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Abstract:

This investigation is concerned with analytically determining the dynamic buckling load of an imperfect
cubic-quintic nonlinear elastic model structure struck by an explicitly time-dependent but slowly varying
load. Besides, the load is continuously decreasing in magnitude. A multi-timing regular perturbation
technique in asymptotic procedures is utilized to analyze the problem. The result shows that the dynamic
buckling load depends, among other things, on the first derivative of the load function evaluated at the
initial time. In the long run, the dynamic buckling load is related to its static equivalent, and that
relationship is independent of the imperfection parameter. Thus, once any of the two buckling loads is
known, then the other can easily be evaluated using this relationship.
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1. INTRODUCTION

In a series of investigations [1-3], Budiansky and Hutchison extended the original work of Koiter [4, 5] to
the case of dynamic buckling. Using mass-spring model structure arrangement, they (Budiansky and
Hutchison) derived a series of equations of motion characterizing certain nonlinear elastic model structures
trapped by various types of loading histories. Such loading histories include the step load, rectangular load,
periodic load as well as impulse load, among others. Except for periodic load which normally results to non-
autonomous equations of motion, most other loading histories give rise to autonomous loading histories,
where the resultant equations of motion are overtly implicit in the time variable.

It must however be mentioned that Budiansky and Hutchison [1-3], named such systems and the resultant
equations of motion after the degree of nonlinearity of the model structures investigated. Thus, there is,
for instance, the quadratic structure satisfying the equation

Loy (- SO —ag® = 24Ef@®), >0 (1a)
§0)=2%2=9 (1b)

where &(t) is the displacement, A is a nondimensional load amplitude, f(t) is the loading history, t

is the time variable, £ is the imperfection amplitude while « is the imperfection sensitivity parameter. In
all quadratic structures, the nonlinearity is quadratic. Budiansky and Hutchison likewise investigated other
structures such as cubic structures (having cubic nonlinearity), quadratic-cubic structures (with quadric-
cubic nonlinearity) and so on. In the light of the foregoing, this investigation shall extend the study to the
case of an imperfect cubic-quintic nonlinearity elastic model structure (i.e. having cubic-quintic nonlinear)



with the sole aim of obtaining the dynamic buckling load in the case of the structure trapped by an
explicitly time dependent but slowly-varying dynamic load that has a continuously decreasing but nonzero
load amplitude. Other pertinent investigations include the studies by Sadovsky et al. [6] and Bisagni [7].
It is to be remarked that investigations into slowly-varying systems have been the pre-occupation of many
researchers. Such include Kevorkian [8], Kuzmark [9], Luke [10], Kroll et al. [11] as well Li and Kevorkian
[12], among others. Such earlier studies were largely made in the context of dynamical, mechanical and
electrical systems, but not particularly in the landscape of dynamic buckling. To our knowledge, such earlier
investigations involving explicitly time dependent but slowly-varying loading systems in a dynamic buckling
setting, appear to be rare. It is also to be remarked that Askogan and Sofiyev [13] investigated the dynamic
buckling load of spherical shells with variable thickness subjected to a time-dependent external pressure
varying as a power function of time, while Kubiak [14], Wooseok [15], Kolakowski [16] and Kowal-Michalska
[17] made similar investigations. Mention is also made of studies by Bisagni and Vescovini [18] and Patel et
al. [19], while Reda and Forbes [20] carried out an investigation into the dynamic effects of lateral buckling
of high temperature/high pressure offshore pipelines.
In this analysis, we actually adopt a similar approach as in Ette et al. [21, 22] with minor modifications. In
[21] as well as [22], it is assumed that the structure is trapped by a step load such that f(1) = 1.
Furthermore, [22] is a case of viscously damped imperfect finite column and the perturbation was in the
viscous damping and the imperfection amplitude.

2. FORMULATION OF THE PROBLEM
Taking a cue from (1a, b), the relevant equations of motion are

T+ (1- M E0) +ag® —pe° = 251 (E2), ¢>0 (2a)
§0)=%9-9 0<f«10<a<1 (2b)

where a and 8 are the imperfection sensitivity parameters and all other variables are as defined earlier.
Here the load f(£2t) is such that
fO=1 [f&D]<1, t>0 (3)

In addition, f(f_zt) is a continuously decreasing but slowly-varying function of time and having right hand
derivatives of all orders at t = 0, otherwise f(£?t) is arbitrary. Our aim then is to analytically determine
the dynamic buckling load of the structure subjected to the stipulated load.

