ASSESSMENT OF <mark>ANAEMIA</mark> IN ADOLESCENT GIRLS AGED BETWEEN 10-19 YEARS OLD ATTENDING St THERESE CLINIC

# 6

1

2

3

4

5

#### ABSTRACT

7 Anemia is one of the major public health problems worldwide and is associated with morbidity 8 and mortality. Anaemic adolescent girls are at high risk of having physical and cognitive 9 functional disorders. According to the WHO global database, anaemia affects 46% of school 10 children globally. Because of health and socioeconomic problems, the prevalence of anemia is 11 higher in developing countries than in developed ones with 50% in Africa where children, adolescent girls and pregnant women are the most vulnerable groups to anemia. In Rwanda, there 12 is little national data on anaemia and its likely causes amongst adolescent girls. The aim of this 13 study was to assess the extent of anaemia and associated risk factors among adolescent girls aged 14 15 between 10-19 years old attending St Therese Clinic located in Eastern province in Rwanda. A 16 cross sectional study design was conducted at St Therese Clinic in a period of 3 months (June to August 2018) and included 231 adolescent girls aged between 10-19 years old who were 17 conveniently selected from the consented participants. The hemocue apparatus which uses 18 modified azide-methemoglobin reaction was used to assay Hemoglobin (Hb) level in the whole 19 20 blood. Pre-tested structured questionnaires were used to collect data on anticipated risk factors. The prevalence of anaemia was found to be 29% among adolescents girls. Among 67 anaemic 21 22 girls (29%), 45girls (19.47%) had mild anemia while 18 girls (7.79%) had moderate anemia and 4grils (1.73%) had severe anaemia. It was found that malaria, menarche, educational status of 23 24 their parents and meal intake frequency are significantly associated with anaemia, p value <0.05. Anaemia is highly prevalent in adolescent girls. Thus, policy makers has to prevent and control 25 26 anaemia in this particular vulnerable group through but not limited to Iron/folic acid supplement, 27 malaria eradication and promoting nutrition education programme targeting adolescent girls and 28 their mothers, heads of primary and secondary schools mainly on the utilization of easily

29 available and affordable iron rich diet. In-depth studies with big sample size should be done to 30 further investigate anaemia and its risk factors in Rwandan adolescent girls. 31 Key words: Anaemia, adolescence, malaria, menarche, education, iron and folic acid 32 supplement. 1. Background of the study 33 34 Anaemia is a condition in which the number and size of red blood cells, or the hemoglobin 35 concentration, falls below an established cut-off value, consequently impairing the capacity of 36 the blood to transport oxygen around the body. Anaemia is an indicator of both poor nutrition 37 and poor health (Nirojini et al., 2014). Hemoglobin is a conjugated protein in the blood that 38 carries carbon dioxide from tissues to the lungs and oxygen from the lungs to tissues. Usually in most anaemic patients, oxygen deficiency is behind all signs and symptoms. The word 39 40 "adolescence" is delivered from Latin word, "adolescence": meaning "to grow to mature"

(Nirojini *et al.*, 2014). According to WHO, adolescence is as a period of life between the ages of
10 to 19years for both sexes. Nutritionally, the adolescent This period of life is nutritionally the
most vulnerable due to augmented growth and development.

According to the recommendations of UNICEF/WHO report, which classifies adolescent girls as 44 45 a vulnerable group to anaemia, all countries are encouraged to assess rapidly the prevalence of 46 anaemia and its associated factors in these vulnerable groups. There are about 1.2 billion 47 adolescents in the World, which is equal to one-fifth of the World's population and their 48 numbers are increasing. Out of these, five million adolescents are living in developing countries. 49 In Rwanda, Adolescents counted 24.2 percent of total population in 2012. Anaemia is a global 50 public health problem affecting both developing and developed countries with major 51 consequences for human health as well as social and economic development (WHO, 2005). 52 Globally anaemia prevalence was between 22.9% and 26.7% (about 1.62 billion people) and the 53 major associated factors are medical history like age at menarche, history of worm infestation, 54 excessive menstrual bleeding in the past 3 months and dietary history. Anaemia occurs at all stages of the life cycle. Generally, 50% of all anaemia is attributable to iron deficiency. Iron need 55 56 increases during adolescence period because of onset of menstruation and adolescent growth 57 spurt (WHO, 2008).

In adolescents, it has a direct and immediate effect on productivity, cognitive functioning lowers
school achievement and lowers physical working capacity (WHO, 2011). For example, a schoolbased cross sectional study conducted by Mohammed, *et al* in 2017 among adolescent School
Girls in Kebena District, Southwest Ethiopia showed that the anaemia prevalence was 12% with
95% of anaemic status impacting their academic performance.

