
1

Original Research Article1

Confused pixels interference in maps of2

agricultural management zones3

4

5

ABSTRACT6

Management zones can be delimited using fuzzy logic, a technique that assigns values of degrees of
pertinence to each pixel of a map. When the value tends to 1, these degrees indicate that there is
certainty that the pixel belongs to a certain class of the management zone. However, in the boundary
region between classes, degrees of pertinence do not tend to 1, indicating that there is confusion about
which class such pixels belong. Depending on the area occupied by confused pixels, the use of
management zones as a precision agriculture technique can be compromised. Thus, the behavior of the
area occupied by pixels with different degrees of pertinence was evaluated as a function of the amount
of information used to generate the management zones. Those zones were generated based on
altitude, soil apparent electrical conductivity in soil depths of 0.20 m and 0.40 m, soil water content and
clay content. When adding information to generate the management zones, there was an increase in
the area occupied by pixels with degrees of pertinence lower than 0.5. However, the insertion of more
than one layer of information to delineate the management zones improved the concordance between
the management zones and the maps of the soil attributes. We suggest that some samples should be
distributed in the border regions between the management zones, when these are delimited from the
use of two or more variables.
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1. INTRODUCTION8

Soil properties are susceptible to temporal and spatial variation due to intensive agricultural9
activities. As a result, it is of utmost importance a continuous follow-up of the soil physical and10
chemical properties throughout the area [1]. Within this context,precision agriculture proposes a11
re-organization of the traditional agricultural management system by considering the spatial12
variability inside the area, towards a low-input, high-efficiency, and sustainable agriculture [2, 3].13

14
In order to obtain crop productivity data, expressed by maps, it is necessary to perform data15
collection. The more data collected, the more consistent is the information generated and the16
diagnosis regarding the variability in the crop [3]. However, depending on the area extension17
and the desired sample density, the sampling cost may be a limiting factor. Therefore, the18
generation of management zones appears as one of the solutions to this impasse [4].19

20
In order to delimit management zones, several variables can be used to generate maps. Some21
of these variables are: soil apparent electrical conductivity [5, 6, 7, 8], productivity maps [9, 10],22
soil granulometry [11], soil water content [12] and images obtained by aerial platforms [13]. As a23
typical geographic information system, the base information for mapping the zones is24
associated with Cartesian coordinates, which allow the mapping of the area. Classification25
algorithms analyze these information and divide the data into distinct zones. Fuzzy logic is26
commonly used for this purpose.27
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Unlike the conventional logic and the classical set theory, the fuzzy logic assigns values of29
degree of pertinence to each classified pixel. These values can range from zero to one and30
mean, respectively, that an element does not belong to a particular set and that an element31
belongs completely to the classified set. Values between zero and one represent partial32
degrees of pertinence.33

34
In the agricultural sector, there are several studies that use fuzzy logic to map crop productivity.35
The authors [14] use the fuzzy logic to map the fertility of a humic Yellow Red Oxisol cultivated36
with arabica coffee variety, based on the sum of bases, cation exchange capacity and base37
saturation, considering the spatial variability. The authors [15] applied a GIS-based integration38
model, using fuzzy logic as a function of three variables: soil electrical capacity, nitrogen39
adequacy index and elevation, resulting in a nitrogen requirement map. The authors [16]40
analyze the fertility of an experimental area, based on soil chemical attributes and its relation41
with conilon coffee productivity, using geostatistics and the fuzzy classification system.42

43
It is likely that in the border region between the management zones, the classified pixels44
present partial degrees of pertinence, which may indicate the existence of confusion about45
which class these pixels belong to. Depending on the range of the area occupied by the pixels,46
with confused classification, the use of management zones as a precision agriculture technique47
may be compromised. Thus, the present study evaluated the behavior of the area occupied by48
pixels with different degrees of pertinence, as a function of the information used to generate the49
management zones.50

2. MATERIAL AND METHODS51

2.1. Experimental Site52

Soil samples were collected from an area with 20.2 ha of coffee cultivation (Coffea arabica L.),53
where there is predominance of Yellow Red Latosol. The experimental site presents54
mountainous relief, with average altitude of 915 m, and is located at the coordinates 20° 42' 33"55
S and 42° 34' 17" W.56

2.2. Georeferencing of soil sampling sites57

The sampling points in the field were allocated following a systematized distribution, with a grid58
size of approximately 25 x 25 m, totalizing 275 points. These were georeferenced using the59
Topographic DGPS (L1), Trimble brand and Pro XT model. The differential correction was made60
using the Brazilian Institute of Geography and Statistics (IBGE) database. The coordinate61
system used was the UTM, with Datum South America 1969 and zone 23S.62

