1

<u>Original Research Article</u> Botanical Analysis of Seed Bank in a Cultivated Area of Integration Livestock Agriculture

ABSTRACT

The seed bank has an ecological role of great importance in the re-composition of new individuals in plant communities. In the integration system livestock agriculture, the seed bank usually presents a serious problem, the agricultural activity, because this type of activity favors weed infestations over a long period of time. The different soil management systems and cultures have decisive influence on germination and composition of the flora of an area and in the seed bank of the agricultural soil. The objective of this study was to identify weed species that emerged during the analyzed period of the seed bank at different depths in an area of integration livestock agriculture. The present study was conducted in an area of integration livestock agriculture in the Center of Agrarian Sciences, of the Federal University of Alagoas (CECA - UFAL), located in the municipality of Rio Largo - AL, Brazil, in the year 2017. 20 samples at each depth: 0.0 to 10.0 cm and of 10.0 to 20.0 cm were collected. In possession of the data, it was possible to determine several phytosociological characteristics. It was observed in the composition of the seed bank high diversity of species with great variability. The seed bank has a greater diversity in the first soil layer (0.0 to 10.0 cm), presenting in its total density a decrease to increase the depth.

12

Keywords: Infest plants, phytosociological indexes, phytosociological survey, Soil depth,
 Productive systems.

15 **1. INTRODUCTION**16

The active seed bank of weeds consists of all viable diaspores present in the soil; all these components determine the composition of emerged plants in the area. Being characterized by presenting dynamic behavior, on the basis of the additions constant through of the production, dispersal and seed losses and its structure is closely related to diversity and abundance of species that make up weed populations over the soil. In cultivated soils, the seed bank is dominated, often, by few species of weeds, in which species of difficult control higher values or those more adapted to the cropping systems [1].

In cultivated soils, seeds of weeds annual are the main constituents of the bank, usually
 reaching 95% of the total, being the seeds of perennial weeds, little represented [2]. Weed
 communities can vary significantly in response to the edaphoclimatic characteristics, the
 adopted management of cultivation and the use of herbicides.

The process of infestation of weeds in growing areas depends directly on the germination of their seeds [3], which in turn, is influenced by external or environmental factors and internal to the seed. Each factor can act by itself or in interaction with the other [4]. Among the external factors, we can cite the temperature, influences the germination both by acting on the speed of water absorption, in the same way the biochemical reactions that determine the whole germination processes [5]. Another factor that affects germination is the depth at which the seed is in the soil profile [126]. Yet, it is of fundamental importance to know the
conditions imposed by the environment in the seed germination process, being of utmost
importance for the development of efficient techniques what aimed at the integrated control
of weeds. In this way weed control plays an extremely important role in the management of
cultivated plants, presenting direct effects on crop yields per unit area and in production
control costs. Control methods should promote greater rationality, effectiveness and reduction in
control costs [743].

Therefore, the evaluation of the species that make up the seed bank of the soil is essential, serving as an indication for decision-making in which method or management strategies to be adopted in weed control. Being considered a dynamic system, where the total accumulated seeds It is variable according to the balance of inputs and outputs in seeds [1448]. According to [1459], the seed bank is the set of seeds available for germination in the soil, being found in various ways.

In view of the foregoing, the objective of this study was to botanical analysis of seed bank in a cultivated area of integration livestock agriculture.

2. MATERIALS AND METHODS

The study was conducted from January to May 2017, in the Agrarian Sciences Center of the Federal University of Alagoas (CECA-UFAL), located in the municipality of Rio Largo - AL. According to [4610] the soil of the experimental area was classified as Yellow Latosol argisolic cohesion of medium-clayey texture. The Municipality is situated at a Lat. 9° 27'S, Long. 35° 27'W, according to Köppen classification is type As, climate tropical rainy with dry summer, average altitude of 100 to 200 m above sea level, with temperature and rainfall, annual averages, between 24 to 26 °C and 1300 to 1600 mm, respectively [471].

Table 1, presents the climatic data measured in the experiment during the conduction of same.

Table 1. Air temperature (average, minimum and maximum) and rainfall during the months of January to May, Rio Largo - AL, 2017.

Variables	Months						
variables	Jan	Feb	Mar	Apr	May		
\sim	Average	25.9	26.5	26.5	25.7	24.6	
Air temperature (°C)	Minimum	20.7	20.4	20.6	21.3	21.0	
	Maximum	32.4	33.0	33.7	31.6	33.3	
Rainfall (mm)		41.9	12.2	45.7	168.1	584.7	
Courses Assesses	ta a rala an Caatar /	[Coderal]	in la como litere	of Manage			

Source: Agrometeorology Sector / Federal University of Alagoas – UFAL

A collection area of 0.5 ha⁻¹ was selected to carry out the study. 40 soil samples were collected on January 25, 2017, of sector of sheep farming to evaluate the seed bank in an integrated system livestock agriculture.

