
 

 

 

 

 

 

 

 

ANALYSIS AND MODELING OF TUBERCULOSIS TRANSMISSIONIN 
DYNAMICS 

1.0 Abstract 
 Mycobacterium tuberculosis is the causative agent of Tuberculosis in humans.[1,8]  A 
mathematical model that explains the transmission of Tuberculosis is developed. The 
model consists of four compartments; the susceptible humans, the infectious humans, 
the latently infected humans, and the recovered humans. We conducted an analysis on 
the disease free equilibrium and endemic equilibrium points. We also computed the 
basic reproduction number using the next generation matrix approach. The disease free 
equilibrium was found to be asymptotically stable if the reproduction number was less 
than one. The most sensitive parameter to the basic reproduction number was also 
determined using sensitivity analysis. Recruitment and contact rate are the most 
sensitive parameter that contributes to the basic reproduction number .Ordinary 
Differential Equations is used in the formulation of the model equations. The 
Tuberculosis model is analyzed in order to give a proper account of the impact of its 
transmission dynamics and the effect of latent stage in TB transmission. The steady 
states solution of the model is investigated. The findings showed that as more people 
come into contact with infectious individuals, the spread of TB would increase. The 
latent rate of infection  below a critical value makes TB infection to persist.   However, 
the recovery rate of infectious individuals is an indication that the spread of the disease 
will reduce with time which could help curb TB transmission    
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analysis and equilibrium points. 

2.0 Introduction 

Tuberculosis (TB) is an airborne disease caused by the bacterium Mycobacterium 
tuberculosis [1]. Mycobacterium is carried in air particles called droplets nuclei. 
Depending on the environment, these tiny particles can remain suspended in the air for 
several hours, potentially infecting anyone who breathes them in. However, not 
everyone who inhales the bacteria gets sick because some people’s immune system 
immediately kills the bacteria. In others the bacteria remains in a latent or dormant The 
bacteria become inactive, but they remain alive in body. People with latent tuberculosis 
have no symptoms of TB; they don’t feel sick and can’t spread the disease to others 



.Once infected, an individual stays infected for many years possibly latently-infected 
for life.[1,9]. TB is one of the oldest recorded human and animal diseases. It has been 
in animals before the existence of human species. Evidence that supports human cases 
of TB as well as its role in human mortality goes back to centuries. It’s not noticeable 
when the individual is infected and that makes the transmission of the disease 
easier.[9]. 

The rate of tuberculosis cases in many countries of sub-Saharan Africa over the past 
decade is largely attributed to Human immunodeficiency Virus (HIV) and other 
emerging infections. Mathematical model of disease transmission within human 
population have been acknowledged in helping policy makers and epidemiologists 
interpret epidemiological trends and understand the dynamics of the disease spread 
with efficiency of disease prevention and control. 

In order to efficiently control and prevent infectious disease like TB one has to be 
adequately informed about the mechanism of the spread and the transmission dynamics 
of the disease. This will help our predictions and our strategies to eliminate the 
diseases. The study of epidemic dynamics is an important theoretic approach to 
investigate transmission dynamics of infectious diseases since they describe change 
over time.[1].  

From different analysis and numerical simulations, mathematical models can is often 
used as a tool to understand the spread of infectious diseases and how to control it. 
Mathematical models developed for transmission of tuberculosis are numerous. 

 Authors in [14] proposed a mathematical model that analyzed the study of TB 
transmission dynamics based on MSLR model. One of the principal attribute of these 
models is that the force of infection is a function of the number of infectious host in the 
population at any given time t. Other such as recovery of infectious individuals and the 
death rate are modelled as linear terms with constant coefficients.  

In their paper, the effect of vaccination and treatment on the transmission dynamics of 
TB was analyzed. The endemic equilibrium state of the model using the basic 
reproduction number shows that TB can be effectively controlled or eradicated if the 
total removal rate from both the latent and the infectious classes is usually less than the 
product of the total contraction and total breakdown of susceptible class. There model 
was basically addressing mainly vaccination and treatment as a way of controlling the 
spread of TB. 

 Authors in [3], observed and predicted epidemiological models which review earlier 
study on modeling different aspects of tuberculosis dynamics. They observed that there 
was an increase in tuberculosis in 1990s and the emergence of drug-resistant in the first 
decade of the 21st century. They based their models on various mathematical systems 
such as systems of ordinary differential equations, simulation models Markov Chain 
and Monte Carlo method using a statistical analysis of TB patient data sets. 

The above authors also extended the same model, Murphy et al. [2003] to form a new 
model considering how the presence of a genetically susceptible sub-population alters 



the effects of TB treatment at both latent and active stages. It is assumed that treatment 
doesn’t confer immunity, but instead it moves individuals from actively infected to 
latently infected. Treatment of latently infected individuals reduces their reactivation 
rate. Results indicate that exclusive treatment of latently infected individuals alone is 
not as effective as treatment of actively infected individuals alone. Their research 
focused mainly on treatment of latently infected as a way of reducing the spread of the 
disease.  