The dynamic buckling load Aj is defined as the maximum load amplitude for which the solution of (2a, b)
remains bounded for all time t > 0. As in Budiansky and Hutchison [1-3] and Amazigo [6,7], the condition

for dynamic buckling is

di
= 0 (4)

where &, is the maximum displacement. It is then incumbent on us to first obtain an asymptotic
expression of the displacement after which the maximum displacement ¢, is determined.

3. STATIC BUCKLING LOAD Ag
Because the intention is to eventually relate the dynamic buckling load to the static buckling load Ag, it is
necessary that As be first obtained.
The relevant equation in this case is obtained by neglecting the inertia term in (2a) and setting f(f_zt) =1,
while neglecting the initial conditions. This gives



(1- Dé+ad>—-pe> = A&

The condition for static buckling, as in [1-3] and [6,7], is
20
da&

This gives

(1- 2 +3agd — 588k = 0

(5)

(6a)

(6b)

Where Ag and &g are the static buckling load and the displacement at static buckling respectively. The

solution of (6b) is

5 —3a+/9a2+208(1-1s) _ 3a(R;-1)
$§ = =

108 108
where the positive square root has been taken in (6c), and

Ri(As) =1+ 200-2s) (ﬁ)

9 a?

£ = \/%(%)% (Ry — 1)z

To obtain the static buckling load Ag, the procedure is to first multiply equation (5) by 5 and get

&s[5(1 — Ag) +5a8§ — 5851 = 5As¢
Making 538&¢ the subject in (6b) and substituting same in (6f), gives
5A5€ = 2&5[2(1 — Ag) + a&f]

On simplification, this gives
1

= 1

5268 = 2\/130(%)2 (Ry — 1)2(1 — A)R,

where
3(R1-1) (a?

Ry=1+ ((1—1/15)) (F)

Equations (6g, h) evaluate Ag implicitly.
4. SOLUTION OF (2a, b)

Let

T=E%
and now assume a time scale t, such that

L-(1 —ﬂf(f_zt))l/z =(1-2®)

1/2

Further let

() =n( 1)
d§ _9mdt  ondt _ 0 aoNio L g2
E_afdt-l_ardt_(l Af)eng+&E°m,

Here, a subscript following a comma denotes partial differentiation. It follows that

a2 2 2 = Af %
S = (1= 2z +282(1 = Af o, + E¥n e — 0
2(1-Af)2
where ()’ = %. Substituting in (2a) results to
F 1 = Aflzznfr z
(1= Az +282(1 = Af )2 g + E*npp — ( ';1 + (1 =2Af)n +an’® - Bn° = X¢f (v)
2(1-Af)2

Let
n(tn) = X2, 0"t &

(6c)

(6d)

(6e)

(6f)

(6g)

(6h)

(7a)

(7b)

(7¢)
(7d)

(8)

(9)

(10)



The following are obtained on equating coefficients of orders of &

) @® _ Af(@)
0(8):  mg +n®=B@ =2 (11)
= 1 _ 3 Arm
o) 1P +n® =—20-20) "% —a( - 2p) O + 0 (12)
2(1-2f)2
_ 1 _ f'ﬂ( )
0(): 1S +n® =20 -2 — @ - A E + L
2(1-2f)2
_ 2 _ 5
=3a(1 =)' n® — g - 2f)" '™ (13)
etc.
The initial conditions are
0(§): 1n®0,0)=0Vi=135,.. (14a)
n®(0,0) =0 (14b)
0(8):  n®(0,0) + 1 -2 mP(0,0) =0 (14c)
0(&): P00 +1-1H7P0,0) =0 (14d)
etc.
Solving (11) with (14a), for i = 1, results to
nW (&) = a; () cos T + B, (t) sinf + B(1) (15a)
!
21(0) = =B(0) = ==, B:(0)=0 (15b)