75 The experiment was implemented in design entirely at random, in which the area was 76 divided into 5 blocks, being collected 20 samples in the depth of 0.0 cm to 10.0 cm cm and 77 20 samples of 10.1 cm to 20.0 cm with spacings equidistant of 10 m x 10 m, between all 78 sample points, in zig-zag. the inventory method that was divided into four quadrants (0.25 x 79 0.25) of form random in the area, to collect all samples.

80

51 52

53 54

55

56

57

58

59 60

61

62

63 64

65

66

67 68

69

81 82 83 84 85 86 87 88 89 90 91	Samples for physical and chemical analysis were collected from random points at two depths of 0.0 cm to 20.0 cm and 20.1 cm to 40.0 cm, physical analysis showed the following characteristics: Total sand: 566 g.kg ⁻¹ ; Silt: 125 g.kg ⁻¹ ; Clay: 308 g.kg ⁻¹ .Already for the result of the chemical analysis of the soil it can be observed to follow: pH = 5.3, organic matter = 1.261.26%,Na7ppm,P2ppm,K40ppm,Ca+Mg1.7meq/100mL,Al=0.15meq/100meq/100mL,H+Alasses(SB)=1.8meq/100mL,capacity=4.8meq/100mL,basesaturation(V)=37,9 % (Source: Central-Analytical of Alagoas).
92 93 94 95 96 97 98 99	Soon after the samples collection, the same were listed and routed for drying the shadow during 4 days, under a plastic canvas. After drying the samples were fragmented and standardized, in followed were removed remains of branches, dead leaves and animal feces, of 500 g of soil that were distributed in plastic trays with dimensions of $20.0 \times 26.0 \times 7.0$ cm and allocated on rails under normal conditions of humidity, precipitation and temperature, that is: without cover, exposed to the climatic effects. The trays were perforated to drain excess water.
101 102 103 104 105 106 107 108	The determination of the seed bank was made after the emergence of the seedlings, whose identification and counting were performed every 7 days, up to a total period of 60 days. after the first evaluation the samples were removed from the trays, homogenised and made a new breaking of clods and the revolving of the soil and the samples were reseated for the second experimental stage, for another 60 days. following the same intervals assessments (Figure 1), after the implementation of the variables under study.
109 110 111	1-A 1-B 1-B 1-C 1-B

Formatted: Highlight

Formatted: Highlight

	Ageratum convzóides	Mentrasto	Dicotyledon	Annual
Asteraceae	Eclipta alba	Lanceta	Dicotyledon	Perennial
	Eupatorium ballotaefolium	Maria pretinha	Dicotyledon	Annual
	Emilia coccínea	Pincel	Dicotyledon	Annual
Amaranthaceae	Alternanthera tenella	Apaga Fogo	Dicotyledon	Perennial / Annual
Brassicaceae	Cleome affinis	Mussambê	Dicotyledon	Annual
	Cyperus rotundus	Tiririca	Monocotyledon	Perennial
Cyperaceae	Cyperus iria	Junquinho	Dicotyledon	Perennial
	Fimbristylis miliaceae	Cominho	Dicotyledon	Perennial
Convolvulaceae	Ipomoea cairica	Jitirana	Dicotyledon	Annual
	Euphorbia heterophylla	Burra Leiteira	Dicotyledon	Annual
Euphorbiaceae	Croton lobatos	Erva-de-Rola	Dicotyledon	Annual
	Chamaesyce	Erva-de-	Dicotyledon	Annual
	hyssopifolia	Santa Luzia		
Fabaceae	Calopogonium mucunoides	Calopogônio	Dicotyledon	Annual
Loganiaceae	Spigelia anthelmia	Lombrigueira	Dicotyledon	Annual
Lamiaceae	Marsypianthes chamaedrys	Hortelã-do- Campo	Dicotyledon	Annual
Molluginaceae	Mollugo verticillata	Capim Tapete	Dicotyledon	Annual
Nyctaginaceae	Boerhavia diffusa	Pega Pinto	Dicotyledon	Perennial
	Digitaria sanguinalis	Capim- Colchão	Monocotyledon	Annual
	Eragrostis pilosa	Capim Mimoso	Monocotyledon	Annual
	Brachiaria mutica	Capim fino	Monocotyledon	Annual
	Cenchrus echinatus	Carrapicho	Monocotyledon	Annual
6	Dactyloctenium aegyptium	Capim Mão de Sapo	Monocotyledon	Perennial
Poaceae	Paspalum notatum	Grama Batatais	Monocotyledon	Perennial
	Brachiaria decumbens	Capim Brachiária	Monocotyledon	Perennial
	Digitaria horizontalis	Capim-Milhã	Monocotyledon	Annual
	Eleusine indica	Capim-pé-de- Galinha	Monocotyledon	Annual
	Digitaria insularis	Capim- Amargoso	Monocotyledon	Perennial

