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ABSTRACT 

In this paper, the conventional backward differentiation formulae methods for step numbers k = 3 and 4 were 
reformulated by shifting them one-step backward to produce two and three approximate solutions respectively, in a 
step when implemented in block form. The derivation of the continuous formulations of the reformulated methods 
were carried out through multistep collocation method by matrix inversion technique. The discrete schemes were 
deduced from their respective continuous formulations. The convergence analysis of the discrete schemes were 
discussed. The stability analysis of these schemes were ascertained and the P- and Q-stability were also investigated. 
When the discrete schemes were implemented in block form to solve some first order delay differential equations 
together with an accurate and efficient formula for the solution of the delay argument, it was observed that the 
results obtained from the schemes for step number k = 4 performed slightly better than the schemes for step number 
k = 3 when compared with the exact solutions. More so, on comparing these methods with some existing ones, it 
was observed that the methods derived performed better in terms of accuracy 

Keywords: Delay Differential Equations, Reformulated Block Method, Backward Differentiation     Formulae, 
Continuous Formulations.                     

1.  INTRODUCTION 

Many real life problems encountered in the various branches of science, medicine and engineering give rise to 
ordinary differential equations (ODEs) of the form, 

                         '( ) (t, y)y t f  ,          0( ) ,y a y  a t b                                                                   (1)     

This has been used to model the above physical phenomena since the concept of differentiation was first developed 
and nowadays complicated ODE models can be solved numerically with a high degree of confidence. However it 
was observed that some phenomena may have a delayed effect and the models described by (1) would be more 
realistic if some of the past history of the system is included in them, leading to what is called delay differential 
equations (DDEs) of the form: 
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where ( )t  is the initial function, ( , ( ))t y t is the delay or constant lag,   ( , ( ))t t y t  is the delay term and 

( ( , ( )))y t t y t is the solution of the delay term. 

Delay differential equations are similar to ordinary differential equations, but their evolution involves past values of 
the state variable. The solution of DDEs requires the knowledge of not only the current state, but also of the state at 
a certain time previously. An obvious distinction between a DDE and an ODE is that specifying the initial value 

0( )y t   is not enough to determine the solution for 0t t   it is necessary to specify the history ( )y t  for    

0t t  in the differential equation even to be defined for 0t t  . Most of the numerical methods that have been 

developed to solve ODEs namely, the Runge-Kutta type of methods and multistep methods have also been used to 
solve DDEs together with their interpolation techniques by some researchers such as in [1-4]. All of these methods 
produce only one approximate solution in an integration step. Another approach that has gained interest recently is 
block methods. Block methods produce more than one approximate solution in a step [5-6]. Also using block 
methods greater efficiency is obtained since total number of steps taken will be reduced. 

In this research, the reformulated block backward differentiation formulae (BDF), presented as a simple form of 
linear multistep methods would be used to solve DDEs. The block methods will be implemented using fixed step 
size and the delay term will be approximated without using the well-known interpolation techniques such as 
Hermite, Nordsieck, Newton divided difference, Neville’s interpolation etc. According to [7], the order of 
interpolating polynomials used should be at least the same as that of the numerical method to preserve the desired 
accuracy. In order to circumvent this drawback, an accurate and efficient formula shall be proposed for 
approximating the delay term. 

1.1 Existence and Uniqueness of Solutions 
We shall state the theorem for existence and uniqueness solutions of (2) as in [8] 

 
Theorem:- 
Consider (2) and assume that the function ( , , )f t u v  satisfies the condition 

( , , ) ( ) ( )( )f t u v M t N t u v    in 0[ , ) d d
nt t  � �  ,where ( )M t  and ( )N t  are continuous 

positive functions on 0[ , )nt t , then the solution of (2) exist and is unique on the entire interval 0[ , )nt t . 