3
Before substituting into (12) it is necessary to first simplify (" such that
n(1)3 = (a, cost + B sint + B)3
2 2 2 3 2 3
= (83 385 3Ba1) + (3a1b1 + % + 3alBZ) cost + (alTBl +B BlBZ) sint

2 2 4
3 2
+3a, ;B sin 2t + ? (a? — B?) cos 2t + (% — %) cos 3t — Bl “Lsin 3t (16)
The substitution of (16) into (12) and subsequent simplification yields
n(3) +1® =201 -2f)" 2(0(1 sint — B,' cost) + s (—aysint + B, cost)
2(1-4f)2
_ 1 3B[>’1 3Ba? 3a;bf | 3ai 2 - aiBs , Bi 2\ =
a(l—2Af)" [( += )+( T +3alB)cost+(—+4+ﬁ1B )smt
3 2
+3a,,B sin 2t + 7 (al — B?) cos 2t + (% - %) cos 3t — Bl —Lsin 3t] (17)

To ensure a uniformly valid solution in t, there is the need to equate to zero in (17), the coefficients of cos t
and sin t and get, for cos t:

r_ AMB 3aad  3a,8? = 3a,B? _ 1
pr = 4(1-1f) ( g T4 T )(1 Af) 2. (18a)
For sin t:
. AMfray al,[fl [)’1 2
@) = s =3a(l-Af) 2 (Gh 4 £y pp2). (18b)

The coupled equations (18a, b) need not be solved epr|C|tIy because the only terms needed of them are
a1(0), $1(0), ;' (0) and B;'(0), all which can be evaluated from (18a, b) as follows:

"(0)B?(0 15aB3(0
@ (0) = F2D pi(0) = =2

(19a)
8(1- A)z

Similarly, the following terms are obtained



_R2 5 21—
(Z{’(O) _ —B*(0)p, 45B>(0)a”(1-1)

4(1-2) 64
and where
" 5Af1(0
2 = (1= Df"(0) + L2
—B*(0)f1(0
1//(0) — 0)f (l)</’3
(1-2)2
where

9a 1 1
0:=5+3(;+3)
In passing, the following terms are worthy of note
BI(O) — B(0)f1(0)

1-2
n B(0 n !
B"(0) = iz (1 = Df"(0) + 221 2(0)} = B(0)g4
_ a=r"0)+24f12(0)
4 (1-2)2
The remaining equation in (17) is
r](g? +1® = 1,(7) + 1, (1) cos 2F + 1,(7) cos 3t + r3(7) sin 3t
with
1
n®0,0 =0, 790 +1-11P00 =0
where
_ -—a 3, 3BB? | 3Ba? _ _=3aB_ . 5 9
@ =qos (B + 20+ 20), n(@) = s (af - D)
o« a_i _ 3a4,B? _ -—ap}
(D) = (1-2f) ( 4 2 )’ r3(7) = 4(1-2f)
_ —5aB3(0) __ —3aB3(0)
R0 =20 n(0) = e
-aB3(0
RO =570 10)=0

Similarly, the following simplifications equally hold

remy _ BHOF1(0)a (5 6 by _ —3GBHO)F10) (o o
10(0) = (1-2) (2 /1)’ r1(0) = 4A(1-2) 2-21-29

, B*(0)f1(0 ,
r3(0) = L, r§(0) =0

The solution of (23a, b) is

rpcos2t 1ycos3t rysin3t

n® = azcost + fysint+ 1y —

3 8 8
r(0) 7r3(0 B3(0)a
—1 a3(0) = 1‘0(0) + 1 + 3( ) = ( ( ))

B3(0) = —(1 - A)_%(a{(O) +B1(0) = %(4 A4 22)

The substitution into (13) requires the following simplifications:

5 _ _
nW” = (a; cost + B, sint + B)®

=1, +15c0st + 1rgsint + 1, cos 2t + rg sin 2t + 19 cos 3t + 1y sin 3t + ;4 cos 4t

471, sin 4t + 73 cos 5t + 1y, sin 5t
where

(19b)

(19c¢)

(20a)

(20b)

(21)
(22a)

(22b)

(23a)

(23b)

(24a)
(24b)
(24c¢)

(24d)

(25a)

(25b)

(26a)

(26b)

(26c)

