an initial state s(0) to get to the equilibrium state sEQ. From Figure 4, we can clear see that
larger networks need more time to reach the equilibrium state. Moreover, networks with low levels of
connectivity are able to stabilise faster than that of networks with high levels of connectivity, especially
for networks with sizes of N = 15, 20 and 30. A similar pattern is also observed in networks with
different values of activation constant a (see Appendix Figure A3). Generally, when a is small (a = 1),
networks need much more time to get to the equilibrium state, especially for networks with size of
N = 5 in comparison with the results when a is large (cf. Figure 4). However, the path length slightly
decreases for networks with size of N = 10, 15 and 20 when a = 1.

Here, the time is defined as the minimum steps required for networks reaching the equilibrium
state.

8



Journal of Advances in Mathematics and Computer Science X(X), XX–XX, 20XX

Figure 4: Path length of initial stable networks. For each network size (N =
5, 10, 15, 20, 30 and 40) with each connectivity given from a range of values in
continuous interval ([0.2, 1], step size 0.02), the path length (minimum time steps
for reaching the equilibrium state) was tested based on an initial 10, 000 randomly-
generated stable gene regulatory networks. The system level parameters are set
to be a = 100, devT = 100 and τ = 10. Shaded areas represent 95% confidence
intervals based on 100 independent runs.

5 Discussion
Networks of regulatory transcription factors are essential to form developmental patterns in practically
all organisms [55, 56, 24]. The process of development that reduces effects of genetic or environmental
perturbations is due to the nonlinearity of genotype-phenotype mapping enhances the robustness of
the system, whilst constraining phenotypic diversity, and consequently inhibits certain evolutionary
pathways [57, 48]. Although many previous studies have shown that the process of development
is critical for the study of evolution, the underlying mechanism, in particular, how the developmental
process affects evolutionary dynamics that can drive evolutionary innovations, is still poorly understood.

Mutations in Wagner’s GRN model or other similar models in natural systems are shown to be an
important source of innovation. Previous studies have forced on separating two sources of mutations:
genetic and non-genetic [17, 28, 22, 11, 25, 36, 48]. On the one hand, the genetic mutations refer to
perturbations occur at the genotypes, usually have a weaker effect in altering gene’s phenotypic state
or causing instability of the network since the complex interactions among genes can buffer against
mutations occurred at the genotype level. The non-genetic mutations, on the other hand, refer to
perturbations caused by internal noise or environmental factors, and may sometimes have a strong
effect in causing oscillatory dynamics to the developmental stability, especially changes occurring in
gene initial expression patterns. Although previous studies have investigated many different types of
mutations, how those mutations systemically affect phenotypic stability remains obscure.

In spite of mutation, recombination is also believed to be critical to affecting the underlying
evolutionary dynamics in the context of genetic networks. The recombination modelled in Wagner’s
GRN model in a manner of free recombination of swapping rows between two parental genotypes.

In Wagner’s GRN model, genetic mutations are assumed to be epistatic mutations that alter the
gene’s regulation strength to other genes, but not mutations occur at the coding sequence at the
lowest level.
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This operation follows the biological assumption that recombination happens more often between
genes and tight linkage among regulatory elements within a promoter [1, 14]. Previous work has
focused on benefits and low costs of recombination to reconcile the traditional antagonistic view that
recombination is more likely to damage well-adapted lineages due to massively shifting patterns of
gene regulation [18, 19, 29, 33, 34, 42, 46]. Although MacCarthy and Bergman and Lohaus et al.
previously introduced a modifier of recombination into the model, different recombination modes have
not yet been studied thoroughly [19, 33], given that the variety of mating systems and strategies in
nature [58, 59].

In the seminal paper of [1], for the first time, the mathematical foundation of his GRN model was
formally described. In addition to the seminal paper where Wagner showed that given an initial state
s(0), the developmental process converges ultimately to a stable equilibrium state sEQ, in this paper,
I have further mathematically shown that the evolution process modelled in Wagner’s GRN model
can be regarded as an optimisation process that converges to the target configuration with probability
one. Besides the convergence analysis, a few other studies have employed theories for calculating
periodic orbit to study the systematic behaviour of developmental process [41, 48]. However, it is
still not clear that how mutation and recombination operators modelled in the system change periodic
orbit and ultimately affect the underlying evolutionary dynamics.