Consider the sequence of points { }nt defined by 0 ,nt t nh   1, 2,..n   where the parameter, h is called the 

step size, a vital property of the most numerical methods for the solution of (2) is that of discretization i.e. an 

approximate solution is sought not on the continuous interval 0 nt t t   but on the discrete point set 

01 2| , ,..., n
n

h

t t
t n

  
 

   

 

2.  THE REFORMULATED METHOD 

In this section, the continuous formulations of the reformulated BDF methods for step numbers k = 3 and 4 will be 
derived using multistep collocation method of [9]  

2.1 The Multistep Collocation Method 

In [8], a k-step multistep collocation method with m collocation points was obtained as          

        
1 1

0 0

( ) ( ) ( ) ( , ( ))
t m

j n j j j j
j j

y x x y h x f x y x 
 


 

                                                 (3)  

where ( )j x and ( )j x  are continuous coefficients of the method defined as                            
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


  for 0,1,..., 1j m                                                                 (5)                          

where 0 1,  ,  mx x  are the m collocation points and n jx   , j = 0, 1, 2, …, t – 1 are the t arbitrarily chosen 

interpolation points. 

To get ( )j x  and ( )j x , [9] arrived at a matrix equation of the form 

DC = I                                       (6) 

where I is the identity matrix of dimension ( ) ( )t m t m    while D and C are matrices defined as     
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    




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1 1 1
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0 0

2

1 1

1

1

1

0 1 2 ( 1)

0 1 2 ( 1)
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x x x

D x x x
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    

    

    

 

 

      
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 
 
 
 
 
 

 

 

      

 

0 ,1 1 ,1 1 ,1 0 ,1 1 ,1

0 ,2 1 ,2 1 ,2 0 ,2 1 ,2

0 , 1 , 1 , 0 , 1 ,

t m

t m

t m t m t t m t m m t m

h h

h h

h h

C                      (8) 

It follows from (6), that the columns of C = D-1 give the continuous coefficients of the continuous scheme (3). 

2.2 Derivation of Continuous Formulation of Reformulated Block Backward Differentiation Formulae 
Method for k = 3  

Using the idea of [9], we choose 3t   interpolation points at 1, 0,1,n j jx    and 1m   collocation point at 

2.nx   Then (3) takes the form 

         1 1 0 1 1 2 2( ) ( ) ( ) ( ) ( )nn n ny x x y x y x y h x f                                                          (9)  

and the matrix D in (7) becomes  
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D =                                                                 (10)            

   

 

The columns of the C = D-1 obtained using Maple 18 are used in (4) and (5) to yield the continuous coefficients of 
the method. Substituting these coefficients into (9) gives 

 

       +                    

(11)  
 
 

Next evaluating (11) at 2nx x   and its derivative at 1nx x  , the reformulated block BDF for 3k   is 

obtained as    

     

                                                              

(12) 
 
2.3   Derivation of Continuous Formulation of Reformulated Block Backward Differentiation Formulae 
Method for k = 4  

With the interpolation points at 1, 0,1, 2,n j jx     and the collocation point at 3 ,nx   (3) and (6) become 

respectively  

1 1 0 1 1 2 2 3 3( ) ( ) ( ) ( ) ( ) ( )nn n n ny x x y x y x y x y h x f                                              (13) 

and       

D =                                                           (14) 

 

Similarly, the continuous formulation (13) becomes 
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                               (15) 

 

and evaluating (15) at 3nx x  ,  and its derivative at 1 2,n nx x x  , the reformulated block BDF for 4k  is 

obtained as  

 

  

                       (16) 

 

3.   CONVERGENCE ANALYSIS 

In this section, the order, error constants, consistency and zero stability of the derived discrete schemes shall be 
examined. 