63 According to the World Health Organization (WHO) global database, anaemia affects 46% of school children globally (ACC/SCN, 2000). Because of health and socioeconomic problems, the 64 65 prevalence of anemia is higher in developing countries with 50% in Africa where children, 66 adolescent girls and pregnant women are the most vulnerable groups to anemia (Sandra LH, et 67 al., 2001). In Asia and Africa, the prevalence of anaemia among adolescent girl was high compared to America and Europe (Nelima, 2015). Pakistan showed the prevalence of 60% 68 69 (Talpur et al., 2012). In Nepal, the study showed the prevalence of 42% (Dubey et al., 2013). In Saudi Arabia, the prevalence was 25.9% (Al-sayes et al., 2011). The study carried in India 70 71 showed the prevalence of 83% (Amudha, 2016). Due to many previous studies that showed the 72 elevated prevalence of anaemia among adolescent girls, India tried a program of weekly iron-73 folic acid supplementation for adolescent girls that were piloted in fifty-two districts in thirteen 74 states. After one year of implementation, this program showed an impact of 24% reduction in the 75 prevalence. Due to this reduction, the project was expanded to cover eleven entire states by the 76 end of 2011. In 2013, the government of India introduced the national implementation of weekly 77 iron-folic acid supplementation to approximately one hundred and twenty million adolescent 78 girls (WHO, 2012).

79 In Africa, the prevalence of anaemia in adolescent girls was carried out in different countries. In 80 Ghana, the study done yielded the prevalence of 41.5% (Egbi *et al.*, 2014). In Egypt, the study 81 showed the prevalence of 35.9% (Tawfik et al., 2015). This country took control of this problem by distributing iron-folic acid supplements. In this program, 200 mg ferrous fumarate and 300 82 mg folic acids were given to individual girl weekly. In Kenya, the study carried out at secondary 83 84 schools showed the prevalence of 26.5% (Nelima, 2015). In Ethiopia, the studies showed 30.1% prevalence (Assefa et al., 2014). In Uganda, the study showed the prevalence of 45.9% 85 86 (Isingoma, 2013).

87 In Rwanda, anaemia was gradually reduced from 2005 to 2015, where the prevalence of anaemia among children was 54% in 2005 and 38% in 2010. Among pregnant women, the prevalence of 88 89 anaemia was 35% in 2005 and 20% in 2010. Rwanda Demographic Health Survey (RDHS) reported the overall prevalence of anaemia of 11.5% and prevalence in pregnant women of 90 91 14.5% (Boy, 2015). This shows a great reduction of anaemia compared to other African 92 countries as well as global prevalence. This decline in anaemia was probably due to multiple 93 interventions like availability and quality of health services, long lasting insecticide nets for both 94 women and children for fighting malaria, iron-folic acid supplementation for pregnant women. 95 Despite the efforts, the coverage has not reached the World Health Organization recommendation of 180mg iron-folic acid supplements for pregnant women (USAID, 2010). 96

97 Therefore a significant work is needed to increase the coverage of iron intake, both in food and
98 supplements, expand helminths control and malaria control.

99 Anemia is one of the major public health problems in children, adolescent girls and pregnant 100 women and is associated with lost schooling, physical and cognitive functional disorders, low 101 weight babies and even fatal complications during delivery, once pregnant (Siva *et al.*, 102 2016)(Jamison et al., 2006). According to the World Health Organization (WHO) global 103 database, anaemia affects 46% of school children globally (ACC/SCN, 2000). Because of health 104 and socioeconomic problems, anemia is highly prevalent in developing countries than in 105 developed ones with 50% in Africa (Sandra *et al.*, 2001). Several large surveys have yielded the 106 prevalence estimates for anemia in adolescent girls in many different countries, where it was only 2% in the United States of America (USA) (Christel et al., 2002) whereas it was 25.9% in Saudi 107 108 Arabia(Al-sayes et al., 2011), 26.5% in Kenya (Nelima, 2015), 30.1% in Ethiopia (Assefa et al., 109 2014) and 45.9% in Uganda (Isingoma, 2013). The prevalence of naemia in Rwanda was 110 gradually reduced from 2005 to 2015, where among children it was 54% in 2005 and 38% in 111 2010 and among pregnant women was 35% in 2005 and 20% in 2010(Boy, 2015). Despite these 112 efforts to reduce the anaemia in other vulnerable groups in Rwanda, there are no programs 113 directed to fighting anaemia in adolescent girls. This is mainly because there is no data on the extent of anaemia and its likely causes amongst adolescent girls for that reason this study aimed 114 115 to assess anemia and its associated risk factors among adolescent girls aged between10-19years 116 attending St Therese Clinic.