		Setaria	Capim-rabo-	Monocotyledon	Annual		
		geniculata	de-Raposa				
	Phyllanthaceae	Phyllanthus	Quebra-pedra	Dicotyledon	Annual		
		tenellus					
	Portualacaceae	Portulaca	Beldroega	Monocotyledon	Annual		
		oleracea					
		Solanum	Jurubeba	Dicotyledon	Annual		
	Solanaceae	paniculatum					
		Streptosolen	Marianinha	Dicotyledon	Perennial		
		, jamesonii					
156		,			11		
157	According to [193]	they observed that	Asteraceae and P	oaceae are the mai	in families of		
158	weeds predominar	nt in Brazil. These fam	nilies are present in	traditional areas of	production of		
159	sunflower, soybea	n, corn, being found ir	n cultures of great e	economic importance	, as in areas		
160	of crops such as su	ugarcane and pasture					
161							
162	Among the species	s observed, greater p	redominance of dic	otyledonous plants v	vith 60.6% of		
163	the total plants we	ere identified, represe	nted by 13 botanic	al families, covering	20 species,		
164	while monocotyle	dons had 39.4% of	representativenes	s in 03 families	(Cyperaceae,		
165	Poaceae, Portuala	caceae) with a total o	of 13 species, in are	eas cultivated with th	ne integration		
166	system livestock a	griculture.					
167	Asserting to [014		of diast de dans aus				
108	According to [214	j a greater diversity	of dicotyledonous	weeds in competi	tion with the	Formatted	
109	cultivated areas. C	d woro Amoronthuo o	<u>zioj</u> nave venileu i				
170	Chamaesvce hiss	u were Amaraninus s onifolia. Sida snn and	d Phylantus tonollu	being that 85% o	f the species		
172	were dicotyledons	[2316] most of the we	ed species presen	t a rapid dermination	with a short		
173	cycle and large production of diaspores and increases the partition of resources in						
174	reproduction structures can be extremely aggressive in competition with agricultural crops						
175	According to [2017	1 in grazing areas with	n intense weed infe	station reduce the ai	nimal support		
176	capacity of pasture	s preventing the adec	quate use of pasture	es by the animal.			
177							
178	Among the observ	ed species some we	ere only seen at sp	ecific depths, devel	oping only in		
179	samples of depth of	of 0.0 to 10.0 cm, with	09 species that sto	ood out among the o	thers: <i>Eclipta</i>		
180	alba, Eupatorium	ballotaefolium, Cle	eome affinis, Cha	amaesyce hyssopif	olia, Diffuse		
181	Boerhavia, Pasp	alum notatum, Bra	chiaria decumbe	ns, Digitaria horiz	zontalis and		
182	Streptosolen jame	sonii. On the other ha	and, at depth of 10).0 to 20.0 cm only	03 species if		
183	highlight: Digitaria	sanguinalis, Cench	<i>irus echinatus</i> and	d Solanum panicul	atum. These		
184	species may have	arisen due to agricult	ural activities in the	areas and the use of			
185	that make the soll	revolving making wi	ith what the seeds	that if find in layer	s more deep		
100	come to the surfac	e of the soll.					
188	The systems of c	ultivation in the dyna	mice of the wood	nonulation they are	amended in		
189	accordance with th	e seasons of the year	r the first rains pro	mote seed derminati	on present in	Formatted	
190	the active seed ba	nk of the soil [2418]	What was evidence	ed by [2519] when t	hey analyzed		
191	the monthly distril	oution of weed emer	gence, also noted	that due to the fi	irst rains on		
192	average 70% of se	edling emergence res	sults from the first s	eed germination flow	which make		
193	up the active bank	of viable soil seeds.		gen indicit nov			
194							
195	So, over time, the	decrease in the num	ber of emerged pla	ints is more pronour	ced than the	Formatted	
196	number of viable s	eeds present in the so	oil bank, due, mainl	y, to the fact that the	se seeds are		

I: Highlight

I: Highlight

I: Highlight

197 not always strong enough to germinate, giving rise to normal seedlings with a significant 198 survival capacity [260]. 199

The frequency (F) in which the species presented the highest occurrence indexes for the integration system for livestock agriculture in the depth of 0.0 to 10 cm were *Eleusine indica*, *Cyperus iria* go with 100%, *Portulaca oleracea*, *Calopogonium mucunoides* with 60%, *Cyperus rotundus* and *Ageratum conyzoides* presenting 50% were observed in all samples analyzed, indicating uniform distribution in the area. According to [271] these heterogeneities of species are attributed to edaphoclimatic factors and the microhabitats in the soil (Table 3).