3.1  Order and Error constants 

 The order and error constants of the discrete schemes in (12) are found in block form as follows: 

2

2

2

2

0 1 0 1 2

1 1 1 2 1 0 1

2 1 1 2 1 1

3 1 1 2 1 1

4 1 1 2 1 1

1 1

2 2

1 1 4 1 1

6 6 3 2 2

1 1 2 1 1 4

24 24 3 6 6 3

17
138

3
22

0

0

0
2

0

0
2 2

0

0
2

0

C

C

C

C

C

   

      

     

     

     



 

 

 

  

 
      

 
 

          
 
 

         
 

 
         

 
 
        
 
  

 

 

Therefore, (12) has order, 3p  and error constants   317
138 22,  

 

Similarly, the order and error constants of the discrete schemes in (16) are found in block form as follows: 
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2 3

2

2

0 1 0 1 2 3

1 1 1 2 3 1 0 1

2 1 1 2 3 1 1 3

3 1 1 2 3 1 1 3

4 1

1 1 9

2 2 2

1 1 4 9 1 1 9

6 6 3 2 2 2 2

1

24

0

0

0

0

2 3 0

0

0

2 2 3 0

0

0

2 0

0

C

C

C

C

C

    

        

       

       





 

 

 



 
        
  

 
             
  
 
            
  

 
            
  

 

   

2

2

1 2 3 1 1 3

5 1 1 2 3 1 1 3
111

1970
12

125

31
90

1 2 27 1 1 4 9

24 3 8 6 6 3 2

1 4 8 1 2 27

120 15 40 24 3 8

0

0

0

C

      

       



 





 
          
  

 
 

           
 
  

  

 

Therefore, (16) has order,  4p  and error constants   31 111 12
90 1970 125

,,  

 

 

3.2   Consistency 

All the schemes in (12) and (16) have their orders greater than one, so as in [10], the schemes are consistent. 

3.3   Zero Stability   

 The zero stability of the discrete schemes in (12) is determined in a block form as follows 

1

2

5 28
3 25 1

18 92
11 11 11

1 0

1
n

n

n

n

y

y

y
y





     
            




 
1 1

2

22 4
23 23

6
11

0 0
0 0 0

n n

nn

h h
f f

f f
 




     

     
    


   

  where 
(1) (1)

2 118
11

5 28
3 25

92
11 11

,
1 0

1
A A 

  
       




 and 
(1)

2
B   

22 4
23 23

6
110

 
 
 


 

The first characteristics polynomial of the block method of the discrete schemes in (12) is given by 
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(1) (1)

2 1( ) det( ) 0p A A      

        (1) (1)
2 1A A    

            = 0  

Now we have, 

5 28
3 25

18 92
11 11 11

5 28
3 25

18 92
11 11 11

( )
1 0 0

1
 




 


                         




 



                

2 29
25

538
825

5 28
3 25

18 92
11 11 11

0( )


  
 

  
 

 
  

 ,  

1
269 14
825 825 3659i      and  2

269 14
825 825 3659i    

 1 1   and 2 1  , but 1 2   

then we observe that the discrete schemes in (12) satisfies the root condition and hence zero stable as in [10] 

Similarly, the zero stability of the discrete schemes in (16) is determined in block form as follows    

                    

1 2

2 1

3

297
197

48
25

7
9

17 99
97 197

36 3 16
25 25 25

38
91 0 0 6

1 0 0

1 0

n n

n n

n n

y y

y y

y y

 

 





 

 

     
     
                

    

              

1 2

2 1

3

25 1
3 3

150 18
197 197

12
25

0 0 0 0

0 0 0 0

0 0 0 0 0

n n

n n

n n

h h

f f

f f

f f

 

 



  

      
      
                

 

where      
( 2)

2
A   

( 2)

1

297
197

48
25

7
9

17 99
97 197

36 3 16
25 25 25

38
91 0 0 6

1 0 , 0

1 0

A



 

 

   
   
        

 

and        
( 2)

2
B   

25 1
3 3

150 18
197 197

12
25

0

0

0 0



 
 
  
 

 

The first characteristics polynomial of the block method of the discrete schemes in (16) is given by 

(2) (2)

2 1( ) det( ) 0p A A      
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(2) (2)
2 1A A    

            = 0  

Now we have, 

38 7
9 9

297 297 17 99
197 197 97 197

48 36 48 3 16
25 25 25 25 25

7
9

17 99
97 197

36 3 16
25 25 25

38
91 0 0 6

1 0 0

1 0

( )