Previous work has shown that sparse networks are more stable than dense networks [41],
here I also have observed a similar pattern varying network sizes and activation constants (see
Figure 2). Furthermore, I have shown that randomly-generated stable sparse networks also have
a higher robustness against mutations than dense networks (see Figure 3), though sparse networks
may evolve to be more sensitive to mutations than networks that are more densely connected under
selection of stability [14, 15]. However, Leclerc showed that if costs of complexity have been considered,
then robust networks are more likely to be sparsely connected [26] . This may help explain that
sparse networks tend to be favoured by evolution in natural systems [60]. As Wagner and Siegal and
Bergman suggested, the path length, time for reaching phenotypic equilibrium, may partially account
for the underlying mechanism of stability and robustness [14, 15]. This is because if the phenotypic
stabilising process takes more time, then the network is more likely to accumulate deleterious mutations
or perturbed by internal noise or environmental factors. Here, I have provided some evidence to
support this likelihood by showing that sparse networks tend to have a shorter path length to reach
the equilibrium (see Figure 4). Note that different activation constant, a, which indicates the sensitivity
of regulatory response to output phenotypes, can quantitatively affect initial stability, robustness and
path length (see more supporting information in Appendix).

It should be emphasised that parameters used in Wagner’s GRN model, such as population
size, number of genes, network connectivity, and activation constant, will not typically change the
qualitative results of general properties or patterns emerged from the evolved system [14, 15, 18]. In
particular, previous studies have suggested that many biological networks have a scale-free topology,
that is, its degree distribution of nodes follows a power law [61, 62]. However, previous research
has shown that the degree distribution itself does not have a major effect on functional properties
associated with nodes [14, 18, 24, 41]. Therefore, although in this paper networks were randomly
generated and the parameter space had not been thoroughly explored, it is expected that the patterns
or properties I have observed generally could be applied to scale-free networks and results presented
in this paper are representative.

Finally, the main caveats of Wagner’s GRN model are summarised by [1, 14] as below, which
also apply to the general model assumptions made in the papers that have employed such a model:

(1) It is assumed that each gene expression pattern is regulated exclusively on the transcriptional
level.

(2) It is assumed that each gene of the network produces only one species of an active transcriptional
regulator.

(3) It is assumed that enhancer elements act independently from enhancer elements for other
regulators of the same gene.
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(4) It is assumed that strong cooperative effects of transcriptional activation by individual transcription
factors are mainly responsible for strong transcriptional activation or repression of a target
gene.

6 Conclusion
In this paper, I have presented a convergence analysis of Wagner’s GRN model. Specifically, I have
mathematically shown that the evolutionary process of Wagner’s GRN model can be considered as
an optimisation process such that the probability of lineages evolving towards the optimum (target
phenotype) converges to probability one. The proprieties of stability, robustness and path length
in initial populations have been investigated in this paper. Generally, the initial stability is higher in
smaller networks than larger networks. Networks with low levels of connectivity are more likely to be
stable than that of networks with high levels of connectivity. The similar conclusion is also applied to
the robustness of initial stable networks — smaller networks with sparser connectivity have a higher
initial robustness. The path length of initial stable networks is also observed to be shorter in smaller
networks. Larger networks are more likely to have a longer path length when the network connectivity
is higher, but the path length tends to be constant for smaller networks regardless of the connectivity.
The parameter a, which indicates the sensitivity of regulatory response to output phenotypes, can
quantitatively affect the results of initial stability, robustness and path length, but general patterns
still hold. From all conducted experiments, we can see that generally the results are insensitive to
different parameters used in the Wagner GRN model.

References
[1] Andreas Wagner. Evolution of gene networks by gene duplications: A mathematical model and

its implications on genome organization. Proceedings of the National Academy of Sciences of
the United States of America, 91(10):4387–4391, 1994.

[2] Andreas Wagner. The Origins of Evolutionary Innovations: A Theory of Transformative Change
in Living Systems. Oxford University Press, 2011.

[3] Andreas Wagner. Arrival of the Fittest: Solving Evolution’s Greatest Puzzle. Penguin, 2014.

[4] Guy Karlebach and Ron Shamir. Modelling and analysis of gene regulatory networks. Nature
Reviews Molecular Cell Biology, 9(10):770–780, Oct 2008.