(27a)



ry =22 1 5a7 (264 p2) 4 (S + 5B2p7 + 122

r5 = %+ 5 (B 4+ 3B2) + 5a, (L 4+ 22F 4 )

4 2
= g (. 208) Sl (g
r, = 10130(1 + 5a2B3 — (5B4B + 582B3)

ry = 5Bpyai + 22 (363 B + 4, B°)
Ty = 3“1 5“1 (Bz .31) 5051 (3,313 + 31)

2
4 2 5
= s (0 sttt ()
2n2 4
ry = SafB _ 150(1318 4 53213
_ 50:%318
2=
5 5 3np2 5 4
O
_ BT _5aipy  5aipi
"4 = 76 2 8
where
27B5(0 —105B5(0
R0 =220 0 =""9 r0)=0
—23B5(0)
r,(0) = 15B°(0),  13(0) =0, 79(0) = ——
110(0) =0, r11(0) = 535(0), 112(0) =0
-B5(0
r13(0) = ( ); 114(0) = 0.

Similarly, the expansion below to be substituted into equation (13) follows
rycos2t  rzcos3t
8 )
=115 + 116 COSt + 17 Sint + 15 €cOS 2t + 149 Sin 2t + 15 cos 3t + 1,4 sin 3t
4715, cos 4t + 1,3 sin 4t + 1y, cos 5t + 1,5 sin 5t

2 — — — —
nMn® = (a; cost + B, sinf + B)? (a3 cost + Bssint + 1y —

where
To(“%—lﬁ) 7’1(“1 31)
2 2
rig = [(alwl) + Bz] (s + 2Bayry +2n _ BB | as(af-p1) _r2(ai=pi) | a1Bibs

T = [(a1+ﬁl) + BZ] 10 + Bajas + BB,f3 + 2BP 1o +

2 8 4 32 2
Ty = [(“1+ﬁ1) + BS],B + 3317”1 + BB, + Bs(af-p3) 13(ai-Bi) + a1B1as + a1B1ry  a1Pits
8 4 32 2 16 16
Tg = —2 _(061+ﬁ’1) + B3 + Bajaz — Balrz — B3

31
Ba1r3

T19 = Ba; B3 — + Bfjas + a1.317"0

oo = —12 (“1"‘5%) + Bz + Bayry + BpBir3 + as(ai-pi) _ @1B1B3
20 sl 2 3 8 4 2
[(ai+Bi) B Bs(ai-p7)
Iy, = _ I3 aj+Bi +Bz 317"1+ 3\@1—hi +a1,81a'3_a1ﬁ1r2
21 sl 2 3 4 2 16
_ _Bayr,  ri(af-B3 )
T22 = 8 12
_ _[Baars | BBir2  aifim
T23 = 8 8 6

(27b)
(27¢)

(27d)
(27e)
(27f)

(27g)
(27h)
(27i)
(27j)
(27Kk)

(271)

(27m)

(27n)
(270)

(27p)

(28a)

(28b)
(28¢)
(28d)
(28e)
(28f)
(28g)
(28h)
(28i)
(28j)



rz(a%—/?f)

Tae =7 (28k)
2_p2
rps = — AL _ afar (281)
where
27aB5(0) 17aB>(0) —7B*(0)f1(0)(4—2A+A2)
11:(0) = X 116(0) = X 1r1-(0) = 29
_ —aB5(0) B5(0)f1(0)(4- A+AZ) _ —13aB5(0)
118(0) = 212) 119(0) = e /1)2 120(0) = Toa(1-7) (29b)
—B4(0)fr Y 5
121(0) = d (O)f;(())(j);M ), 123(0) =0, 724(0) = 1;:(1(2) , 1,3(0) =0 (29¢)
32A(1-1)2
Now, substituting into (13), results to
1 I T [ = /]
n(fsf) + TI(S) = —2(1— lf)_z [_ag, sinf + 33, cosF — 2ry sin 2t n 3r, 581n 3t 3r3 c:s 31
Afr A — 2rysin2t | 3rysin3t  3r3cos3t
+ 3(—a3smt+ﬂ3cost— L 28 - 38 )