| 117 | 2. Methodology                                                                                                           |
|-----|--------------------------------------------------------------------------------------------------------------------------|
| 118 | 2.1 Study design                                                                                                         |
| 119 | The study was conducted at St Therese Clinic which is located in the Eastern province,                                   |
| 120 | Rwamagana district, Kigabiro sector. St Therese Clinic is a private health facility that provides                        |
| 121 | possible quality healthcare services to the population of but not limited to Rwamagana district. A                       |
| 122 | descriptive cross-sectional study was carried out. Target population for this study were all                             |
| 123 | adolescent girls aged between 10-19years old who attended St Therese Clinic during this study                            |
| 124 | period. Adolescent girls who were under iron, and folic acid supplement and those ones who did                           |
| 125 | not consent to participate in this study were excluded from this study.                                                  |
| 126 | 2.2 Sample size                                                                                                          |
| 127 | The estimated sample size was 384 people, however the sample size achieved during the current                            |
| 128 | study period was 231 adolescent girls.                                                                                   |
| 129 | In this cross-sectional study where data were collected at a specific point in time, the following                       |
| 130 | formula was used:                                                                                                        |
| 131 | Formula $n = \frac{z^2 p(1-p)}{d^2}$                                                                                     |
| 132 | Where                                                                                                                    |
| 133 | n is sample size,                                                                                                        |
| 134 | z: is a statistic for the level of confidence, 1.96 on 95% confident interval                                            |
| 135 | P: prevalence ever recorded since there is no prevalence, we assume that it is 50%                                       |
| 136 | d: precision, if 5% is equivalent to 0.05                                                                                |
| 137 | Sample size = $\frac{1.96^2 X 0.5(1-0.5)}{0.05^2}$ = 384.16 $\approx$ 384 adolescent girls aged between 10-19 years old. |
| 138 | This formula assumes that P and d are decimal values, but would hold correct also if they are                            |
| 139 | percentages, except that the term (1-P) in numerator would become (100-P). In the above                                  |
| 140 | equation (Arya et al., 2012).                                                                                            |

| 141 | 2.3 Sampling strategy                                                                            |
|-----|--------------------------------------------------------------------------------------------------|
| 142 | Convenient sampling strategy was used. The study included voluntary adolescent girls aged        |
| 143 | between 10-19 years old who attended St Therese Clinic during data collection. Capillary blood   |
| 144 | was collected and used in hemoglobin level estimation by Hemocue analyzer.                       |
| 145 | 2.4 Data collection instruments                                                                  |
| 146 | Hemoglobin level was estimated by Hemocue analyzer. Questionnaire was tested and used to         |
| 147 | collect information on common associated risk factors with anaemia.                              |
| 148 | 2.5 Procedure hemoglobin measurement by hemocue apparatus                                        |
| 149 | To perform a test using capillary blood, the cuvette was put in loading position. The middle     |
| 150 | or ring finger for sampling was selected for each patient. Fionger was cleaned using a           |
| 151 | disinfectant and was allowed to dry. The Puncture of the finger was done using a lancet and      |
| 152 | wiped the first two to three drops, after which the pressure was reapplied towards the           |
| 153 | fingertips until another drop of blood appeared. When the blood was enough, microcuvette         |
| 154 | was filled in one continuous process by avoiding air bubbles. Filled microcuvette were           |
| 155 | placed in the in cuvette holder contained in hemocue apparatus and gently slided the cuvette     |
| 156 | holder to the measuring position. After 15 to 60 seconds, the hemoglobin value of the sample     |
| 157 | was displayed. (Nkrumah <i>et al</i> , 2011). Normal Value of Adolescent girls: 12.0 – 16.0 g/dl |
| 158 | (Nirojini <i>et al</i> , 2014).                                                                  |
| 159 | Haemoglobin concentration less than the cut-off of 12.0 g/dl was used to define anaemia in non-  |
| 160 | pregnant girls (WHO, 1998). Severity of anaemia in adolescent girls was classified at three      |
| 161 | levels: mild anaemia (Hb 10.0-11.9 g/dl), moderate anaemia (Hb 7.0-9.9 g/dl), and severe         |
| 162 | anaemia (Hb less than 7.0 g/dl) respectively.                                                    |
| 163 | 2.6 Data analysis                                                                                |
| 164 | Data was analyzed with computer using statistical program for social sciences (SPSS) statistics  |
| 165 | 17.0 and Microsoft excel 2010. The extent of anaemia was in percentages. The associations        |
| 166 | between anaemia and risk factors were determined using multivariate analysis.                    |
| 167 | 2.7 Ethical consideration                                                                        |
| 168 | Data was collected after getting Ethical clearance from Mount Kenya University and granted the   |
| 169 | permission by the administration of St Therese Clinic to collect data. The participants were     |
|     | 6                                                                                                |

