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Abstract: In this paper, the spatial measurement model is introduced into the Environmental Kuznets Curve to 

investigate the impact of income on household electric carbon emissions. The spatial correlation diagnosis was 

made by using Moran scatterplot and Moran index. The results of spatial error model show that the Environmental 

Kuznets Curve of household electric carbon emissions is inverted N-shaped carve. The maximum and minimum 

values of Environmental Kuznets Curve are per capita GDP of RMB 10198 Yuan and RMB 44355 Yuan (at 

constant price in 2005). It means that the per capita household electricity carbon emissions are still on the rise in 

most provinces of China. 
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1 Introduction 

The entry into force of the Kyoto protocol in 2005, the Copenhagen climate conference in 2009 and the 

formulation of the Paris agreement in 2016 revealed that all countries in the world have paid great attention to the 

issue of climate change (Grubb et al., 1999; Bodansky, 2010; Falkner, 2016). At present, greenhouse gases, such as 

carbon dioxide, is a key factor leading to climate change. Energy conservation and emission reduction is an urgent 

need to cope with global climate change and an inevitable choice to build a resource-conserving and 

environment-friendly society.  

Along with the economic growth and the improvement of residents' living standards, the household electricity 

consumption continues to grow rapidly, accounting for an increasing proportion of the electricity consumption of 

the whole society. According to the data of electricity consumption (National Bureau of Statistics of the People's 

Republic of China, 2016), electricity consumption reached 5919.8 billion kWh, up by 5.0% year on year; Urban 

and rural residents consumed electricity of 805.4 billion kWh, up 10.8% year on year. The proportion of household 

electricity consumption on the total electricity consumption is only slightly more than 13%, while that of developed 

countries is about 20%. At the same time, through the horizontal comparison of the data of per capita household 

electricity consumption in various countries in 2015, the per capita household electricity consumption in most 

developed countries is 1000~4000 kWh, and the per capita household electricity consumption in the United States 

and Canada has reached 4486 kWh and 4617 kWh respectively. However, China's per capita household electricity 

consumption is 529 kWh, which is about 1/9 that of the United States and Canada and far lower than the level of 

developed countries. Through the lateral comparison of the data of per capita household electricity consumption in 

various provinces of China in 2015, Fujian ranked first with per capita household electricity consumption of 898.57 

kWh; per capita household electricity consumption of other developed provinces and cities is more than 700 kWh, 

such as Beijing, Shanghai, Zhejiang and Guangdong; that is relatively low in most of the less developed provinces 

(such as Xinjiang, Qinghai, Ningxia and Gansu), which is under 400 kWh; that is 400~700 kWh basically in other 

provinces. That means there is still huge room for growth. So household electricity carbon emissions cannot be 

ignored in order to reduce carbon emissions. 

Income is one of the main driving factor of household electricity consumption, and the difference in household 



electricity consumption between different regions can be explained by the income gap between China and 

developed countries or among 30 provinces. Countries or regions with higher economic development tend to have 

higher per capita household electricity consumption. For developed economies, the per capita energy consumption 

basically shows an inverted u-shaped pattern (Zheng, 2016). So given the trend of increasing income, will per 

capita household electricity carbon emissions continue to grow in China or will they start to decline when the 

income reaches a certain level? If there is a turning point, where is the turning point? In order to answer these 

questions, the current general method is the empirical research of the Environmental Kuznets Curve (EKC) to judge 

whether and when the pollution peak exists. It is helpful for the government to make more reasonable policies on 

energy conservation and emission reduction to understand the current situation of carbon emission from household 

electricity in China. 