2(1-2f)2
—3a(1 — Af) s + 116 cost + 15 sint + 114 cos 2F + ;9 sin 2 + 154 cos 3
+71,, sin 3t + 1y, cos 4t + 1,3 sin 4t + 1y, cos 5t + 15 sin 5]
—B(1 — Af) " Yry + 15 cost + 1 sint + 1, cos 2 + rg sin 2 + 1 cos 3t + 1y sin 3t

47114 cos 4L + 1y, sin 4f + ry3 cos 5¢ + 1y, sin 5¢] (30a)
n®00 =0, 71¥00+1-HmP00 =0 (30b)
Ensuring a uniformly vaI|d solution in t, needs equating to zero in (30a), the coefficients of cost and sint
and get,
for cos t:
’ Afr 1-1 2

B3 — 4({_61;) = ¢ f) (a1 + 3aryg — prs). (30c)

For sin t:
Afr 1-21 2
as — 4(f C/‘ZS‘) ( f) (By' + 3ar, — Brg). (30d)

Equations (30c, d) are coupled equatlons but, fortunately, may not be solved explicitly because only 35(0)
and a3(0) are needed, which can be obtained easily.
Thus, it follows from (30c) that

Af1B3(0 (1- A)
B3(0) = LR — ED = (aff + 3arys — Brs)loso.

Without further simplification, it is seen that

1
, _ —B3O)fr*(0)(4-2+2*)  (a-D)z( , 51aB>(0) , 1058B>(0)
B3(0) = 161(1_1); 2 (a1 (0) + 4(1-2) 8 ) (31a)
Similarly, it is seen that
, Af(0 0 1-1 2
@y(0) = 2LOBO L B2 (5 4 3ar; — )y
This gives
' B(O)f'(0) |, 3(1-2 z
@;(0) = aB3(0) | 2L + 2 L2 (f (0)(p3+1532(0))] (31b)



1
B%(0) , 6(1-1)72
=S 013 =10) + = 5= (f'(0)gs + 158%(0)) (31c)
The remaining equation in (30a) is
r}'(fst-) + 7B = 1,4 4 155 cOS 2T + 15 5in 2T + 159 cOS 3T + 13 5in 3T + 131 cOS 4T + 13, sin 4T
+733 cos 5t + 134 sin 5t (32a)
1
n®00) =0, 10,0 +1-1P00 =0 (32b)
where
36 = —B"(1 =)' = 3a(1 — Af) s + B - Af) 7'y (32¢)
17 = =3a(1 = Af) g + B(1 = Af) 7'y (32d)
1 ! 14
e = 2(1— )72 (2_) M (2—) —3a(1l—)"tre + B — )iy (32e)
201-21)2 ~
1 ! !
rae =201 = D)2 () - —L5 () - 3a(1 - )70 + A= D'y (32f)
87 2a-ap2 8
1 ! 14
T30 = —2(1—21)2 (32) S 3 (32) —3a(1 =Dty + A =Dy (32g)
2(1-2f)2 * °
131 = =3a(1 = Af) My + (1= Af) My (32h)
32 = (1 = Af) 7' (=3ary; + Bry2) (32i)
r33 = (1 = Af) 7' (=3ary, + Bri3) (32j)
132 = (1 = Af) 7' (=3ar,s + Bris) (32k)
_ 27BB%(0)¢s _ 1.2 (812 ¢,
726(0) = 2a-n 957 1 27/3’( P B4(0)) (321)
__15BB5(0)¢, _ a?
ror (0) = LR — (14 ) (32m)
, 1 AZ+A-2 3B(0)
r2s(0) = B*(O)ags, ¢7=f <0)( T ) (32n)
2(1-2f)2  A(1-Af)2
_ ps — L (3%« _23
20(0) = B>(0)Bys, 95 =15 (645 8) (320)
—B*(0)afr(0)¢pq 15 4-2+2?
r30(0) = ———=—, =—t s (32p)
30 (1_1)5 27 64 (32/1(1—;1))
58B5(0) 3a?
131(0) = T)q)m, $10 = (1 —ﬁ) (32q)
T'32(0) - 0 (32r)
_ —5BB3(0)¢11 _ (1 3a?
r33(0) = a-n ¢ Pu = (8 + 128/3(1—/1)) (32s)
734(0) =0 (32t)

