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ABSTRACT  
 
 
Aims: In a face recognition task, it is a challenging problem to find lots of images for a 
person. Even, sometimes there can be only one image, available for a person. In these 
cases many of the methods are exposed to serious performance drops even some of these 
fail to work. Recently this problem has become remarkable for researchers. In some of these 
studies the database is extended using a synthesized image which is constructed from the 
singular value decomposition (SVD) of the single training image. In this paper, for such a 
method, SVD based 2 Dimensional Fisher Linear Discriminant Analysis (2D-FLDA), it is 
proposed a new approach to find the SVD of the image matrix with the aim of to increase the 
recognition performance.  
Study design: In this paper, in a face recognition task with 2D-FLDA, in one training sample 
case, instead of original SVD of the image matrix, the approximate SVD of its based on 
multiple kronecker product sums is used. In order to obtain it, image matrix is first reshaped 
thus it is to be lower dimensional matrices and, then the sum of multiple kronecker products 
(MKPS) is applied in this lower dimensional space. 
Methodology: Experiments are performed on two known databases Ar-Face and ORL face 
databases. The performance of the proposed method is evaluated when there are facial 
expression, lightning conditions and pose variations. 
Results: In each experiment, the approximate SVD approach based on multiple kronecker 
product sum gets approximately 3% better results when compared with the original SVD. 
Conclusion: Experimental results verify that the proposed method achieves better 
recognition performance over the traditional one. The reason for this is the proposed 
approximate SVD has the advantages of simplicity, and also as the kronecker factors 
possess additional linear structure, kronecker product can capture potential self-similarity. 
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1. INTRODUCTION  
 
In a face recognition task, the aim is to identify or verify a person from its stored face images 
and many areas can be seen such as person identification, law enforcement, security and 
etc. In many of these researches it is focused on the basis of the algorithm, to improve the 
recognition system accuracy [1] but, they ignore the face database at hand. However in 



 

 

order to obtain high recognition rates in many methods, there must be sufficient number of 
images for a person. Nevertheless, it cannot be found many image samples in many 
applications. Some of these applications are passport identification, law enforcement, drive 
license and etc. In this case most well-known methods such as Eigen face [2, 3] and fisher 
face [4-6] will suffer and some of them even fail to work. In a recognition task, for instance 
the methods that require the intra class scatter matrix fail to work if there is only one image 
sample as the training set for each person. Because in this case the intra class scatter 
matrix would be zero and the method will fail to work. Recently this problem has become 
remarkable for researchers. In [7], an algorithm which makes Fisher linear discriminant 
analysis (FLDA) to be applicable in the case where there is only one training sample in the 
training set is proposed. In their work they propose a method which evaluates the intra class 
variation from the available single training image. The database is extended using a 
synthesized image which is constructed from the SVD of the single training image. Thus 
FLDA has become applicable on this extended database. In this paper for face recognition,   
the efficiency of, the approximate SVD that is based kronecker products and the traditional 
SVD are evaluated, in the case of there is only one image sample per person. Thus the 
effectiveness of the approximate SVD over the traditional SVD is investigated. This analysis 
is performed via approximate SVD which is a better and more intuitive way based on 
kronecker products. The proposed approximate SVD has the advantages of simplicity, and 
also as the kronecker factors possess additional linear structure, kronecker product can 
capture potential self-similarity. These make the performance of the proposed method [8] 
better than the other methods given especially when there are changes in illumination, facial 
expression and pose variations in the face images. 
 

In the rest of paper, in case of one training sample, the procedure of traditional 2D-FLDA 
and, the procedure of 2D-FLDA are briefly given. Section three reviews the representation of 
images using the multiple kronecker product sums. Section four performs experiments on 
the well-known databases and then conclusion is given.  

 
2. SVM-BASED 2D-FLDA IN ONE TRAINING SAMPLE CASE  
 
FLDA has emerged as a popular 1D feature extraction approach for facial recognition 
problems. This approach tries to find, a series of projection vectors in order to project the 
face images onto a space, in which different classes are separated as possible and the 
similar classes are gathered together. For 2D case, Ye et al. [9] proposed 2D-FLDA, in 
which 2D reflection matrices are estimated directly from 2D images. 2D-FLDA can 
theoretically be formulated as follows. It is assumed that there are C classes and each class 
has K training image samples with the size  ܣ௞ ∈ ܴ

௠௫௡ ሺ݇ ൌ 1,2, … ,  ሻ. In 2D-FLDA it isܭ

tried to found a vector set ݓ௝ ሺ݆ ൌ 1, . . , ݀ሻ to construct a transformation matrix ܹ ൌ