2.3. Determination of soil attributes63

The soil apparent electrical conductivity (ECa) was determined using a portable sensor64
manufactured by Landviser©, model LandMapper© ERM-02 whose measurement occurs by the65
principle of electrical resistivity. The ECa measurement occurred in the soil depth from 0 to 0.2066
m and from 0 to 0.40 m. Granulometric composition analyses were carried out based on the67
methodology of the author [17, 18]. Soil water content was determined using a real-time sensor68
manufactured by Spectrum Technologies, FielScout TDR 300 model, in the same spots where69
the ECa were measured and soil samples, for determination granulometric composition70
analyses, were taken. In a radius of 1 meter around each of the 275 georeferenced points, soil71
samples were collected. Each sample was composed of two simple subsamples in soil depth72
from 0 to 0.20 m. For this, a dutch-type auger was used. The soil samples were analyzed in the73
laboratory, in order to obtain the contents of pH, phosphorus (P), potassium (K), calcium (Ca2+)74
and magnesium (Mg2).75

76
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The available phosphorus and potassium contents were determined by the Mehlich-1 extractor77
[19]. The exchangeable contents of calcium and magnesium were determined by the KCl78
extractor (1 mol L-1). The pH content in water was determined using a ratio of 1:2.5 (parts of79
suspended soil : parts of water) by using a potentiometer with combined electrode.80

2.4. Analysis for outliers detection in the database81

The database was submitted to a previous analysis, in order to detect possible outliers. The82
sample, which had an absolute value higher than the average added three times the standard83
deviation and lower than the average subtracted three times the standard deviation [20], or if84
the neighboring samples had very different values, this would be considered as an outlier and,85
consequently, excluded from the database for further analysis.86

87

2.5. Determination of spatial variability of the soil attributes88

The collected data were submitted to geostatistical analysis for spatial variability89
characterization. The geostatistical analysis procedure was performed using the Optimize90
Model feature of the Geostatistical Wizard tool, available in ArcGIS v. 10.3.91

92
The spatial models chosen in the semivariogram adjustment were those with the lowest root93
mean square error (RMS) in the cross-validation. With the spatial models fitted, ordinary kriging94
was used to interpolate the data. Then, maps of the spatial variability of altitude, soil water95
content, soil apparent electrical conductivity and soil clay content were generated.96

97

2.6. Delimitation of management zones98

The management zones were established by the computer program KRIG-ME [21], based on99
the maps generated by the interpolated data of altitude, soil water content, clay content and soil100
apparent electrical conductivity in soil depths from 0 to 0.20 m and 0 to 0.40 m. The area was101
divided into three management zones and the pixels size of the maps were 5 x 5 m. As a result,102
nine maps were generated containing three management zones each. Table 1 shows the103
variables used to define the management zones and their respective representations.104

105

Table 1. Variables used to define the management zones and their respective106
representations.107

Management
Zones Variables Representation

1 Soil apparent electrical conductivity in soil depth of 0.20 m ZM20

2 Soil apparent electrical conductivity in soil depth of 0.40 m ZM40

3 Soil water content ZMU

4 Soil apparent electrical conductivity in soil depth of 0.20 m
and altitude ZM20A

5 Soil apparent electrical conductivity in soil depth of 0.20 m
and soil water content ZM20U



4

6 Soil apparent electrical conductivity in soil depth of 0.20 m
and clay content ZM20Arg

7 Soil apparent electrical conductivity in soil depth of 0.20 m,
clay content and altitude ZM40ArgAlt

8 Soil apparent electrical conductivity in soil depth of 0.20 m,
altitude and soil water content ZM40AltU

9 Soil apparent electrical conductivity in soil depth of 0.20 m,
soil water content and clay content ZM40UArg

108

2.6.1. Analysis of the degrees of pertinence109

The degrees of pertinence of each pixel were obtained by the computer program KRIG-ME [21],110
as one of the results of map classification in three management zones. As each map was111
divided into three management zones (ZM1, ZM2 and ZM3), a map pixel should present three112
degrees of pertinence, G1, G2 and G3, referring to its possibility of belonging to ZM1, ZM2 and113
ZM3, respectively. The sum of the three degrees of pertinence of a pixel must be equal to one.114
Thus, if any of the degrees of pertinence has a value greater than 0.5, it means that the pixel to115
be classified in one of the management zones has an absolute majority (> 50%) in relation to116
the chance of pertinence to the corresponding zone. In this way, the pixels that presented all117
degrees of pertinence lower than 0.5 were considered as confused pixels.118