| 170 | explained about the study, and those who accepted to participate signed a consent form, the ones |
|-----|--------------------------------------------------------------------------------------------------|
| 171 | under 18 years old were given assent form for their parents to sign for them. Data was collected |
| 172 | from those who consented to participate in the study. The participant's confidentiality was      |
| 173 | guaranteed by using a code label and their informations and results were kept away from anyone   |
| 174 | else.                                                                                            |
| 175 |                                                                                                  |
| 176 | 3. RESULTS                                                                                       |
| 177 |                                                                                                  |
| 178 | This cross sectional study came up with an overall prevalence of anaemia of 29% among 231        |
| 179 | adolescent girls aged between 10-19 years who attended St There clinic during the study. The     |
| 180 | mean haemoglobin level was 12.2 g/dl.                                                            |
| 181 | 3.1. The prevalence of anaemia in adolescent girls                                               |
| 182 | Table 3.1 The prevalence of anaemia in adolescent girls                                          |

| Anaemia status                | frequency | Percentage |
|-------------------------------|-----------|------------|
| Normal                        | 164       | 71%        |
| Mild                          | 45        | 19.47%     |
| Moderate                      | 18        | 7.79%      |
| Severe                        | 4         | 1.73%      |
| Total number of anaemic girls | 67        | 29%        |

<sup>183</sup>The Table 3.1 illustrates the extent of anaemia and its classification according to their184hemoglobin levels in 231 adolescent girls who participated in this study.

Overall, the adolescent girls free from anaemia comprised 71%. Among anaemic girls; the
 mildly affected occupied the highest portion which is approximately one fifth of the participants,
 whereas only 4 adolescent girls (1%) were evinced to be severely anaemic, and around 7% of the
 participants were moderately anaemic.
 3.2. Anaemia and Menarche

```
190Table 3. 2. Anaemia and Menarche
```

| Risk factor |              | Anaemic (%) | Non-anaemic<br>(%) | p-value |
|-------------|--------------|-------------|--------------------|---------|
| Menarche    | attained     | 65(97.02)   | 140(85.36)         | 0.003   |
| status      | Not attained | 2(2.98)     | 24(14.64)          |         |

From results of Table 3.2, the current study showed the impact of menstrual bleeding on anemia
which is statistically significant with p-value = 0.003.

#### 193

## Table 3.3. Anaemia in adolescent girls and Educational status of their mothers

| Risk factor                |               | Anaemic (%) | Non-anaemic | p-value |
|----------------------------|---------------|-------------|-------------|---------|
|                            |               |             | (%)         |         |
| Educational                | None          | 45(67.16)   | 56(34.14)   | 0.001   |
| status of their<br>mothers | Primary       | 20(29.85)   | 77(46.95)   |         |
|                            | Secondary     | 2(2.98)     | 18(10.97)   |         |
|                            | University or | 0(0)        | 13(7.92)    |         |
|                            | more          |             |             |         |

# From Table 3, Educational status of their mothers showed significant association with anaemia (p=0.001).

#### 196

## Table 3.4. Anaemia and Malaria

| Risk f                                   | factor             | Anaemic (%) | Non-anaemic<br>(%) | p-value |
|------------------------------------------|--------------------|-------------|--------------------|---------|
| Malaria status<br>in the last 6<br>weeks | Experienced        | 19(28.35)   | 14(8.53)           | 0.008   |
| -                                        | Not<br>experienced | 48(71.64)   | 150(91.46)         |         |

### 197 As shown in Table 3.4, Malaria was found to be statistically associated with anaemia (p=0.008).

#### 198

#### Table 3.5. Anaemia and Iron/ Folic acid Supplement

| Risk fa         | ctor | Anaemia<br>present (%) | Anaemia<br>absent (%) | p-value |
|-----------------|------|------------------------|-----------------------|---------|
| Iron/Folic acid | Yes  | 0(0)                   | 0(0)                  | -       |
| supprement      | No   | 67(100)                | 164(100)              |         |

# Table 3.5 shows the impact of Iron/Folic acid supplement on anaemia, however during this study no participant was taking these supplements.