The remaining equation (32a) together with (32b) is now solved to get
NG (£,1) = 1,6 + as cost + P sinf — %(rn cos 2t + ryg sin 2t) — % (159 cos 3t + 130 sin 3t)
— % (131 cos 4t + 13, sin4t) — i (133 cos 5t + 13, sin 5¢t) (33a)
where

_[rzy e T
QS(O)_[3+8+15+24]

. 726(0) (33b)

=

= [Bre 4 20y 2y )
ﬂ5(0)_[3 T T T2

1 ! !
— (-7 [0+ -2 -2 (330

=
So far, the displacement can be written as



n(t, ) = n(l)f_+ 71(3)53 + 1’(5)55 4o
where
n® =nO(1)

5. CRITICAL VALUES OF DEPENDENT VARIABLES AT MAXIMUM DISPLACEMENT
In order to determine the maximum displacement 1, there is the need to first determine the values of ¢, t
and T at maximum displacement. Let t,,t, and 7, be the respective values of t,t and 7 at maximum
displacement and let them be expanded asymptotically as follows:

Ea :t_-0+ngz+f_4f4+"' (353)
tq =ty + &%y + EFty + - (35b)
o = 8%ty = &%t + 2ty + §*y + ] (35c)
Following (7c), the condition for maximum displacement is
- 1
ne+&2(1—Af) ", =0 (36)

By substituting (34) into (36), it is easily seen that the expansion of each term in (36) will be as follows:
P, 0) =[P + (Bt + Sty + - T+ E(t0 + 8ty + - )Y
+%{(f_2 L+ + “')2’7,(5135 +282(E2 B+ )(bo + 20, + 3R,
+ 84 (to + 82ty + - o+ o] (37a)
EnP (0,00 = 8 1P + (826 + £t + - L + (ko + £+ )

+%{(f_2 L+ + “')2’7,(5335 +282(E2 B+ )(to + £, + ),

+ 8 (to + 8ty + - o+ o] (37b)
&P (5,0) = & [n,(ES) + ] (37¢)
£a-1"mP =1 -n"mP +a - )N {EEG + )
+&2{a- Af)‘%r;’(})} {to + &2, + E4y+ -} + ] (37d)
Fa-1p"mP =&[a-n"mD + A -0 e + )
+£2 {(1 —~ Af)‘in,(f)} {to + 2ty + ¥ty + -} 4+ ] + - (37¢)

The terms in (37a — e), which are equated at (£,, 0), are next substituted into (36) and the coefficients of
powers of £ are equated to zero. The following equations, in orders of £, are obtained

0(8): 7,0 =0 (38a)
_ _ _1

0(8): P+t +P+a-nmP =0 (38b)

= — 1(- - — - 5

0(8%):  Em% + e +3{En + 28t + B0} + B0 + o + 0

-7 @ Y
A=) ES + o {1 - DS }T =0 (38¢)
etc.

From (38a), it is seen that
sint, =0, «~ ty=m



where the least nontrivial value of t, has been taken.
It follow from (38b) that
1
@ ra-n P een)

N

where

B(0)fr(0)(A+4
10,0 =0, 1P 0 = 2O O, 0) = -B©), 1 (E,0) =0

Ez M (386)
4(1- /1)2
Most terms in (38c) vanish on evaluating them but on substitution, the final simplification is
|t B0 ofa-) 277(1)} ]
= = = (38f)
Nt
7=0
The following terms are easily evaluated
3 —87aB3(0) 1 —B2(0)f1(0) 1) /- " "
( )(to, 0) = D200 ! n(tt)r(to. 0) =————, U,(rr)(to. 0) = (B"(0) — a1 (0))
On substltutlng in (38f) and simplifying for t,, the following is obtained
1
_ B(0)fr(0)(A+4 87 1-1)2 "
E, = [inq (60 — ) + S22 (57 0) - a} (0)) (388)
128(1-1)2

where t, is yet to be determined and B"'(0) is as in (22a, b), while a;'(0) is as in (19b, c).