2 Literature review 

EKC theory originated from the study on the relationship between atmospheric environment and per capita 

income in North American Free Trade Agreement (NAFTA) (Grossman and Krueger, 1991). This study found that 

there was a significant inverted U-shaped curve relationship between smog, suspended matter and per capita 

income. Later, Panayotou (1993) studied the relationship between different environmental pollutants and income 

levels based on Grossman and Krueger’s study, and found that there was also an inverted U-shaped curve 

relationship between the two, which was called the Environmental Kuznets Curve (EKC). EKC theory is an 

empirical hypothesis, and the related researches mainly focus on the empirical aspects. EKC theory assumes that 

environmental quality will deteriorate with income growth, but environmental quality will improve with income 

growth when income reaches a certain level. In essence, the EKC theory reflects the process of transforming the 

economic development model with high energy consumption and high pollution into a resource-conserving and 

environment-friendly one, indicating that the economic growth target is beneficial in the long run.  

In the context of global warming, more and more Chinese scholars have combined carbon emission and EKC 

theory to discuss. Some studies analyzed the total national carbon emissions, such as Hu et al. (2008). Based on 

EKC theory, they built the factor decomposition model of carbon emissions in China to analyze the impact of 

economic scale and other factors on carbon emissions, and found that there was an inverted N-shaped curve 

relationship between carbon emissions and economic growth. There are also some studies that analyze the carbon 

emissions of a certain industry or department in a certain region. For example, Yan et al. (2018) found an inverted 

N-shaped curve relationship between the carbon emissions of the construction industry in Guangdong province and 

the per capita output value of the construction industry based on the EKC. Tian and Xie (2017) found that China's 

agricultural per capita carbon dioxide emissions and per capita GNP showed an inverted U-shaped curve 

relationship based on the research of EKC theory, and China's agricultural carbon emissions were at the left of the 

inflection point of the inverted U-shaped curve. Current form of EKC not only limited to the inverted U-shaped 

curve because the Non-income factors can also affect the form. The third power of item of the per capita GDP is 



used when verifying the existence of EKC. Because the measure of the inflection points of the corresponding high 

per capita income levels when only contains second power of per capita GDP (Xu and Song, 2010). And the 

non-income factors should be considered too. 

In recent years, there are more and more researches on the combination of EKC and spatial econometric model. 

Yang et al. (2008) studied the relationship between air quality and economic growth of 46 cities in China by 

combining EKC and spatial econometric model. Wu and Tian (2012) analyzed the spatial correlation, EKC shape 

and determinants of provincial environmental pollution based on the EKC theory and spatial econometric model. 

Hao et al. (2014) found that there is strong spatial correlation between China's economic growth and energy or 

electricity consumption per capita, and the energy or power consumption per capita and Per capita GDP have the 

N-shaped EKC relationship by choosing the appropriate spatial econometrics model to the Chinese provincial per 

capita energy consumption and power consumption per capita for empirical research. 

When investigating the relationship between household electricity carbon emission and income, it is 

unreasonable to use EKC equation directly, because the hypothesis of spatial data independence of EKC is 

obviously inconsistent with reality. First of all, China's regional economic development is unbalanced. Each region 

has its own characteristics and forms its own "convergence club". Second, the economic behavior of the current 

decision of regional economies is often affected by the previous or current behavior of other economies (Le Sage 

and Pace, 2009), for example local government perhaps reference the policies of electricity price and energy 

conservation of the neighborhoods and then make the relevant policies. And city is a nodes of social economic and 

social resources in the economic region and the residents' consumption behavior is related to economic and social 

development level (Mi, 2011). Moreover, there are differences in the endowment of power resources between 

different provinces in China, and there are contradictions between the endowment of power resources and demand, 

which leads to a large number of power transmission and allocation among regional power grids in China. However, 

the carbon emission coefficient of power in different regions is obviously different. So it is unreasonable to 

investigate the influence of local electricity carbon emissions on local regions only from the perspective of 

consumption (Fu and Qi, 2014). Finally, temperature will also affect the electricity consumption of residents. Chen 

et al. (2017) found that the colder the household area is, the less willing residents are to save energy, and the 

temperature of adjacent areas is often similar. Therefore, it may be biased to ignore the spatial characteristics when 

examining the household electricity carbon emissions. Spatial econometrics abandons the traditional assumption 

that econometrics has no spatial relevance, and introduces a spatial weight matrix to consider the impact of spatial 

correlation on economic activities, so as to eliminate the spatial bias in the calculation results. 