ሾݓଵ ଶݓ . .  ௗ ሿ    by maximizing the following criteriaݓ
 

ሺܹሻܬ            ൌ
௧௥ሺௐ೅ௌ್ௐሻ

௧௥ሺௐ೅ௌೢௐሻ
                                                            (1) 

 
here ݎݐ is used to denote the trace of a matrix and the superscript "ܶ" is used to denote 

matrix transpose. ܵ௕ and ܵݓ, that are the inter class and the intra class scatter matrices 
respectively, are given as follows 



 

 

ܵ௕ ൌ෍
௜ܭ
ܭ

஼

௜ୀଵ

ሺ̅ܣ௜ െ ௜ܣሻ்ሺ̅ܣ̅ െ  ሻܣ̅

                                 ܵ௪ ൌ
ଵ

஼
∑ ∑

ଵ

௄೔
஺ೖ∈஼೔

௄
௞ୀଵ ሺܣ௞ െ ௜ሻܣ̅

்ሺܣ௞ െ  ௜ሻ                            (2)ܣ̅

 

where ܭ ൌ ∑ ݅ܭ
ܥ
݅ൌ1  ௜ܣ̅ is the overall image mean of all samples in the set of training, and ܣ̅ ,

gives the i.th class's (ܥ௜) mean image. 
 
2.1 SVD based image decomposition 
 
Maximizing Equation 1 corresponds the generalized eigenvalue solution problem: ܵ௕ܹ ൌ
Ʌܵ௪ܹ, where  Ʌ is a diagonal matrix, and  eigenvalues are placed on the main diagonal. In 
the SVD-based FLDA application in the case where there is only one sample as training 
using SVD the image is decomposed as to be two supplementary sections, thus the first 
section of the image is constructed using the SVD basis images obtained by the several 
singular values that are the largest, and the second section of the image is constructed using 
the SVD basis images obtained by the rest of the singular values. Image matrix’s first section 
represents the general appearance of that image, while second section represents the 
difference between the original image and the first part. The difference image can reflect the 
variations between the images in the same class images. In this method in order to evaluate 
the intra class scatter matrix, the second part of the image matrix is used, while the first part 
is used to evaluate the inter class scatter matrix.   
Image decomposition using SVD is given in the following expression. Let ܣ  ∈ ܴ௠௫௡and 

suppose݉ ൒ ݊, 

ܣ                   ൌ ∑ ௜ߪ
௡
௜ୀଵ ௜ݒ௜ݑ

்                      (3) 

where ݑ௜ is the ith column vector of  ܷ ∈ ܴ௠௫௠which is constructed from the eigenvectors 

of ݒ ,்ܣܣ௜ is the ith column vector of  ܸ ∈ ܴ௡௫௡     which is constructed from the 

eigenvectors of ܣ்ܣ and ߪ௜ is the ith singular value of image matrix ܣ. According to the 

Equation 3 A can be decomposed into the basis images ܨ௜ ൌ ௜ݒ௜ݑ௜ߪ
், ݅ ൌ 1,… , ݊ and a 

large amount of energy from image ܣ is concentrated on images ܨ௜obtained using large 
singular values. 
 
 
3. APPROXIMATE SVD BASED ON KRONECKER PRODUCTS 
 
As a mathematical tool kronecker product [10] of matrices is very important and recently 
several researchers began to use this technique in image processing such as image 
restoration [11, 12], fast transform generation [13] and image quantization and coding [14]. 
Kronecker product provides separating a large matrix into smaller factor matrices [15] which 
are independent of each other [16].These factor matrices, especially when dealing with 
multidimensional matrices in a classification task, represents the intra- class and inter-class 
variations between image samples [17]. In [8] it is used for image representation and 
processing. To get a lower dimension representation the image matrix is decomposed into 
small simpler matrices by using the multiple kronecker product sum (MKPS). Thus the 
original high dimension image matrix is represented with lower dimension matrices. Than 



 

 

they applied singular value decomposition (SVD) to the lower dimension matrices so as to 
find the SVD of the original high dimension image matrix and it can be seen kronecker 
product based SVD analyses is a better and more intuitive way to analyze an image matrix. 

In general SVD any mxn matrix can be factored as  

ܣ                                 ൌ ܷ∑்ܸ                                                              (4) 

where ܷ is an ݉݉ݔ orthogonal matrix whose columns are the eigenvectors of ்ܣܣ, ܸ is an 

 ݊ݔ݉ and ∑ is an ܣ்ܣ orthogonal matrix whose columns are the eigenvectors of ݊ݔ݊
diagonal matrix of the form  

      ∑ ൌ
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ଵߪ 0 0
0 . 0
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                                        (5) 

 

ଵߪ ൒ ଶߪ ൒ ⋯ ൒ ௥ߪ ൐ 0  and ݎ ൌ ,ଵߪ ሻ. Hereܣሺ݇݊ܽݎ , ⋯,ଶߪ  ௥ are the square roots ofߪ

the eigenvalues of ܣ்ܣ. They are called the singular values of ܣ.    