119
After the design of the management zones 1, 2 and 3, the pixels considered confused were120
separated from the others. With the combination of the variables altitudes, soil water content,121
clay content and soil apparent electrical conductivity, from soil depths of 0 to 0.20 m and 0 to122
0.40 m to delimit the management zones, the result of this stage were nine maps containing,123
each of them, three management zones and one zone composed by the confused pixels.124

125

2.7. Comparison between the results for each level of information used to126
generate the management zones127

The variability of the attributes pH, phosphorus (P), potassium (K), calcium (Ca2+) and128
magnesium (Mg2) was classified in three management zones using the KRIG-ME software129
program [22]. Thus, five additional maps were generated, consisting of three management130
zones each. These maps of the areas of management of the attributes pH, phosphorus (P),131
potassium (K), calcium (Ca2 +) and magnesium (Mg2) were used as reference for comparison132
between the maps containing the three management zones and the maps containing the zone133
of confused pixels which, in turn, were based on the variables altitude, soil water content, clay134
content and soil apparent electrical conductivity in soil depths of 0 to 0.20 m and 0 to 0.40 m.135

136
This comparison allowed to estimate the Kappa concordance coefficient (equation 1) based on137
the data from the error matrix [22].138

139
140 = ∑ ∑ ( ⊕ ⊕ )∑ ( ⊕ ⊕ )141

(1)142
143

Where:144 = Kappa coefficient estimation;145 = value in line i and column i (diagonal) of the error matrix;146 ⊕ = total in line i;147

(1)= − ( ⊕ ⊕ )− ( ⊕ ⊕ )
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⊕ = total in column i;148 = total number of samples; and149 = total number of zones.150

The difference between two independent Kappa coefficients was tested at a 5% significance151
level. The calculated Z value (equation 2) that exceeded the tabulated Z value, corresponding to152
the determined level of significance, reflected the lack of statistical equality between the two153
Kappa coefficients, differentiating them significantly from each other. If the Kappa coefficients154
are statistically different, it is concluded that the confused pixels interfere in the result provided155
by the management zones map. Otherwise, the opposite is true.156

157
158 Z = (2)159

160
Where:161 = Z standardized and normally distributed statistics;162

e = Kappa coefficients to be compared;163 = Kappa coefficient variance.164

165

3. RESULTS AND DISCUSSION166

3.1. Spatial variability167

Figures 1 and 2 show the results of the spatial variability characterization of the attributes used168
in the present work. It can be observed in Figure 1 that there is a similarity in the spatial169
patterns between the attributes ECa20, ECa40 and soil water content. This can be justified by170
the fact that soil water content has an influence on soil apparent electrical conductivity [23, 24,171
25]. Also, it can be analyzed by the comparison between the maps of soil apparent electrical172
conductivity and the calcium and magnesium attributes, that there are similarities between their173
spatial distribution patterns, which can be an indication that the ECa is a good parameter for174
defining management classes for these attributes.175

176
In the maps of altitude and clay content variables it is possible to verify the most continuous177
spatial patterns among all the generated maps. This feature makes those information relevant178
to the delimitation of the management zones, because the more continuous the delimited179
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zones, the easier it will be to manage the application of inputs at a variable rate.180

181
Fig. 1. Maps of spatial variability of the attributes used in the management zones182
delimitation.183

184

It can be observed in Figure 2 that the use of more than one layer of information in the definition185
of management zones can be interesting, if this information contains characteristics of interest,186
such as spatial continuity and similarity with the spatial pattern of the attributes of interest, for187
soil fertility correction. The authors [26] and [21] indicate that the use of two information for188
delimitation of management zones provides better results.189
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190
Fig. 2. Maps of spatial variability of the soil atributes.191
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3.2. Comparison of sampling strategies193

As the area was classified in three management zones, if the degrees of pertinence (G1, G2194
and G3) of a given pixel are equal to 0.33, it indicates that this pixel reached the highest195
possible level of confusion. Among the matrices of pertinence generated after the design of the196
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management zones, only those generated on the basis of two and three variables presented197
pixels with degrees of pertinence mathematically close to 0.33, as represented in Table 2.198
Table 2. Highest degrees of pertinence and quantity of pixels per management zone.199

200

Management
zone Representation Highest degree of

pertinence Number of pixels

1 ZM20 0.47 9
2 ZM40 0.47 6
3 ZMU 0.46 5
4 ZM20A 0.35 5
5 ZM20U 0.39 1
6 ZM20Arg 0.34 4
7 ZM40ArgAlt 0.34 36
8 ZM40AltU 0.34 2
9 ZM40UArg 0.34 3