#### Table 3.6. Anaemia and Meal frequency per day

| Risk fa        | actor           | Anaemia<br>present (%) | Anaemia<br>absent (%) | p-value |
|----------------|-----------------|------------------------|-----------------------|---------|
| A meal per day | Once            | 18(26.86)              | 14(8.53)              |         |
| _              | Twice           | 43(64.17)              | 113(68.90)            | 0.048   |
| _              | More than twice | 6(8.95)                | 37(22.56)             |         |

202

From Table 3.6. Meal per day showed a significant with a p-value of (p=0.048).

203

### Table 3.7. Anaemia and Specific food intake frequency

| Risk f       | actors          | Anaemia<br>present (%) | Anaemia<br>absent (%) | p-value |
|--------------|-----------------|------------------------|-----------------------|---------|
| Beans intake | Daily<br>Weekly | 54(80.59)<br>0(0)      | 0(0)                  | 0.599   |
|              | Occasionally    | 11(16.41)              | 32(19.51)             |         |

|                | Never        | 2(2.98)   | 15(9.14)   |       |
|----------------|--------------|-----------|------------|-------|
| Green          | Daily        | 30(44.77) | 102(62.19) |       |
| intake         | Weekly       | 0(0)      | 2(1.21)    | 0.228 |
|                | Occasionally | 32(47.76) | 49(29.87)  |       |
|                | Never        | 5(7.46)   | 11(6.70)   |       |
| Meat intake    | Weekly       | 21(31.34) | 78(47.56)  | -     |
|                | Occasionally | 44(65.67) | 77(46.95)  |       |
|                | Never        | 2(2.98)   | 9(5.48)    |       |
| Poultry intake | Weekly       | 3(4.47)   | 9(5.48)    |       |
|                | Occasionally | 43(64.17) | 78(47.56)  | 1.000 |
|                | Never        | 21(31.34) | 77(46.95)  |       |
|                | Daily        | 0(0)      | 0(0)       | -     |
| Fruits intake  | Weekly       | 22(32.83) | 77(46.95)  |       |
|                | Occasionally | 43(64.17) | 77(46.95)  |       |
|                | Never        | 2(2.98)   | 10(6.09)   |       |

Table 3.7 displays the association between different food intake and anaemia. However, none of 204 them showed a statistically significant association with all p-value higher than 0.05. 205

206

#### 4. Discussion

This study showed that among 67 anaemic girls, 65 (97.02%) have attained menarche. This 207 finding highlights the impact of menstrual bleeding on hemoglobin level. These findings are in

208

line with a study conducted in India where anaemia was highly prevalent (86.75%) in 209 participants who had attained menarche (Premalatha et al., 2012). 210

211 The educational status of the adolescent girls' mothers showed to have a considerable effect on 212 the anaemia status of their children where in all anaemic adolescent girls, 67.16% had 213 uneducated mothers. Although, a similar study conducted in Kenya came up with a prevalence of 214 35.7% having uneducated mothers which is approximately a half of ours, the association 215 between the Level of mother's education and anaemia was significant (Oscar N., Henry M., 216 2014). This is to mean that, mother's education level has a protective effect on the chance of the 217 child being diagnosed with anaemia. Children whose mothers' has secondary, and higher levels 218 of education, are less likely to be anaemia positive. In addition to that, most of non-educated 219 mothers have low income and low knowledge about the appropriate food for their girls to 220 compensate the loss during menstrual bleeding.

This survey demonstrated the association between Malaria status and Anaemia in adolescent 221 girls whereby among 67 anaemic girls, 19(28.35%) girls experienced it in last 6 weeks. This 222 223 finding is beyond no doubt due to the fact that it is a common knowledge that malaria is an 224 haemolytic infection which reduces red cells and consequently favour anaemia and it was 225 undoubtedly found to be statistically associated with anaemia (p=0.008). These results are in line 226 with the findings of CDC in 2008 where malaria was the strongest cause of anaemia in 227 adolescence. The findings of this study went hand in hand with a study conducted in Kenya by 228 Damaris. N, in 2015 on the prevalence and Determinants of Anaemia among Adolescent Girls in 229 Secondary Schools, where the presence of malaria parasitemia increased the risk of one 230 developing anaemia by three times.