 The theory of the approximate SVD is as given below: 

The kronecker product of two matrices ܤ and ܥ of ݉ଵ݊ݔଵand ݉ଶ݊ݔଶrespectively is an 

݉ଵ݉ଶ݊ݔଵ݊ଶmatrix (say ܣ) defined by 
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here ܤ is the left, and ܥ is right factor matrix of ܣ. The kronecker factor C in Equation 6 can 
be interpreted as an image filter that finds the boundary of the regions in which the most of 
the structural information concentrates [18]. In Zhang et al. [8] as ܣ௜  ݅ ൌ 1,2, … , ݇ to be 

matrices of size ݉௜݊ݔ௜ 
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this is called a multiple kronecker product. They approximate a given matrix ܣ by the sum of 
several multi kronecker products. They called it in their study multiple kronecker product sum 
approximation (MKPS) of matrix ܣ.  

A matrix ܣ of dimension ݉݊ݔ with ݉ ൌ ݉ଵ݉ݔଶ and ݊ ൌ ݊ଵ݊ݔଶ, matrices ܤ and ܥ of 

size ݉ଵ݊ݔଵand ݉ଶ݊ݔଶrespectively that minimize the following error 
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follows that  
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Then the following theorem is obtained. 

According to Theorem1 that  mxnRA   with ݉ ൌ ݉ଵ݉ݔଶ and ݊ ൌ ݊ଵ݊ݔଶ. Assume the 

SVD of ܣሚ which corresponds to ݏ݁ݎሺܣሻ  is as follows 

     
),...,(

~
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T diagSVAU 
              (11) 

Here ሺߪଵ,… . , .௡ሻ the singular value sequence is given in descending order and ݀݅ܽ݃ሺߪ ሻ 
means to generate the diagonal matrix using the elements of this sequence. Let ܷ1, ܸ1 are 

the corresponding singular vectors of the largest singular value ሺߪଵሻ , the matrices ܤ ∈
ܴ௠భ௫௡భ and ܥ ∈ ܴ௠మ௫௡మ    are defined by  

       1111 ,)( VCvecUBvec                (12) 

minimize ),( CBf A . 

Theorem 2. Same as the assumption as Theorem 1 and let ܷ݅, ܸ݅ be the corresponding 

singular vectors of ሺߪ௜ሻ , then the matrix ܤ ∈ ܥ and  1݊ݔ1ܴ݉ ∈ ܴ௠మ௫௡మ defined by   

  iiiiii VCvecUBvec   ,)(   minimize 
F

k

i
ii CBA 




1

. Accordingly, when 

the k is equal to the matrix rank, it is evident that the matrix can be fully represented by the 
kronecker product sum, since the approach will not fail theoretically. 



 

 

In the application of this method to a face recognition task, face image is divided into small 
blocks and by using reshape process is reshaped so as to be a row of a new matrix. Thus, 
each of the small blocks of the face image is considered to be an example of a cluster. With 
this approximate factorization, the decomposition process is transformed into finding the 
most important block sample among these blocks. Thus, the factors represented by B and C 
are respectively considered the down sampling version of the A matrix, and the measure of 
similarity between these block samples. Here the size of B and C can be chosen freely this 
makes the procedure framework much flexible. 
 

4. EXPERIMENTAL STUDIES 
 

In the experimental studies, the performance of the proposed method is evaluated using the 
AR-Face database [19] and ORL face database [20]. In order to see, the performance of the 
approximate SVD based on kronecker products over the traditional SVD, experiments are 
performed for both, traditional SVD-based FLDA [7] and kronecker product based 
approximate-SVD FLDA. 

Using the Ar-Face database the method’s performance proposed in this study is evaluated. 
This evaluation is made for expression variations among the face images. 37 individuals as 
to be 17 females and 20 males were taken and used, that are corresponds to only the non-
occluded images. The images were cropped as to be 50x40 pixels. An example from AR-
Face for a person is shown in Figure1. 