Formatted: Highlight

207 208 209 Table 3. Weed phytosociological indexes in the soil seed bank under integration system for livestock agriculture of species found in the depth 0.0 to 10.0 cm, Rio Largo - AL, 2017.

Species	F	D	Α	FR	DR	AR	IVI	IVIR
Eleusine indica	1.00	30.90	13.43	13.43	17.62	7.55	38.70	10.95
Croton lobatos	0.40	6.20	7.75	4.70	3.53	4.35	12.59	3.50
Chamaesyce hyssopifolia	0.30	1.30	2.16	3.52	0.74	1.21	5.48	1.55
Cleome affinis	0.25	1.00	2.00	2.94	0.57	1.12	4.63	1.31
Eupatorium ballotaefolium	0.10	0.20	1.00	1.17	0.11	0.56	1.85	0.52
Portulaca oleracea	0.60	3.50	2.91	7.05	1.99	1.63	10.72	3.03
Calopogonium mucunoides	0.60	2.10	1.75	7.05	1.19	0.98	9.24	2.61
Ipomoea cairica	0.10	0.20	1.00	1.17	0.11	0.56	1.85	0.52
Digitaria insularis	0.30	3.40	5.66	3.52	1.93	3.18	8.65	2.44
Mollugo verticillata	0.25	1.80	3.60	2.94	1.02	2.02	5.99	1.69
Brachiaria mutica	0.20	1.20	3.00	2.35	0.68	1.68	4.72	1.33
Eragrostis pilosa	0.25	7.60	15.20	2.94	4.33	8.54	15.82	4.47
Digitaria horizontalis	0.15	2.40	8.00	1.76	1.36	4.49	7.63	2.15
Cyperus rotundus	0.50	16.80	16.80	5.88	9.58	9.44	25.18	7.12
Paspalum notatum	0.10	0.50	2.50	1.17	0.28	1.40	2.91	0.82
Cyperus iria	1.00	5.09	25.45	11.76	29.03	14.30	55.10	15.59
Streptosolen jamesonii	0.15	0.60	2.00	1.76	0.34	1.12	4.83	1.36
Dactyloctenium aegyptium	0.25	2.90	5.80	2.94	1.65	3.26	27.00	7.63
Ageratum conyzóides	0.50	34.70	34.70	5.88	19.79	19.50	45.78	12.95
Alternanthera tenella	0.20	1.10	2.75	2.35	0.62	1.54	4.80	1.35
Boerhavia diffusa	0.10	0.50	2.50	1.17	0.28	1.40	3.69	1.04
Setaria geniculata	0.15	1.50	5.00	1.76	0.85	2.81	6.36	1.80
Spigelia anthelmia	0.20	1.70	4.25	2.35	0.96	2.38	5.93	1.67
Euphorbia heterophylla	0.15	0.40	1.33	1.76	0.22	0.74	3.51	0.99
Phyllanthus tenellus	0.30	1.40	2.33	3.52	0.79	1.31	5.69	1.61
Eclipta alba	0.05	0.10	1.00	0.58	0.05	0.56	1.26	0.35
Emilia coccínea	0.05	0.10	1.00	0.58	0.05	0.56	1.26	0.35
Brachiaria decumbens	0.05	0.10	1.00	0.58	0.05	0.56	1.26	0.35
Fimbristylis miliaceae	0.05	0.10	1.00	0.58	0.05	0.56	1.26	0.35
Marsypianthes chamaedrys	0.05	0.10	1.00	0.58	0.05	0.56	1.20	0.34
TOTAL	8.5	173.30	177.90	100	100	100	353.42	100

210 211 Frequency (F) with which the species were germinating, in %; Density (D), in plants per m^2 ; Abundance (A), in unit; Relative frequency (FR), in %; Relative density (DR), in %; Relative

abundance (AR), in %; Index of value of importance (IVI), in %; importance value index of relative (IVIR), in %.

213 214

215 <u>In a study carried out by [228] observed that the highest predominance of dicotyledonous</u>
216 species with 79.41% of the total plants identified, represented by 15 botanical families
217 covering 27 species, while monocotyledons were represented only by two families
218 (Cyperaceae and Poaceae) with a total of 7 species in areas where, predominantly, they
219 were cultured with vegetables. [214] observed the greatest diversity of dicotyledonous
220 weeds in competition with the cultivated areas.