0 0 6

0 0

0

 

 
 
  



    

 

      
                          

                

297 17 99
197 197 197
36 16
25 25

38 7 1
9 9 3

2

48 3
25 25

1451 1642 29
197 197 197

3( ) 0





 


  


  



 




    

 
   

1
821 14

1451 1451 7802   , 2
821 14

1451 1451 7802   and 3 0    

 1 1  , 2 1 �  and 3 1  . Since 1i    , i = 1, 2, 3,   then we observe that the discrete schemes in (16) 

satisfies the root condition and hence zero stable as in [10] 

3.4 Convergence 

The block discrete schemes methods in (12) and (16) are convergent as in [10], since they are both consistent and 
zero-stable. 

 

4. STABILITY ANALYSIS 

In this section, the stability analysis of derived methods as it regards to P- and Q-stability will be investigated by 
means of the following test equation. 

                    
' ( ) (t) + ( ),

( ) ( ),

y t y y t

y t t

  

 


                
0

0

t t

t t




                                                                           (17) 

 

where ( )t is the initial function ,   are complex coefficients and h is the step size. 

Then from the discrete schemes in (12),  

let   2

1

2
N

n

n

Y
y
y





 
  
 

, 2

11

2
,N N

nn

n n

f
F

f
Y

y
y 





  
        

   and 1
N

n

n

f
F

f
 

  
 

  

Since,     
(1) (1)

2 118
11

5 28
3 25

92
11 11

,
1 0

1
A A 

  
  
    





 and 

(1)

2B   

22 4
23 23

6
110

 
  
 


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we have,   
2

(1) (1) (1)

2 2 1 1
1

N N i N i
i

A Y A Y h B F  


                                                                                              (18) 

Also from the discrete schemes in (16),  

let  
3 3

1 2 1

2 1 2

3 3

, ,N N N

n n n

n n n

n n n

f

Y Y F f

f

y y

y y

y y
 

  

  

 

  

     
     
     
     
     

 and 

2

1N

n

n

n

f

F f

f





 
 
 
 
 

 

Since,      
(2)

2A   
(2)

1
297
197

48
25

7
9

17 99
97 197

36 3 16
25 25 25

38
91 0 0 6

1 0 , 0

1 0

A



 

 

   
   
   

     

 and 
(2)

2B   

25 1
3 3

150 18
197 197

12
25

0

0

0 0



 
 
 
 
 

                     

we have,   
2

(2) (2) (2)

2 2 1 1
1

N N i N i
i

A Y A Y h B F  


                                                                                             (19)  

According to [7], the P- and Q-stability polynomials are obtained by applying (18) and (19) to (17). Thus the P-
stability polynomials for the discrete schemes in (12) and (16) are given respectively by 

2
(1) (1) (1) 2 (1) (1) 1 (1)

2 1 2 1 1 1 2
1

( ) det ( ) ( )
ir r

i
i

A H B A H B H B     



       
    

and   

 
2

(2) (2) (2) 2 (2) (2) 1 (2)
2 1 2 1 1 1 2

1

( ) det ( ) ( )
ir r

i
i

A H B A H B H B     



       
 . 

 

Also the Q-stability polynomials for the discrete schemes in (12) and (16) are given respectively by  

 

2
(1) (1) 2 (1) 1 (1)

2 1 2
1

( ) det
ir r

i
i

A A H B     



     
   

and 

2
(2) (2) 2 (2) 1 (2)

2 1 2
1

( ) det
ir r

i
i

A A H B     



     
 , 

where hr   � , 1H h  and 2H h .  Using Maple 18 and MATLAB the P- and Q-stability regions for r

=1 for the schemes (12) and (16) are shown in Fig. 1 to 4 

               

 



10 
 

                             

 

                                          Fig.1 The P-stability region of the schemes in (12) 

 

 

 

 

                         

                                         Fig.2 The P-stability region of the schemes in (16) 
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                                                 Fig.3 The Q-stability region of the schemes in (12) 