 

  

 

Fig. 1. A sample from AR-Face Database 

 
Two different experiments are performed on this database. In the first one, the first three 
images are used for each person as the database. Then, each of the three images is used 
as the training image once and the remaining two images are used as the test images.  The 
average of the recognition results obtained from these three experiments is given in Table 1. 
In the second experiment, database is constructed from the all six images of a person given 
in Figure 1. As it is in the first experiment each of the six images are used as the training 
image once and the remaining five images are used as the test images then the average 
recognition result that belongs to the the six experiment, is given in Figure 1. 
ORL face database contains 10 grayscale images from 40 subjects. In Figure 2 a sample 
from the database is given. The size of the images is 112x92 and they contain different 
lighting conditions and facial expressions. They also were taken at dark background and 
subjects are in the frontal position with tolerance to some side movement. In the 
experimental study ORL face database is used in its original size. 
 
 



 

 

       

Fig. 2. A sample from ORL Database 

 
 
 
 
 
 
Table 1. Recognition results of the experimental studies. 
 

Databases                       Recognition Results 
 Approximate SVD-based 

FLDA (%) (proposed) 
Traditional SVD-based 

FLDA (%) 
 
AR_Face 1 

 
90.5405 

 
87.3873 

AR_Face 2 71.3738 68.5586 
   
ORL 77.0834 74.3229 

 
 
 
5. RESULTS AND DISCUSSION 
 
In this study, the face recognition method based on 2D-FLDA given in [7] is used as the 
basic method. The 2D-FLDA normally requires at least two or more images in the training 
set, otherwise it cannot be used as it needs intra class and inter class variations for the 
recognition process. In [7], it is given the adaptation of this method, in the case of one 
training sample per person. SVD is applied to the single training image and then while SVD 
basis images obtained by using several largest singular values are using for finding the intra 
class variations, SVD basis images obtained by using the rest of the singular values are 
used to find the inter class variations. Thus, in the proposed method in this paper, taking the 
face recognition task given in [7] so as to be the basic method, it is advanced due to obtain 
reasonably better recognition results. In the proposed method, an approximate factorization 
for the traditional SVD  is obtained using the MKPS approach and this approximate SVD is 
used in order to obtain the SVD basis images which will be used to represent the intra class 
and the inter class variations.  
 
The main motivation in this study is to present a method which will increase the recognition 
accuracy and, which is more robust to changes in illumination conditions, pose and 
resolution, in a face recognition task in case of one training sample per person problem. With 
this motivation, using multiple sums of kronecker products an approximate factorization is 
obtained for SVD of an image matrix. This approximate factorization method for a wide 
variety of structures ,in this proposed  study ,the approximate factorization of the SVD of an 
image matrix, obtains quite good approximation results for especially the largest singular 



 

 

values [21].In [21] a similar approximation manner for the truncated SVD is given. Garvey et 
all. computed an approximate truncated SVD obtained by using kronecker product 
summations due to its computational speed and its  more accurate results, compared to 
kronecker based methods in the literature. Then this decomposition is used in image 
restoration and image reconstruction problems. The use of the proposed method in a face 
recognition task provides better recognition results even in a one training sample case 
because of the method can handle with the changes in illumination, resolution and pose [22]. 
The face databases used in this study are consisting of the images having the variations in 
illumination conditions, pose and resolution.  The performance of the proposed method over 
the traditional SVD can also be seen from the experimental results. In each of the 
experimental study, using approximate SVD of the image matrix instead of traditional SVD of 
the image matrix increases the recognition results about 3% that is reasonably accurate. 
 
 
 
 
6. CONCLUSION 
 
In this paper, a novel usage of approximate SVD decomposition of an image matrix is 
performed, that is a face recognition application. This decomposition is used in order to 
extend the face database at hand when there is only one sample image per person in the 
training set. The performance of the proposed method is evaluated with the experimental 
studies. To see the performance of the method experiments are performed for both 
approximate SVD decomposition based 2D-FLDA face recognition algorithm and the 
traditional SVD based 2D-FLDA face recognition algorithm. Experimental results verify that 
the proposed method achieves better recognition performance over the traditional one. The 
reason for this is the proposed approximate SVD has the advantages of simplicity, and also 
as the kronecker factors possess additional linear structure, kronecker product can capture 
potential self-similarity. 
 

The main contributions of the proposed study are as follows. First a novel method for a face 
recognition task in case of a one training sample case is proposed. Second as it can be seen 
from the related studies given in the literature, this method have been applied to different 
image application areas such as image restoration, image reconstruction, image 
compression [8, 21, 23] and etc. But, however in this proposed study, the method, is applied 
into a different and new image application area (face recognition). Third the method gets 
better recognition results according to its traditional one (about 3% more). Fourth it proposes 
a face recognition method that is robust to illumination, pose and resolution variations. 
Beside these main contributions, at the same time the method also has the advantages of 
the kronecker products. These are, the computational speed, obtaining quite good 
approximated singular values especially for the largest singular values, more accurate 
results than the other kronecker based methods in the literature. 
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