Regarding the index of importance value (IVI), it is verified that the species *Eleusine indica*,
 Cyperus rotundus, *Ageratum conyzoides*, *Chamaesyce hyssopifolia* and *Cyperus iria*, had
 constant presence with the highest indexes in depth 0.0 to 10.0 cm.

226 <u>IVI is directly related to the occurrence, quantity and concentration of individuals in the</u> 227 different points sampled in the total area, of a determined species, related to all the others 228 found in the areas [2923]. Thus, the importance value index (IVI) It is further defined as 229 being the combination of values phytosociological relative to each species, with the purpose 230 of assigning a value to them within the plant community to which they belong.

[3024, 3125, 3226, 3327] achieved similar results, in which the specie *Digitaria horizontalis* was the main or the second most important when dealing with IVI. However, must tue concern with species that present low IVI, because according to [3428] there are species that even with IVI not so high, should already be considered a relevant species.

237 The observed that the species Eupatorium ballotaefolium, Phyllanthus tenellus, 238 Alternanthera tenella, Streptosolen jamesonii, Brachiaria mutica, Ipomoea cairica, 239 Calopogonium mucunoides, Portulaca oleracea, Cleome affinis and Chamaesyce 240 hyssopifolia occurred in the samples evaluated in the depth of 0.0 to 10.0 cm (Figure 2). it 241 was also observed that the relative frequency (FR) is higher among these species, thus 242 obtaining a significant percentage when compared to other species of the same depth.

243

231

232

233

234 235

236

Formatted: Highlight

Formatted: Highlight

Formatted: Highlight

Figure 2. Phytosociological indexes of weeds in the soil seed bank under integration system for livestock agriculture of the species found in depth 0.0 to 10.0 cm, in the municipality of Rio Largo - AL, 2017.

For the depth of 10.0 to 20.0 cm, it can be observed (Table 4) the occurrence of 24 species being distributed in 12 families presenting a total density of 244.30 plants per m². Highlighting the following species *Cyperus iria, Eleusine indica, Ageratum conyzoides* and *Cyperus rotundus* which had densities of 79.9; 58.3; 51.8; 19.8; of plants per m², respectively, these species stood out also with respect to their frequency (F), occurring in 100 % in the sampled plots. The botanical composition and frequency of plants were quite variable among agroecosystems.

Table 4. Phytosociological indexes of weeds in the soil of seed bank under system of
integration livestock agriculture of the species found in depth 10.0 to 20.0 cm, Rio
Largo - AL, 2017.

			,					
Species	F	D	Α	FR	DR	AR	IVI	IVIR
Portulaca oleracea	1.00	2.00	1.00	10.15	0.81	0.16	11.13	3.71
Eleusine indica	0.40	58.30	72.87	4.06	23.86	11.83	39.75	13.25
Digitaria insularis	0.30	2.60	4.33	3.04	1.06	0.70	4.81	1.60
Mollugoverticillata	0.10	5.50	27.50	1.01	2.25	4.46	7.73	2.57
Eragrostis pilosa	0.50	4.40	4.40	5.07	1.80	0.71	7.59	2.53
Digitaria sanguinalis	0.65	0.90	0.69	6.59	0.36	0.11	7.07	2.35
Brachiaria mutica	0.60	0.50	0.41	6.09	0.20	0.06	6.36	2.12
Calopogonium	0.10	0.90	4.50	1.01	0.36	0.73	2.11	0.70
mucunoides								
Croton lobatos	1.00	1.20	0.41	14.72	0.49	0.06	15.27	5.09
Cyperus rotundus	0.60	19.80	16.50	6.09	8.10	2.67	16.87	5.60
Cyperus iria	0.10	79.90	394.50	1.01	32.29	64.06	97.37	32.45
Dactyloctenium aegyptium	0.30	0.30	0.50	3.04	0.12	0.08	3.24	1.08
Alternanthera tenella	0.40	3.50	4.37	4.06	1.43	0.71	6.20	2.06
Ageratum conyzóides	0.45	51.80	57.55	4.56	21.20	9.34	35.11	11.70
Setaria geniculata	0.30	1.50	2.50	3.04	0.61	0.40	4.06	1.35
Phyllanthus tenellus	0.20	2.70	6.75	2.03	1.10	1.09	4.23	1.41
Euphorbia heterophylla	0.45	1.30	1.44	4.56	0.53	0.23	5.33	1.77
Marsypianthes	0.45	4.70	5.22	4.56	1.92	0.84	7.34	2.44
chamaedrys								
Spigelia anthelmia	0.45	0.50	0.55	4.56	0.20	0.09	4.86	1.62
Cenchrus echinatus	0.50	0.90	0.90	5.07	0.36	0.14	559	1.86
Ipomoea cairica	0.10	1.10	5.50	1.01	0.45	0.89	2.35	0.78
Emilia coccínea	0.15	0.10	0.33	1.52	0.04	0.05	1.61	0.53
Solanum paniculatum	0.15	0.40	1.33	1.52	0.16	0.21	1.90	0.63
Fimbristylis miliaceae	0.15	0.50	1.66	1.52	0.20	0.27	1.99	0.66
TOTAL	9.85	244.30	615.76	100	100	100	300	100
Frequency (F) with which the species were germinating, in %; Density (D), in plants per m^2 ;								
Abundance (A), in unit; Relative frequency (FR), in %; Relative density (DR), in %; Relative								
abundance (AR), in %; Index of value of importance (IVI), in %; importance value index of								
relative (IVIR), in %.								