231 Anaemia is induced by lower levels of the consumption of dietary iron derived from foods such as meat, beans, poultry and less intake of the nutrients involved in iron metabolism. This 232 233 assumption is in line with the findings of this study where the frequency of food intake was 234 shown to be a risk factor of anaemia. On the other hand, specific food intake was not a predator 235 of anaemia in this study which went against the results of a study done in Kenya in 2015 by 236 Damaris N where among the anaemic respondents 60.7% had inadequate iron intake. This 237 disparity can be explained by the low sample size. In 2008, De Benoist B, et al also demonstrated that vitamins and minerals are required for the proper production of hemoglobin hence, RBCs. 238 239 Deficiency in any of these micronutrients may cause anemia because of inadequate production of RBCs. 240

| 241 | CONCLUSION                                                                                         |
|-----|----------------------------------------------------------------------------------------------------|
| 242 | From the findings of this study, the overall prevalence of anemia was found to be 29%. It is seen  |
| 243 | that malaria, menarche, educational status of their parents and meal intake frequency are          |
| 244 | significantly associated with anaemia. Considering this alarming prevalence of anemia in girls     |
| 245 | during adolescence in this study, there is need for anemia prevention, and control. Efforts should |
| 246 | be made to prevent adolescent anemia and its damaging consequences using an appropriate mix        |
| 247 | of interventions that address the multiple causes of anemia in adolescent girls.                   |
| 248 | REFERENCES                                                                                         |
| 249 | ACC/SCN. (2000). Fourth Report on the World Nutrition Situation: nutrition throughout the life     |
| 250 | cycle, Geneva: ACC/SCN in collaboration with IFPRI.                                                |
| 251 | Al-sayes, F., Gari, M., Qusti, S., Bagatian, N., & Abuzenadah, A. (2011). Prevalence of iron       |
| 252 | deficiency and iron deficiency anaemia among females at university stage. Journal of Medical       |
| 253 | Laboratory and Diagnosis, 2, 5–11.                                                                 |
| 254 | Amudha, M. (2016). Prevalence of anaemia among adolescent girls : A cross-sectional                |
| 255 | exploratory study. International Journal of Applied Research, 2, 630-632.                          |
| 256 | Arya, R., Antonisamy, B., & Kumar, S. (2012). Sample size estimation in prevalence studies.        |
| 257 | Indian Journal of Pediatrics, 79(11), 1482–1488. doi:10.1007/s12098-012-0763-3.                    |
| 258 | Assefa, S., Mossie, A., & Hamza, L. (2014). Prevalence and severity of anaemia among school        |
| 259 | children in Jimma Town, Southwest Ethiopia.                                                        |
| 260 | Bager, P. (2014). Fatigue and acute/chronic anaemia. Dan Med J. 61: B4824                          |
| 261 | Boy, D. E. (2015). Iron deficiency in Rwanda : a low- moderate public.                             |
| 262 | Centers for Disease Control and Prevention (CDC). (2008). Recommendations to prevent and           |
| 263 | control iron deficiency in the United States. MMWR Morbidity Mortality Weekly Report, 1998;        |
| 264 | 47(RR-3):1-29 www.cdc.gov                                                                          |

| 265 | Christel L.L., Gunnar K.J., (2002). Dietary intake and nutritional status of young vegans and   |
|-----|-------------------------------------------------------------------------------------------------|
| 266 | omnivores in Sweden. Am J Clin Nutri; 76(1):100-6                                               |
| 267 | De Benoist B, McLean E, Egli I, Cogswell M. Geneva: WHO Press, World Health Organization;       |
| 268 | 2008. WHO/CDC. Library Cataloguing-in-Publication Data. Worldwide prevalence of anaemia         |
| 269 | 1993-2005: WHO global database on anaemia; p. 40.                                               |
| 270 | Devi, S., Deswal, V., & Verma, R. (2015). Prevalence of anaemia among adolescent girls : A.     |
| 271 | International Journal of Basic and Applied Medical Sciences, 5(1), 95-98.                       |
| 272 | http://doi.org/10.11694/pajj.supp.2015.17.1.3505. accessed on 19th October 2016.                |
| 273 | Dubey, R. K., Padmavathi, P., Jayan, A., Gautam, N., Neupane, Y., & Sinha, A. K. (2013).        |
| 274 | Prevalence of Anaemia Amongst Adolescent Females in South. The Pharma innovation-Journal,       |
| 275 | 84-89. http://doi.org/10.11694/pamj.supp.2013.17.1.32450. accessed on 19th October 2016.        |
| 276 | Egbi, G., Steiner-asiedu, M., Kwesi, F. S., Ayi, I., Ofosu, W., Setorglo, J., Armar-klemesu, M. |
| 277 | (2014). Anaemia among school children older than five years in the Volta Region of Ghana,       |
| 278 | 17(Supp 1), 5-8. http://doi.org/10.11694/pamj.supp.2014.17.1.3205 accessed on 19th October      |
| 279 | 2016.                                                                                           |
| 280 | Einollahi, Behzad. (2014). Restless Leg Syndrome: A Neglected Diagnosis. Nephro-Urology         |
| 281 | Monthly. doi:10.5812.                                                                           |
| 282 | Isingoma, B. E. (2013). Prevalence and risk factors of nutritional anaemia. African Journal of  |
| 283 | Food Agriculture Nutrition and Development, 13(3), 7679–7692.                                   |
| 284 | http://doi.org/10.1038/sj.ejcn.1601864. Accessed on 18th November 2016.                         |
| 285 | Jamison D., Breman J., Measham A., Alleyne G., Claeson M., Evans D., Jha P., Mills A and P      |
| 286 | Musgrove.(2006). Disease Control Priorities in Developing Countries, 2nd ed., New York:         |
| 287 | Oxford University Press.                                                                        |
| 288 | Kaur, S., Deshmukh, P. R., & Garg, B. S. (2014). Epidemiological Correlates of Nutritional      |
| 289 | Anaemia in Adolescent Girls of Rural Wardha. Indian Journal of Community Medicine, 31(4),       |
| 290 | 7–10. Accessed on 18th November 2016.                                                           |