Authors in [5,13], proposed a model by considering that the recovered individuals can 
only be re-infected by making contact with the infectious individuals. They came up 
with SEIR model. In their research, they developed a model for the transmission of TB 
disease by considering recurrent infection and vaccination. The DFE and its stability 
are presented and its relation to the basic reproduction number and vaccination 
reproduction number is discussed. Numerical examples show that vaccination is able to 
prevent the disease from spreading. They recommended that further study can be done 
for the optimal vaccination level as the function of recurrent rate of infection. Their 
main focus was on reoccurrence of TB .Many of this models address mainly 
immunization and treatment of the latently infected individuals.  

According to [17],on tuberculosis, the Sustainable Development Goals (SDGs) for 
2030 adopted by the United Nations in 2015, as one of the targets is to end the global 
TB epidemic. The WHO End TB strategy approved by the World Health Assembly in 
2014, calls for a 90% reduction in TB deaths and an 80% reduction incidence rate by 
2030, compared with 2015.   

To combat the challenges of TB epidemic, there has been a massive scale up of both 
treatment and diagnostic facilities particularly in Africa where TB is endemic. 

 

 3.0 The Model 

This model is developed from [5.13] who combined immunization with latent TB 
treatment controlling the spread of TB. From their model, we assume the immunization 
and treatment of TB and focus on the effect of the latently infected in the transmission 
of TB. This model developed in this study is an improvement of the one developed by 
authors [6,8] in that it’s deals mainly with the general transmission dynamics and 
isolates the latent stage as the main contributing factor. This model is analysed 
qualitatively. 

The population at a given time t is denoted by Nሺݐሻ. The model divides the population 
into four epidemiological classes with respect to their disease status in the 
environment. The total population, represented by N(t), is divided into the sub- 
population of susceptible humans (S), infectious humans (I), latent (L), and recovered 
(R).the total population becomes; 

         Nሺݐሻ=Sሺݐሻ+ Lሺݐሻ+ Iሺݐሻ+ Rሺݐሻ, where; 

S(t)= the susceptible population that are at risk of developing infection from TB. 



I(t)= infectious humans, showing symptoms of the disease. 

L(t)= latent population, population having the disease but not showing the symptoms. 

R(t)= those that have recovered after treatment and have got temporary immunity. 

The susceptible humans enter into the population at a rate  . Susceptible humans 
acquire the disease through ingestion or contact and inhalation of spores. Contact with 
infectious humans at a rate  and individuals recover from the disease at a rate   . 

Humans who are infected with the disease die at a rate δ and the recovered human may 
lose immunity and return to the susceptible compartments at a rate   . The natural 

death rate of the entire human compartments is   .  Susceptible  humans  become 
latently infected at the rate   , and latently infected become infectious at the rate 
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Figure 3.1: Model flow chart showing the compartments 

From the figure above, the model equation become; 
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3.2 Assumptions of the model 

From this model;  

1. We assume that there is random mixing of individuals in the population. 
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2. We also assume that infected and latent individuals recover from the symptoms of 
TB after treatment. 

3.  We further assume that some of the newborns and migrants may be possibly 
latently infected at the time they are born or migrate into the population. 

4. We also assume that the latently infected will not go back to the susceptible because 
they already have the bacteria. 

3.3 The Disease Free Equilibrium.  

The disease free equilibrium points is where there are no infections in the population  

At the disease free equilibrium, there is no infection hence no recovery that is; 

I=L=R=0. Therefore at the equilibrium, we have, 0
dS dI dL dR

dt dt dt dt
                   (4) 

From equation (1) we have: 

  0S      

S


 S
 





                                                                                                 (5) 

The disease free equilibrium points from the model is expressed as follows; 

 , , , ,0,0,0E S I L R
 

 
   

                                                                             (6) 

3.4 Stability of the Disease Free Equilibrium  

We will determine the stability of the disease free equilibrium points which is done by 
linearizing the system of differential equations by obtaining the Jacobian at disease 

free equilibrium ; ,0,0,0
 

 
  

  The Jacobian of the system of differential equation 

4.1 is as shown below. 
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But I=0 S
 





 Therefore the stability will be calculated using the Jacobian 

Matrix at the disease free equilibrium by finding the determinant of the matrix  
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Where λ is the Eigen value 

Using the Jacobian at the disease free equilibrium we determine the Eigen value at the 
disease free equilibrium  



 
8 

       1 2 3 4
, , ,

        
    

             


            (9) 

Since all Eigen values are negative, then the disease free equilibrium is locally 
asymptotically stable.  