However, the species that presented the highest of importance value index (IVI) still at this same depth, infesting plants that obtained highlight were Cyperus iria, Eleusine indica, Ageratum conyzóides, Cyperus rotundus and Croton lobatos, with 97.37 %, 39.75 %, 35.11 %, 16.87 % and 15.27 % respectively. Weed communities can vary their floristic composition depending on the type and the intensity of them cultural imposed [3529]. The choice of appropriate management can change the population of weeds, the dynamics of the soil seed bank, the efficiency of applied herbicides and, consequently, the periods of interference [3<u>60</u>].

[371] demonstrated that different management systems lead to different weed infestations. Comparing no-tillage, minimum crop and conventional, the authors observed a large difference between the dominant species at the end of the study, in which the composition of the initial population was the same. In no-tillage, as early as the first years of cultivation, there was a large increase of broad leaves, showing clearly the adaptation of these weeds to the system. Such adaptation is also observed depending on the herbicide used in the area.

Formatted: Highlight

282 Comparing the two depths analyzed, it is observed that in the first layer of 0.0 to 10.0 cm the 283 density (D) was reduced by 70.93 % over the second layer of 10.1 to 20.0 cm. This reduction 284 may be due to the isolated effects or various factors fundamental for germination in relation 285 to the depth at which the seed is in the soil profile, its exposure to light effects, thermal 286 variation, the availability of oxygen and water, as well as for the development of emersion, 287 thus using all its reserve to tolerate its growth by the soil layer, making with what weed 288 plants have a lower index in the germination process.

289

The depth of 10.0 to 20.0 cm highlighted the following species *Emilia coccinea*, *Cenchrus* echinatus, Spigelia anthelmia, Euphorbia heterophylla, Dactyloctenium aegyptium, Croton lobate, Setaria geniculata, Brachiaria mutica, Digitaria sanguinalis and Portulaca oleracea (Figure 3), can be observed in the analyzes made, presenting high relative value index (IVI) which shows the uniform distribution in the studied area. On the other hand, species with high density and low frequency presented unequal distribution in the area.

296

DERPER

Figure 3. Phytosociological indexes of weeds in the soil seed bank under integration system for livestock agriculture of the species found in depth 10.0 to 20.0 cm, in the municipality of Rio Largo - AL, 2017.

4. CONCLUSION

The seed bank is most active in the most superficial layer of 0.0 to 10.0 cm in all analyzed samples when compared to the second layer of 10.1 to 20.0 cm. The population of emerged seeds the depth of 0.0 to 10.0 cm shows values higher than the other depths.

The total plant density decreased with increasing soil depth, modifying the dynamics of theexisting flora.