[5] Stuart A Kauffman. Metabolic stability and epigenesis in randomly constructed genetic nets.
Journal of Theoretical Biology, 22(3):437–467, 1969.

[6] Stuart A Kauffman. The Origins of Order: Self Organization and Selection in Evolution. Oxford
University Press, 1993.

[7] Ilya Shmulevich, Edward R. Dougherty, Seungchan Kim, and Wei Zhang. Probabilistic boolean
networks: A rule-based uncertainty model for gene regulatory networks. Bioinformatics, 18(2):
261–274, 2002.

[8] C. A. Petri. Kommunikation mit Automaten. Technical report, Universität Hamburg, 1962.

[9] Nir Friedman, Michal Linial, Iftach Nachman, and Dana Pe’er. Using bayesian networks to
analyze expression data. Journal of Computational Biology, 7(3-4):601–620, August 2000.

11

Yifei Wang


Yifei Wang




Journal of Advances in Mathematics and Computer Science X(X), XX–XX, 20XX

[10] Edda Klipp, Ralf Herwig, Axel Kowald, Christoph Wierling, and Hans Lehrach. Systems Biology
in Practice: Concepts, Implementation and Application. John Wiley & Sons, 2008.

[11] Stefano Ciliberti, Olivier C Martin, and Andreas Wagner. Robustness can evolve gradually in
complex regulatory gene networks with varying topology. PLoS Computational Biology, 3(2):
e15, 2007.

[12] Yifei Wang. Review of wagner’s artificial gene regulatory networks model and its applications
for understanding complex biological systems. COJ Robotics & Artificial Intelligence, 1(1):
COJRA.000501.2019, Feb 2019.

[13] Janna L Fierst and Patrick C Phillips. Modeling the evolution of complex genetic systems:
The gene network family tree. Journal of Experimental Zoology. Part B, Molecular and
Developmental Evolution, 324(1):1–12, January 2015.

[14] A. Wagner. Does evolutionary plasticity evolve? Evolution, 50(3):1008–1023, 1996.

[15] M. L. Siegal and A. Bergman. Waddington’s canalization revisited: Developmental stability and
evolution. Proceedings of the National Academy of Sciences of the United States of America,
99(16):10528–10532, 2002.

[16] Aviv Bergman and Mark L Siegal. Evolutionary capacitance as a general feature of complex
gene networks. Nature, 424(6948):549–552, July 2003.

[17] J Masel. Genetic assimilation can occur in the absence of selection for the assimilating
phenotype, suggesting a role for the canalization heuristic. Journal of Evolutionary Biology,
17(5):1106–1110, September 2004.

[18] Ricardo B. R. Azevedo, Rolf Lohaus, Suraj Srinivasan, Kristen K. Dang, and Christina L. Burch.
Sexual reproduction selects for robustness and negative epistasis in artificial gene networks.
Nature, 440(7080):87–90, 2006.

[19] Thomas MacCarthy and Aviv Bergman. Coevolution of robustness, epistasis, and recombination
favors asexual reproduction. Proceedings of the National Academy of Sciences of the United
States of America, 104(31):12801–12806, 2007.

[20] Thomas MacCarthy and Aviv Bergman. The limits of subfunctionalization. BMC Evolutionary
Biology, 7(1):213, 2007.

[21] Emilia Huerta-Sanchez and Rick Durrett. Wagner’s canalization model. Theoretical Population
Biology, 71(2):121–130, March 2007.

[22] Tristan Kimbrell and Robert D Holt. Canalization breakdown and evolution in a source-sink
system. The American Naturalist, 169(3):370–382, March 2007.

[23] S. Ciliberti, O. C. Martin, and A. Wagner. Innovation and robustness in complex regulatory gene
networks. Proceedings of the National Academy of Sciences of the United States of America,
104(34):13591–13596, 2007.

[24] Mark L Siegal, Daniel E L Promislow, and Aviv Bergman. Functional and evolutionary inference
in gene networks: Does topology matter? Genetica, 129(1):83–103, January 2007.

[25] Olivier C Martin and Andreas Wagner. Multifunctionality and robustness trade-offs in model
genetic circuits. Biophysical Journal, 94(8):2927–2937, 2008.