| 291 | Kraemer K and M Zimmerman. (2007). Nutritional anaemia. Zurich, Switzerland: Sight & Life           |
|-----|-----------------------------------------------------------------------------------------------------|
| 292 | Press.                                                                                              |
| 293 | Kuril, B. M., Lone, D. K., Janbade, C., Ankushe, R. T., & Gujarathi, V. V. (2015). Prevalence       |
| 294 | and risk factors of anaemia among adolescent girls in rural area, 14(April), 617–622.               |
| 295 | http://doi.org/10.1186/1472-6890-11-5. Accessed on 18th November 2016.                              |
| 296 | Leenstra, T., Kariuki, S. K., Kurtis, J. D., Oloo, A. J., Kager, P. A., & Kuile, F. O. (2014).      |
| 297 | Prevalence and severity of anaemia and iron deficiency : cross-sectional studies in adolescent      |
| 298 | schoolgirls in western Kenya. European Journal of Clinical Nutrition 2014, 681–691.                 |
| 299 | http://doi.org/10.1038/sj.ejcn.1601865. Accessed on 18th November 2016.                             |
| 300 | Lois R. Manning, J. Eric Russell, Julio C. Padovan, Brian T. Chait, Anthony Popowicz, Robert        |
| 301 | S. Manning, and James M. Manning (2007). Human embryonic, fetal, and adult hemoglobins              |
| 302 | have different subunit interface strengths. Correlation with lifespan in the red cell. Protein Sci. |
| 303 | 16(8): 1641–1658. doi: 10.1110/ps.072891007                                                         |
| 304 | Maakaron, Joseph. (2016). "Anemia: Practice Essentials, Pathophysiology, Etiology".                 |
| 305 | Emedicine.                                                                                          |
| 306 | Marc D. Berg, Peter D. Yorgin. (2008). Gas Exchange and Acid-Base physiology. Pediatric             |
| 307 | Respiratory Medicine (Second Edition)                                                               |
| 308 | Marcos Borato Viana. (2011). Anemia and infection: a complex relationship. Rev Bras Hematol         |
| 309 | Hemoter. 2011; 33(2): 90–92. doi: 10.5581/1516-8484.20110024                                        |
| 310 | Mclean, E., Cogswell, M., Egli, I., Wojdyla, D., & Benoist, B. De. (2013). Worldwide                |
| 311 | prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 2013.                  |
| 312 | accessed on 19th October 2016.                                                                      |
| 313 | National Heart Lung and Blood Institute. (2010) What Causes Anemia? Wayback Machine.                |
| 314 | Nelima, D. (2015). Prevalence and Determinants of Anaemia among Adolescent Girls in                 |
| 315 | Secondary Schools in Yala Division Siaya District, Kenya, 3(1), 1–9.                                |
| 316 | http://doi.org/10.13189/ujfns.2015.030101. Accessed on 25th October 2016.                           |