312			
313	REFERENCES		Formatted: Highlight
314 315 316	 Gomes Júnior FG, Christoffoleti PJ. Biology and weed management in no-tillage areas. Plant. Dan. 2008;26(4):789-798. English. 		
317 318	2. Martins CC, Silva WR. Soil seed bank studies. Inf. Abra. 1994;4(1):49-56. English.		
319 320 321	3. Roberts EH. A search for patten and form. See. Sci. Res. 1999;9(1):181-208. English.		
322 323 324	 Nassif SML, Vieira IG, Fernades GD. External factors (environmental) that influence seed germination. Piracicaba: IPEF/LCF/ESALQ/USP; 1998. English. 		
325 326 327	 Carvalho NM, Nakagawa J. Seed Germination. In: Carvalho NM, Nakagawa J. Seeds: science, technology and production. 4rd. Jaboticabal: FUNEP; 2000. English. 		
328 329 330	 Kendrick RE, Frankland B. Phytochrome and plant growth. São Paulo: EPU; 1981. English. 		Formatted: Normal Pattern: Clear Tab stops:
331 332 333 334 225	 Toledo REB, Kuva MA, Alves PLCA. Factors affecting the germination and emergence of Xanthium strumarium L.: dormancy, light quality and depth of sowing. Plant. Dan. 1993;11(1/2):15-20. English. Rallera CL. Casel LL Light signals perserved by error and wood plants. Eie Crep. Res. 	F	0.39", Left + 1.27", Left + 1.91", Left + 2.54", Left + 3.18", Left + 3.82", Left + 4.45", Left + 5.09", Left + 5.73", Left + 6.36", Left + 7", Left + 7.63", Left + 8.27", Left + 8.91", Left + 9.54", Left + 10.18",
336 337 338 339 340	 Danate SE, education Light signals percented by order and need plants. Her order, her		Formatted: Normal, Pattern: Clear, Tab stop 0.39", Left + 1.27", Left + 1.91", Left + 2.54", Left + 3.18", Left + 3.82", Left + 4.45", Left + 5.09", Left + 5.73", Left + 6.36", Left + 7", Left + 7.63", Left + 8.27" Left + 8.91", Left + 9.54", Left + 10.18".
341 342 343 344 345	 Ikeda FS, Carmona R, Mitja D, Guimaraes RM. Light and KNO3 on germination of seeds of Tridax procumbens under constant and alternating temperature. Plant. Dan. 2008;26(4):751-756. English. 	×.,	Formatted: Normal, Pattern: Clear, Tab stops: 0.39", Left + 1.27", Left + 1.91", Left + 2.54", Left + 3.18", Left + 3.82", Left + 4.45", Left + 5.09", Left + 5.73", Left + 6.36", Left + 7", Left + 7.63", Left + 8.21", Left + 8.91", Left + 9.54", Left + 10.18",
346 347 348	 Nandula VK, Eubank TW, Poston DH, Koger CH, Reddy KN. Factors affecting germination of horseweed (<i>Conyza canadensis</i>). Wee. Sci. 2006;54(5):898-902. English. 		Formatted: Normal, Justified
349 350 351 352	42.—Medeiros RA. Dynamics of secondary succession in transition forest in southern Amazonia. Cuiabá, Universidade Federal de Mato Grosso; 2004. English.		Formatted: Normal, Pattern: Clear, Tab stops: 0.39", Left + 1.27", Left + 1.91", Left + 2.54", Left + 3.18", Left + 3.82", Left + 4.45", Left + 5.09", Left + 5.73", Left + 6.24", Left + 7", Left + 6.27"
353 354 355 356	437. Melloni R, Belleze G, Pinto AMS, Dias LBP, Silve EM, Melloni EGP, Alvarenga MIN, Alcântara EN. Weed control methods and their impacts on the microbial quality of soil under coffee. Rev. Bra. Sci. Sol. 2013;37(1):66-75. English.		Left + 8.91", Left + 9.54", Left + 10.18",
357 358 359	<u>844.</u> Gasparino D, Malavasi UC, Malavasi MM, Souza I. Quantification of the seed bank under different land uses in a ciliar domain area. Rev. Arv. 2006;30(1):1-9. English.		
360 361 362 363	<u>9</u> 45. Silva JO, Fagan EB, Teixeira WF, Sousa MC, Silva JR. Analysis of seed bank and soil fertility as tools for the recovery of disturbed areas. Rev. Biot. 2012;25(1):23-29. English.		