 

 

 

 

 

 

 

 

 

 

                             

 

 

                                         Fig.4 The Q-stability region of the schemes in (16)  

From Figures 1 and 2, it is observed that the P-stability region of the schemes in (12) is about the same with that of 
the schemes in (16). Also from Figures 3 and 4, it is observed that the Q-stability region of the schemes in (12) is 
larger than that of the schemes in (16). Note that in figures 1 and 2, the P-stability regions lie inside the open ended 
region while in Figures 3 and 4, the Q-stability regions lie inside the enclosed region. 
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5.  IMPLEMENTATION 

The corresponding values of nf (t , y, ( )),n nf y t  where f is the function, were substituted using the discrete 

schemes in (12) and (16) with an accurate formula of the form. 
( ) (( ) )n jp t p n j r h                                                                                                          (20)                             

where  ,k kj  , k  is a step number, hr   � , 0,1, 2, , 1n N    and N is the number of solutions in 

the given interval, is implemented to approximate the delay term at the point nt t    using previous values of 

( )n jp t   at 0nt t   whenever 0nt t  , where ( )n jp t  is the approximation to ( )ny t  .The 

results of the above are obtained in block form using Maple 18 varying 0,1, 2, , 1n N   and evaluating the 

values of ny  

 
6.  NUMERICAL RESULTS 

In order to study the performance of the discrete schemes in (12) and (16) together with the formula (20), we present 
some numerical results for the following problems: 

 

 

Problem 1 

( 25)' 24 ( 1),( ) ( ) y ty t y t e          0 3t     

( 25) 0( ) ,t ty t e               

Exact Solution  ( 25)( ) ty t e    

 

Problem 2 

3 3' ( 1) (1000 ),( ) 1000 ( ) 997 997y ty t y t e e           0 3t     

3 0( ) 1 ,t ty t e                

Exact Solution  3( ) 1 ty t e     

Problem 3 

' ( (ln(1000 1))),( ) 1000 ( ) y ty t y t          0 3t     

0( ) ,t ty t e               

Exact Solution  ( ) ty t e   

Problem 4 
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1 1' ( ) cos( ),( ) ( ) sint tt e ty t y t e              0 3t     

0( ) sin( ),ty t t              

Exact Solution  ( ) sin( )y t t  

 

Problem 5 

' cos( )( ( ( ) 2))( ) t y y ty t       0 3t     

0( ) 1,ty t              

Exact Solution  ( ) 1 sin( )y t t   

 

The above problems were also solved using the schemes in [9], which are obtained by shifting Reformulated Block 
BDF methods one step forward, together with the formula (20). The results obtained are summarized in the tables 1 
to 5 and the notations used in the tables are as follows  

 h                                               Step size 

TS                                             Total steps taken 

MAXE                                        Maximum Error 

2BBDF                                       Implicit 2-point Block BDF method in [11] 

CBBDF                                      Conventional Block BDF method for step number 2k  in [9] 

CBBDF*                                     Conventional Block BDF method for step number 3k  in [9]  

RBBDF                                      Reformulated Block BDF method for step number 3k    

RBBDF*                                     Reformulated Block BDF method for step number 4k   

The maximum error MAXE is a highest value of the absolute error for total number of steps taken. 

              

           

              

 

 

 

 

 

Table 1. Comparison between 2BBDF, CBBDF, CBBDF*, RBBDF and RBBDF* using Problem 1 
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    Table 2. Comparison between 2BBDF, CBBDF, CBBDF*, RBBDF and RBBDF* using Problem 2 

 

 

 

 

 

 

 

 

 

 

 