| 317 | Nirojini, P. S., & Pradesh, A. (2014). Prevalence of anaemia among the adolescent girls : a three |
|-----|---------------------------------------------------------------------------------------------------|
| 318 | months cross-sectional study. World Journal of Pharmacy and Pharmaceutical Sciences, 3(12),       |
| 319 | 827-836. Accessed on 25th October 2016.                                                           |
| 320 | Nkrumah, B., Nguah, S. B., Sarpong, N., Dekker, D., Idriss, A., May, J., & Adu-Sarkodie, Y.       |
| 321 | (2011). Hemoglobin estimation by the HemoCue® portable hemoglobin photometer in a                 |
| 322 | resource poor setting. BMC Clinical Pathology, 11(1), 5. http://doi.org/10.1186/1472-6890-11-5.   |
| 323 | Accessed on 25th October 2016.                                                                    |
| 324 | Pedersen AJ, Skjelbo E. (2008). Anemiaprevalence and etiology among acutely admitted              |
| 325 | geriatric patients. Ugeskr Laeger. 170(17):1453-7.                                                |
| 326 | Polin RA, Abman SH, Rowitch D, Benitz WE (2016). Fetal and Neonatal Physiology (5 ed.).           |
| 327 | Elsevier Health Sciences. p. 1085. ISBN 978-0-323-35232-1.                                        |
| 328 | Pomeranz AJ, Sabnis S, Busey S, Kliegman RM. (2016). Pediatric Decision-Making Strategies         |
| 329 | (2nd ed.). Elsevier. ISBN 978-0-323-29854-4                                                       |
| 330 | Rajini S (2010) Prevalence of anemia and factors influencing among rural adolescent girls.        |
| 331 | Indian journal of maternal and child health.                                                      |
| 332 | Rodak BF (2007). Hematology : clinical principles and applications (3rd ed.). Philadelphia:       |
| 333 | Saunders.p. 220. ISBN 978-1-4160-3006-5.                                                          |
| 334 | Sandra LH., Zehner M.P., Harvey .P., Luann M.A., Piwoz .E., Samba .K.N., Combest .C,              |
| 335 | Mwadime .R and V. Quinn. (2001). Essential Health Sector Actions to Improve Maternal              |
| 336 | Nutrition in Africa: regional centre for quality of health care at Makerere University in Uganda  |
| 337 | and linkages, Washington DC: Academy for Educational Development.                                 |
| 338 | Talpur, A., Khand, A. A., Laghari, Z. A., Memon, A., Bhurgri, I. F., & Laghari, Z. A. (2012).     |
| 339 | Prevalence of anaemia in adolescent girls Aabroo Talpur, Aftab Ahmed Khand, Zulfiqar Ali          |
| 340 | Laghari. Pak J Physiol 2012, 8 (Suppl 1). Accessed on 25th October 2016.                          |
| 341 | Tawfik, A. A., Hanna, E. T., & Abdel-maksoud, A. M. (2015). Anaemia and Iron Deficiency           |
| 342 | Anaemia in Egypt, 5(4), 30–34. Accessed on 25th October 2016.                                     |

| 343   | UNICEF/WHO. (2009). Prevention and Control of Iron Deficiency Anaemia in Women and            |
|-------|-----------------------------------------------------------------------------------------------|
| 344   | Children Prevention and Control of Iron Deficiency Anaemia in Women and Children. Accessed    |
| 345   | on 25th October 2016.                                                                         |
| 346   | USAID. (2014). Rwanda : Nutrition Profile, (June), 7–10. Accessed on 25th October 2016.       |
| 347   | USAID. (2015). Building on Uganda 's Progress in Reducing Anaemia. Accessed on 25th           |
| 348   | October 2016.                                                                                 |
| 349   | Uthman E (2009). Understanding Anemia. Univ. Press of Mississippi. p. 23. ISBN 978-1-60473-   |
| 350   | 701-1.                                                                                        |
| . = . |                                                                                               |
| 351   | WHO. (2012). WHA Global Nutrition Targets 2025 : Anaemia Policy Brief. Accessed on 25th       |
| 352   | October 2016.                                                                                 |
| 353   | WHO. (2005). Worldwide prevalence of anaemia. accessed on 19th october 2016.                  |
| 354   | WHO. (2011). The global prevalence of anaemia in 2011. WHO Database. accessed on 19th         |
| 355   | october 2016.                                                                                 |
|       |                                                                                               |
| 356   | Wintrobe MM, Lee GR. Wintrobe's Clinical Hematology. 10th Edition. Baltimore, Md.:            |
| 357   | Williams & Wilkins, 19.                                                                       |
| 358   | Yasemin I.B., Aysun K., Dolunay G., İbrahim E.Ç., (2012). Prevalence and Risk Factors of      |
| 359   | Anemia among Adolescents in Denizli, Turkey. Iran J Pediatr; 22(1): 77-81.                    |
| 360   | Yerpude, P. N., & Jogdand, K. S. (2015). ACross-Sectional Study to Find out Prevalence of     |
| 361   | Anaemia among Adolescent Girls in an Urban Slum Area of South India. International Journal of |
| 362   | Health Sciences and Research, 5(October), 50–53, accessed on 19thoctober 2016                 |
| 363   |                                                                                               |
| 202   |                                                                                               |