364 365 366	1 <u>0</u> 6.	Costa CTS, Ferreira VM, Endres L, Ferreira DTRG, Gonçalves ER. Growth and productivity of four sugarcane varieties in the fourth growing cycle. Rev. Caat. 2011;24(3):56-63. English.
367 368 369 370	1 <u>1</u> 7.	Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G. Köppen's climate classification map for Brazil. Meteorologische Zeitschrift. 2014;22(6):711-728. English.
371 372 373 374	1 <u>2</u> 8.	Silva J, Cunha JLXL, Oliveira FS, Silva RG, Gomes CB, Carvalho APV, Silva Júnior AB, Silva CA. Composition of the seed bank at different depths of an area cultivated with Aruana grass. Agrar. 2018;11(40)140-149. English.
375 376 377	1 <u>3</u> 9.	Oliveira AR, Freitas SP. Phytosociological survey of weeds in areas of sugarcane production. Plant. Dan. 2008;26(1):33-46. English.
378 379 380 381	<u>1420.</u>	Santos LDT, Santos IC, Oliveira CH, Santos MV, Ferreira FA, Queiroz DS. Phytosociological survey on degraded pastures under várzea conditions. Plant. Dan. 2004; 22(3):343-349. English.
382 383 384	<u>15</u> 21.	Zanatta JF, Figueredo S, Fontana LC, Procópio SO. Interference of weeds in olive groves. Rev. Fac. Zoot. Vet. Agro. 2006;13(2):39-57. English.
385 386 387 388	<u>1622.</u>	Kuva MA, Pitelli RA, Alves PLCA, Salgado TP, Pavani MCDM. Weed seed bank and its correlation with established flora in the sugarcane agroecosystem. Plant. Dan. 2008;26(4):735-744. English.
389 390 391 392 393	<u>1723.</u>	Soares DG, Andreazza AC, Salvador, M. Sequestering ability of butylated hydroxytoluene, propyl gallate, resveratrol, and vitamins C and E against ABTS, DPPH, and hydroxyl free radicals in chemical and biological systems. Jour. Agric. Foo. Chem. 2003;51(4):1077-1080. English.
394 395 396	<u>18</u> 24.	Pereira FAR, Velini ED. Systems of non-cerrado and dynamic weed populations. Plant. Dan. 2003;21(3):355-363. English.
397 398 399	<u>1925.</u>	Blanco HG, Arévalo RA, Blanco FMG. Monthly distribution of the emergence of six weeds in soils with and without crops. Plant. Dan. 1994;12(2):78-83. English.
400 401 402	2 <u>0</u> 6.	Roberts HA, Feast PM. Emergence and longevity of seeds of annual weeds in cultivated and undisturbed soil. J. Appl. Ecol. 1972;12(4):316-324. English.
403 404 405 406	<u>217.</u>	Araújo EL, Martins FR, Santos AM. Establishment and death of two dry tropical forest woody species in dry and rainy seasons in northeastern brazil. In: Nogueira RJMC, editors. Environmental stresses: damage and benefits in plants. Recife: Universidade Federal Rural de Pernambuco; 2005. English.
407 408 409 410	2 <u>2</u> 8.	Cunha JLXL, Freitas FCL, Coelho MEH, Silva MGO, Silva KS, Nascimento PGML. Phytosociology of weeds in sweet pepper crop in no-tillage and conventional systems. Rev. Agro. 2014;8(1):119-126. English.
411 412 413 414 415	2 <u>3</u> 9.	Nascimento PGML, Silva MGO, Fontes LO, Rodrigues APMS, Medeiros MA, Freitas FCL. Phytosociological survey of weed communities in different maize planting systems in Mossoró – RN. Agro. Sci. Sem. 2011;7(3):01-09. English.

416	<u>24</u> 30	. Marques LJP, Silva MRM, Araújo MS, Lopes GS, Corrêa MJP, Freitas ACR, Muniz
417		FH. Floristic composition of weeds in cowpea in the crushed capoeira system. Plant.
418 410		Dan. $2010;28(1):953-961.$ English.
420 421 422	<u>25</u> 31.	. Pinotti EB, Bicudo SJ, Curcelli F, Dourado WS. Floristic survey of weeds in cassava in the municipality of Pompéia – SP. Rev. Rai. Ami. Trop. 2010;6(1):120-125. English.
423 424 425 426	<u>26</u> 32.	Borchartt L, Jakelaitis A, Valadão FCA, Venturoso LAC, Santos CL. Weed interference periods in common bean crop (<i>Phaseolus vulgaris L</i> .). Rev. Sci. Agro. 2011;42(3):725-734. English.
427 428 429 430	<u>27</u> 33.	Lima LKS, Silva JS, Santos JPS, Araújo AE. Phytosociological survey of spontaneous plants in the yam crop under organic production. Agro. Cient. Sem. 2014;10(2):72-76. English.
431 432 433	<u>28</u> 34.	. Inoue MH, Silva BE, Pereira KM, Santana DC, Conciani PA, Sztoltz CL, Phytosociological survey on pasture. Plant. Dan. 2012;30(1):55-63. English.
434 435 436	<u>29</u> 35.	. Duarte AP, Silva AC, Deuber R. Weed plants in maize crops, under different management, the average Paranapanema. Plant. Dan. 2007;25(2):285-291. English.
437 438 439 440	<mark>3<u>0</u>€.</mark>	Barroso AAM, Alves PLCA, Yamauti MS, Nepomuceno MP. Community weed and its interference in common bean planting under no-tillage, in the spring harvest. Plant. Dan. 2012;30(2):279-286. English.
441 442 443	3 <u>1</u> 7.	Utomo M, Susanto H. Effect of long-term conservation tillage on soil properties and weed dynamics in Sumatra. In.: Proccendings 16 th Asian-Pacific Weed Science Society Conference. Kuala Lumpur: APWSS; 1997. English.
		SC.