6. MAXIMUM DISPLACEMENT n,
Using (35a — c), the maximum displacement 1, will now be obtained using the critical values of the
independent variables already obtained and where n, = n(t,, t,).
Expansion of each component of n, in the following series, gives

i = MO (Ee70) = E[n® + (26 + &6+

+82 (to + 2, + Ety + - + | (39a)
(t0,0)
Enl = P00t = 8 0@ + (% + §% + - )ng
+82 (to + 82, + &%ty . S + | oo (39b)
0/

— (5 - _
) = 8@ (5, 0) + - (39¢)

On substituting (39a — c) into (34), evaluated at maximum values of the independent variables, the non-

vanishing values of 7, is obtained as follows

o = E0(F0,0) + & [ton® + 1] + & e + L@ + LnD + 1@ +7] + - (40)
where (40) is to be evaluated at (£,, 0).

To determine ty, it is noted from (7b), that
1

X (- Af @) = <1 —AF @) = [ -0 - A(FrOF + Oy )P
=(1-1)2 [1 - 2(1 = (ro&e+ f"(ofw 4 L@t )

6
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_é((lfm)z (f'(O)«f_zt + f”(()zﬂ + ) + ]
W E=(1-2)3 [ (f’<0)32t2 ORI O )
2(

1-2) 2 6 24
YA (O M O )
8 ((1—/1)) ( 3 Ty Tt (41a)
That is
1 — — —
E=(1—2)z2t +&20.6% + E*Q,t3 + EQ et + -+ (41b)
where
_ —fr0)4 _-froa 1 2
L, = 4(1-2) ’ 2, = 12(1-2) ((1 /1)) () (41c)
— 1 " "
0, == [L(5) 1 + 2 () roro) (41d)
Evaluating (41b — d) at maximum values, gives
1 — —_ —
o= (1 — D2[ty + 820,62 + E4Q,t3 + EQ5td + - ] (42a)

Expansion of t, and t,, using (42) and equating coefficients of 0 (1) gives

1
EO =T = (1 _A)Eto

1
to=m(1—21)2 (42b)
Similarly, evaluating the coefficient 0(52) easily gives
— 0)(A+4
F = L0 = (1 - il + 0,8)

4(1- /1)2
_ [1©(+4) _ yn?
27 4@-1)2 (1-1)

(42c)

etc.
To evaluate the maximum displacement 7n, as in (40), it is necessary to note the following values as
evaluatedatt = tyand 7 = 0:

_ - B3(0
nW (&, 0) = 2B(0), n®(E,0) = 22
5
n(S)(f(); 0) — 2531(_(;)(1)12 , Where §012 — 72(pS _ 5 6 (pl()
- B*(0 2-1-A? 0
N (E,0) = 0% where gy = £/(0) (3= 5) + £ (o>( )-22 4 L8
On evaluating the maximum displacement after evaluating (34) at maximum, it follows that
z3 z5
where
"(0)(A+4)t
Q=1+ 0 (43b)
_ 1-2_ (B (0)A+4)t; | BO)EE | t§ rpu toB* (0)<ol4
Q=1+ 550 <o>¢12{ T+ 2O £ 2 (57(0) — @ (0)) + 2f Oona) (43c)

7. DYNAMIC BUCKLING LOAD, 4y
For the purpose of determining the dynamic buckling load Ap, it is necessary to rewrite (43a) simply as
a=C1&+C383 +C5E5 + - (44a)
where

11



3 5
€, =2B(0), C;= —“315‘2‘91, C; = 2200120, i"_);ﬂlez (44b)

The dynamic buckling load A is supposed to be determined by using the equivalent form of (4), in the

form

da

- =0. 44c

an (44c)
However, as noted by Amazigo [6, 7], the series (44a) becomes unbounded when 1, > n,p, where n,p is
the maximum displacement at dynamic buckling. The difficulty is overcome by reversing the series (44a) so
that

§=ding +dang +dsng + - (45a)

The coefficient d;, d; and ds are obtained either by using Lagrange’s formula for reversion of series [23] or
by substituting in (45b) for n, and equating coefficient of powers of £

Adopting the latter, it follows that

_1__1 — G _ o
dy = ¢, 2B(0)’ ds = ct T 162 (45b)
3c%c,C C 3c2 Bp120Q20 3a2Q?
d =3_15=_5( __3)=M’ — 1300 45¢
> c] cs C1Cs 32B(0) P15 4B9120; (450)

It should, however, be noted that each of d;,d; and ds depends on the load parameter A. The
maximization (44d) now yields