12



Journal of Advances in Mathematics and Computer Science X(X), XX–XX, 20XX

[26] Robert D Leclerc. Survival of the sparsest: Robust gene networks are parsimonious. Molecular
Systems Biology, 4:213, 2008.

[27] Elhanan Borenstein and David C Krakauer. An end to endless forms: Epistasis, phenotype
distribution bias, and nonuniform evolution. PLoS Computational Biology, 4(10):e1000202,
October 2008.

[28] Volkan Sevim and Per Arne Rikvold. Chaotic gene regulatory networks can be robust against
mutations and noise. Journal of Theoretical Biology, 253(2):323–332, July 2008.

[29] Olivier C Martin and Andreas Wagner. Effects of recombination on complex regulatory circuits.
Genetics, 183(2):673–684, 2009.

[30] Michael E Palmer and Marcus W Feldman. Dynamics of hybrid incompatibility in gene networks
in a constant environment. Evolution, 63(2):418–431, February 2009.

[31] J Draghi and G P Wagner. The evolutionary dynamics of evolvability in a gene network model.
Journal of Evolutionary Biology, 22(3):599–611, March 2009.

[32] Janna L Fierst. Sexual dimorphism increases evolvability in a genetic regulatory network.
Evolutionary Biology, 38(1):52–67, December 2010.

[33] R Lohaus, C L Burch, and R B R Azevedo. Genetic architecture and the evolution of sex. The
Journal of Heredity, 101(Supplement 1):S142–S157, April 2010.

[34] Andreas Wagner. The low cost of recombination in creating novel phenotypes. BioEssays, 33
(8):636–646, 2011.

[35] Carlos Espinosa-Soto and Andreas Wagner. Specialization can drive the evolution of modularity.
PLoS Computational Biology, 6(3):e1000719, March 2010.

[36] Carlos Espinosa-Soto, Olivier C Martin, and Andreas Wagner. Phenotypic plasticity can facilitate
adaptive evolution in gene regulatory circuits. BMC Evolutionary Biology, 11(1):5, 2011.

[37] C Espinosa-Soto, O C Martin, and A Wagner. Phenotypic robustness can increase phenotypic
variability after nongenetic perturbations in gene regulatory circuits. Journal of Evolutionary
Biology, 24(6):1284–1297, June 2011.

[38] J L Fierst. A history of phenotypic plasticity accelerates adaptation to a new environment.
Journal of Evolutionary Biology, 24(9):1992–2001, September 2011.
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Appendix

A

B

Figure A1: Stability of randomly-generated networks varying activation
constant. For each network size (N = 5, 10, 15, 20, 30 and 40) with each
connectivity given from a range of values in continuous interval ([0.2, 1], step size
0.02), the initial stability (proportion of randomly-generated gene networks that are
stable) was tested based on an initial 10, 000 randomly-generated gene regulatory
networks. The system level parameters are set to be a = 1 in (A) or a = 5 in
(B), devT = 100 and τ = 10. Note that Shaded areas represent 95% confidence
intervals based on 100 independent runs.
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Figure A2: Robustness of initial stable networks varying activation constant.
For each network size (N = 5, 10, 15, 20, 30 and 40) with each connectivity
given from a range of values in continuous interval ([0.2, 1], step size 0.02), the
initial robustness (proportion of stable networks after exposure to a single round of
mutation) was tested based on an initial 10, 000 randomly-generated stable gene
regulatory networks. The system level parameters are set to be a = 1 in (A) or
a = 5 in (B), devT = 100 and τ = 10. Note that Shaded areas represent 95%
confidence intervals based on 100 independent runs.

17



Journal of Advances in Mathematics and Computer Science X(X), XX–XX, 20XX

A

B

Figure A3: Robustness of initial stable networks varying activation constant.
For each network size (N = 5, 10, 15, 20, 30 and 40) with each connectivity given
from a range of values in continuous interval ([0.2, 1], step size 0.02), the path length
(minimum time steps for reaching the equilibrium state) was tested based on an
initial 10, 000 randomly-generated stable gene regulatory networks. The system
level parameters are set to be a = 1 in (A) or a = 5 in (B), devT = 100 and
τ = 10. Note that Shaded areas represent 95% confidence intervals based on 100
independent runs.
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