3.5 The basic reproduction number 

The basic reproduction number is defined as the average number of secondary cases 
arising from an average primary case in an entirely susceptible population over the 
period of infection [2,11]. The reproduction number is used to predict whether the 
epidemiological model has a disease free equilibrium (DFE) at which the population 
remains in the absence of the disease. If ܴ൏ 1 then the disease free equilibrium 
(DFE) is locally asymptotically stable. If ܴ  1 then DFE is unstable. In order to get 
the reproductive number, we calculate it using the next generation matrix from the 

model equations
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iF  = rate at which new infections enter the compartment 

iV  = transfer of individuals out and into the ith compartment. 

0X   =DFE 

using the second and third equations above, we obtain; 
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Matrix F defines new infections in different compartments, differentiated w.r.t I and L 
evaluated at the DFE. 
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Now we calculate the eigen values of the matrix to determine the basic 
reproduction number, 0R   defined as the spectral radius (dominant eigen value)  

of the matrix. This is computed by 0A I   where A is the matrix and I is the 

2x2 identity matrix. 
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FV-1is called the next generation matrix. The spectral radius of FV-1 is equal to R0. 

R0  is the maximum Eigen value of FV-1. Therefore; 
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We now give the condition necessary to ensure a disease free population; 

Theorem   
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, the disease will not take hold in the population. 

Proof 

At the disease free equilibrium,
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Lemma 

If 
 
 

   


   
 


  

then the disease will take hold in the Population. 
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When 0 1R  , then 
  

1


    


  
                                                         (11) 

3.5: Endemic equilibrium  

 The endemic equilibrium points where the disease will co-exist in all compartments 
of the population, that is, the state where the disease persistent in the population.. In 
this situation, if E*(S*I*L*R)  0 Using the systems of equations above, we derive 
the endemic equilibrium point. 
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The endemic equilibrium becomes      
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Stability of the Endemic Equilibrium 

 3.7 The stability analysis of the endemic equilibrium   

If the basic reproduction number is less than one, then the endemic equilibrium 

is asymptotically stable. 

Using the Jacobian matrix, 
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The characteristic equation of the Jacobian matrix becomes   0J I    
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 Solving and selecting the dominant eigen value, we obtain; 

        
  

              


     

          
   

  

Therefore; the basic reproduction number of the endemic equilibrium is; 
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ሺ13ሻ 

Whether the disease persists or dies out in the population depends on the 
magnitude of the basic reproduction number. The DEE is asymptotically stable 
if 0 1R    and unstable if 0 1R   . On the other hand, the EE is locally 

asymptotically stable when 0 1R   and unstable when 0 1R  . 

Lemma:in order to control the spread of TB in any population, effort must be 
made to ensure that the EE is unstable, 0 1R  . 

 

Theorem:  If  0 1R  then the endemic equilibrium is asymptotically stable. 

The characteristic equation is  J I  =0. Taking the dominant eigen value, 
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the basic reproduction number is.
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The Endemic Equilibrium is locally asymptotically stable when 0 1R   and 

unstable when 0 1R  . 

Proof: 

If 0 1R  the disease endemic e 
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If 0 1R   then, 

The disease endemic equilibrium is asymptotically stable. Hence the disease 
will continue to exist in the population. Otherwise it will die out with time if 

0 1R   . 

4.0 Conclusion 

In this paper, the effect of latently infected population on the transmission of TB was 

analyzed. Since the population that is latently infected cannot be identified, they can 

easily spread the disease during their transmission from latent to infectious and if there 

is random mixing of individuals in the population. The duration of the latent infection 

is not known and varies from one individual to another. The endemic equilibrium state 

of the model using basic reproduction number shows that TB can be effectively 

controlled if the rate of both the latently and infectious class is always less than one. 

From the results, as the transmission rate increases or as the recovery rate 

decreases, 0 1R   and the disease free equilibrium is unstable. This indicates that 

the disease will spread when there is an outbreak. Consequently, as the 
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transmission rate decreases, or the recovery rate increases.    0 1R  the DFE will 

be stable hence the disease will not spread 

The model gave a basic reproductive number 0 1R  ,This means that the disease will 

persist in the population. 

 

5.0 Recommendations 

TB transmission can be minimized in the population if effort is made to ensure that the 
endemic equilibrium of the model is never stable. This can be achieved if the 
following recommendations are considered; 

1) People should be enlightened on the mode of TB transmission dynamics 
and home care strategies of people with TB. 

2) The government should intensify the education on TB in the churches, 

schools, to the individuals in the communities of its existence, free access 

to medical care and treatment duration.  

3) The government should integrate TB programs into other existing health 

services such as outreach, maternal and child welfare programs among 

others in order to increase its awareness. 
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