 Table 3. Comparison between 2BBDF, CBBDF, CBBDF*, RBBDF and RBBDF* using Problem 3 

  h METHOD TS MAXE 

210   
 

2BBDF 
CBBDF 
CBBDF* 

RBBDF 
RBBDF* 

150 
150 
150 
150 
100 

4.41E-02 
1.58E-03 
3.47E-03 
3.36E-04 
2.56E-04 

310   
 

2BBDF 
CBBDF 
CBBDF* 

RBBDF 
RBBDF* 

1500 
1500 
1500 
1500 
1000 

9.28E-04 
2.33E-06 
1,89E-06 
1.73E-07 
1.12E-07 

410   
 

2BBDF 
CBBDF 
CBBDF* 

RBBDF 
RBBDF* 

15000 
15000 
15000 
15000 
10000 

9.97E-06 
8.62E-07 
6.73E-07 
7.56E-08 
5.00E-08 

h METHOD TS MAXE 

210   
 

2BBDF 
CBBDF 
CBBDF* 

RBBDF 
RBBDF* 

150 
150 
150 
150 
100 

3.41E-03 
6.32E-06 
5.10E-07 
1.54E-09 
1.04E-09 

310   
 

2BBDF 
CBBDF 
CBBDF* 

RBBDF 
RBBDF* 

1500 
1500 
1500 
1500 
1000 

2.34E-06 
5.40E-07 
4.18E-08 
3.02E-09 
2.56E-09 

410   
 

2BBDF 
CBBDF 
CBBDF* 

RBBDF 
RBBDF* 

15000 
15000 
15000 
15000 
10000 

1.20E-07 
4.78E-08 
1.22E-08 
9.90E-09 
7.36E-09 

h METHOD TS MAXE 

210   
 

2BBDF 
CBBDF 
CBBDF* 

RBBDF 
RBBDF* 

150 
150 
150 
150 
100 

3.80E-04 
8.96E-05 
9.39E-06 
4.88E-06 
4.38E-06 

310   

 
2BBDF 
CBBDF 

1500 
1500 

2.61E-07 
3.12E-08 
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     Table 4. Comparison between CBBDF, CBBDF*, RBBDF and RBBDF* using Problem 4 

 

 

 

 

 

 

 

 

 

 

   Table 5. Comparison between CBBDF, CBBDF*, RBBDF and RBBDF* using Problem 5 

CBBDF*

RBBDF 
RBBDF* 

1500 
1500 
1000 

1.43E-08 
7.52E-09 
7.02E-09 

410   
 

2BBDF 
CBBDF 
CBBDF 

RBBDF 
RBBDF* 

15000 
15000 
15000 
15000 
10000 

1.34E-08 
1.27E-08 
8.40E-09 
4.26E-09 
3.70E-09 

h METHOD TS MAXE 

210   
 

CBBDF 
CBBDF* 

RBBDF 
RBBDF* 

150 
150 
150 
100 

1.66E-05 
2.22E-07 
1.61E-07 
1.54E-08 

310   
 

CBBDF 
CBBDF* 

RBBDF 
RBBDF* 

1500 
1500 
1500 
1000 

2.71E-07 
3.21E-08 
1.28E-08 
2.58E-09 

410  
 

CBBDF 
CBBDF 

RBBDF 
RBBDF* 

15000 
15000 
15000 
10000 

7.23E-08 
5.56E-09 
2.67E-09 
3.31E-10 

h METHOD TS MAXE 

210   
 

CBBDF 
CBBDF* 

RBBDF 
RBBDF* 

150 
150 
150 
100 

1.66E-05 
2.65E-07 
2.16E-07 
2.96E-08 

310   
 

CBBDF 
CBBDF* 

RBBDF 
RBBDF* 

1500 
1500 
1500 
1000 

7.45E-07 
5.04E-08 
2.14E-08 
2.27E-09 
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7.   CONCLUSION 

In this paper, it was observed that the results obtained from the schemes for step number k = 4 performed slightly 
better than the schemes for step number k = 3 when compared with the exact solutions. When comparing RBBDF 
with other existing methods, like CBBDF in [9] and 2BBDF in [11], it was observed that RBBDF achieved better 
results in terms of accuracy. Therefore it can be concluded that the Reformulated Block Backward Differentiation 

Formulae methods are suitable for solving Delay Differential Equations. 
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