201
As the number of information used to define the management zones increased, the area202
occupied by confused pixels grew, with degrees of pertinence less than 0.5, as shown in Figure203
3. The confused pixels may belong to zones different from those that they were initially204
classified. Thus, the larger the area occupied by these pixels, the greater the possibility of a205
wrong decision regarding the treatment that this area should receive.206

207
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208
Fig. 3. Area occupied by pixels with degrees of pertinence lower than 0.5 (C%).209

210

An area with uncertain classification may receive a management beyond or below what is211
necessary. It may occur that the area requires simpler management (lower cost), but instead it212
receives a treatment that will result in waste of the input, or even the area receives a213
management that is less than necessary, resulting in ineffective treatment and, consequently, in214
a decrease in productivity. In both cases, financial losses occur. Thus, the management zones215
generated with more than two variables may be more sensitive to these problems, since the216
area occupied by confused pixels may correspond to 20% of the total area (Figure 3).217

218
In general, the insertion of more than one layer of information to delimit the management zones,219
although it increased the area occupied by confused pixels, it also improved the concordance of220
the management zones with the maps of the soil attributes (Table 3). Comparing the221
concordances of the management zones maps without the distinction of the confused pixels222

C =1.70% C =1.46% C =1.61%

C =9.70% C =6.16% C =11.35%

C =20.40% C =11.62% C =18.71%

Management Zones

Confused
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with the concordances of the management zones maps without the confused pixels, it is noticed223
that in most cases there was no significant difference between them. This result is specifically224
observed in cases where one or two variables were used to delimit the management zones. In225
other words, the confused pixels did not interfere in the concordance between the management226
zones and the maps of the soil attributes. The exception occurred when the management zones227
were delimited using three variables.228

229

Table 3. Kappa coefficient of concordance between management zones and soil230
attributes maps.231

Variables Management
Zone

Kappa
pH Phosphorus Potassium Calcium Magnesium

1

ZM20 0.20A** 0.08A 0.20A 0.26A 0.25A

ZM20C*
0.20A 0.08A 0.20A 0.25A 0.25A

ZM40 0.09B 0.11B 0.13B 0.10B 0.13B

ZM40C*
0.09B 0.11B 0.13B 0.09B 0.13B

ZMU 0.19A 0.12B 0.08C 0.24A 0.28C

ZMUC*
0.19A 0.12B 0.07C 0.19C 0.28C

2

ZM20A 0.28C 0.12B 0.27D 0.35D 0.42D

ZM20AC*
0.19A 0.12B 0.07C 0.24A 0.28C

ZM20U 0.21D 0.08A 0.19A 0.30E 0.33E

ZM20UC*
0.20A 0.09A 0.19A 0.29E 0.31E

ZM20Arg 0.28C 0.20C 0.26D 0.20C 0.22F

ZM20ArgC*
0.24E 0.19C 0.24E 0.18C 0.21F

3

ZM20AltArg 0.47F 0.09A 0.19A 0.39F 0.37G

ZM20AltArgC*
0.39G 0.19C 0.17F 0.35D 0.37G

ZM20AltUmi 0.41G 0.14D 0.14B 0.37D 0.34E

ZM20AltUmiC*
0.36H 0.13B 0.12B 0.33D 0.31E

ZM20UArgUmi 0.20A 0.17E 0.14B 0.29E 0.29C

ZM20UArgUmiC*
0.16I 0.13B 0.12B 0.25A 0.25A

* Management zones with area represented by pixels classified as confused; * Different letters in the
columns indicate statistical difference at a 5% level of significance.
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In order to practice precision agriculture, these results show that fuzzy logic can be used to232
delimit management zones. However, when more than one information is used to delimit the233
zones, and at the moment of the variables sampling after this delimitation, we suggest that234
some samples should be distributed in the boundary regions between the zones. Thus, it is235
possible to better analyze which zone a given area belongs to, using information from the236
attributes to be surveyed in the area.237

4. CONCLUSION238

Fuzzy logic has proven to be an efficient technique to delimit management zones. Even though239
there are confused pixels in the classification, the final result is not negatively influenced by the240
uncertainty of the technique.241

The use of more than one information for the delimitation of management zones increased the242
concordance between the defined management zones and the maps of soil attributes.243

We suggest that some samples should be distributed in the border regions between the244
management zones, when these are delimited from the use of two or more variables.245
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