4§ _ o _ d(dy) dA d(ds) dA. 2
dng  dA dng dy + + 3d3r]aD +

dA dng
This implies, through (44c)
dy +3d3ngp + 5dsngp = 0 (46a)

d(ds) di 4
A an. + 5ds5Nyp-

where

Nap = Na(4p)
From (46a), it follows that

5 —3ds+ /9d§.—20d1d5

MNap = 10ds
Taking the negative square root sign, results to
6Q1(%)</’16

2
R — 46b
Map 5¢012915Q2(1-2) ( )

1

80(1-1)2(£) 0120150, )?
1+ {1 + (;;2 2 2} (46¢)
1

1
e 1 Q1(%)<P16 2
Mlap = \/;(1 A <‘P12¢15Q2 (46d)

The dynamic buckling load is next obtained by evaluating (45a) at dynamic buckling stage. This is now

P16

obtained by first multiplying (45a) by 5 to get

5¢ =1apl(5d; + 5d3nzp) + 5dsnap] (47a)
Making 5dsn2,, the subject in (46a) and substituting same in (47a), gives
5¢ = 2n4p(2d; + d3nZp) (47b)

After simplifying (47b), it seen that
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581, = 2 f (1- AD) Uo16 )5[1+ (5 Jor ] (48a)

P129015Q2 40 ¢12¢015Q2(1-2p)?
It has to be noted that each ¢; and Q; depends on A so that the result (48a), which determine A, is also
implicitin Ap.
Using (6f, g), it is possible to relate the dynamic and static buckling loads to get
1 1
) — 2(1-4)2 ( Q1916 )E [1 + 3Q1( )(p16 ] (48b)

As (1—AS)R2(R1—1)% P129150Q2 40 912¢015Q2(1-1p)?

8. ANALYSIS OF THE RESULT

The result (48a) is implicit in the load parameter Ap while (6f, g) are implicit in the static load parameter As.
Similarly, (48b) is implicit in both Ag and 4. As observed from (48b), the relationship between A, and Ag is
independent of the imperfection parameter ¢ but once any of Ag or 4, is specified, then the other can
easily be obtained. Generally, the results (6f, g) and (48a) are valid for small values of the imperfection
parameter, . It is here demanded that @ > 0,8 > 0 and observe that as far as the loading history f(r)is
concerned, the dynamic buckling 1, depends on f'(0), f’Z(O) and f"(0), all depending on the accuracy
retained. For higher degrees of accuracy of the result, one may expect dependence of A, on higher
derivatives of f(7) evaluated at the initial time t = 0. As in equation (3), the analysis has tacitly required
that |f($_2t)| <1, t > 0.However, has long as the inequality 0 < A < 1 holds (which has been assumed
in this work), this analysis equally holds for |f(€_2t)| < 1, and so, equally holds for the case f(t) =1, i.e.,
for the step loading case. Thus, by setting to zero in all the results, the derivatives of f(7), such as
f’(O),f”(O),f’Z(O) etc., the result for step loading case can easily obtained.

Figure (1) and Figure (2) were drawn using f(7) = e™%, 7 = &2t. This choice of f(t) satisfies all the
conditions stipulated in equation (3).

090 |
: al
085 | ~< 1
0.8
e 0.6 M
075 0.4
r 0.2
070 f 0 I3
065 | 0.010.030.050.070.090.110.130.150.170.19
060 ,
0.65 T o.io T 0,15 BT
Fig.1: Thegraph of static buckling load A Fig.2: The graph of dynamic buckling load A for
using (6g) witha =1, = 1. various values of ¢, from eqn. (48a), witha =1, 8 = 1.

9. CONCLUSION
This analysis has carried out a perturbation approach in analyzing the dynamic buckling load of a cubic-
quintic nonlinear elastic model structure struck by an explicitly time-dependent slow-varying load. The
results are asymptotic in nature. It has been shown that the dynamic buckling load A, depends among
other things, on the first derivative of the load function evaluated at the initial time t = 0. It is observed

13



that it is possible to relate the dynamic buckling load A to its static equivalent Ag and that relationship is

independent of the imperfection parameter £. Hence given either of the Ag or Ap, the other can easily be

evaluated using the relationship.
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