Income is one of the key factors that affect the consumption of electricity, and the price of electricity will also 

affect the consumption of electricity. However, in China, the household electricity price has been cross-subsidized 

for a long time, which is lower than the industrial electricity price. The household electricity price has not changed 

much in the past dozen years (Lin and Liu, 2016), so this paper does not consider the household electricity price. 



Factors such as population density and urbanization rate will also affect the household electricity consumption. 

Jones and Kammen (2014) pointed out that there was a negative correlation between population density and carbon 

emissions, which means carbon emissions would decrease with the increase of population density. However, their 

study of the spatial distribution of household carbon footprint in the United States showed that the result was 

consistent with previous studies considering only urban data. However there appeared to be a small positive 

correlation between household carbon emissions and population density when considering the whole region or 

country. At the same time, it is found that population density may affect the intensity of household carbon emission 

by influencing the size of houses. Ding (2011) and Wang et al. (2012) decomposed the carbon dioxide emissions of 

household energy consumption and found that the population scale effect, income level, urban-rural structure and 

other factors are the key factors affecting the carbon emissions of household energy consumption.  

Therefore, this chapter will introduce urbanization rate and population density to expansion EKC theory and 

select the space panel econometric model to study the household electricity carbon emissions in China. The main 

innovation of this paper is to investigate the spatial correlation of household electric carbon emissions. The rest of 

this paper is structured as follows: the third part briefly introduces the model, estimation method and data to be 

used in this paper; the fourth part carries on the spatial autocorrelation test, and uses the spatial econometric model 

to carry on the demonstration analysis; the fifth part is the conclusion. 

3 Econometric model 

3.1 Basic econometric model 

3.1.1 Model reference form 

This paper introduces the EKC equation containing the third power terms of per capita GDP as the basic form 

of the regression equation, and introduces the controlling variables, urbanization rate and population density, to 

expand the EKC equation: 

 lnE�,� = α� + 
�lny�,� + 
�lny�,��

+ 
��lny�,��

�
+ 
�lnUR�,� + 
�lnPD�,� + φ�,� （1） 

Ei,t represents carbon emission generated by per capita household electricity consumption of the province i in 

the year t, yi,t represents per capita GDP of the province i in the year t, Although per capita disposable income is 

often used to investigate the impact on household electricity consumption, per capita GDP is also used in some 

studies (Sun and Yu, 2017). URi,t and PDi,t represent two control variables: urbanization rate and population density. 

αi is a random perturbation term, and φi,t is a random perturbation term. Different values of β1, β2 and β3 will lead to 

different shapes of curves, which can be divided into the following 7 cases: 

（1）When β1=β2=β3=0, there is no relationship between per capita household electricity carbon emissions and 

per capita GDP; 

（2）When β1<0 and β2=β3=0, per capita household electricity carbon emissions decrease with the increase of per 

capita GDP; 

（3）When β1>0 and β2=β3=0, per capita household electricity carbon emissions increase with the increase of per 



capita GDP; 

（4）When β1<0, β2>0 and β3=0, there is a U-shaped relationship between per capita household electricity carbon 

emissions and per capita GDP; 

（5）When β1>0, β2<0 and β3=0, there is an inverted U-shaped relationship between per capita household 

electricity carbon emissions and per capita GDP. When carbon emissions start to decline ,the turning point is
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（6）When β1<0, β2>0 and β3<0, there is an inverted N-shaped relationship between per capita household 

electricity carbon emissions and per capita GDP, which means that per capita household electricity carbon 

emissions start to increase at the first turning point, and decrease with the growth of per capita GDP at the 

second turning point. 

（7）When β1>0, β2<0 and β3>0, there is a N-shaped relationship between per capita household electricity carbon 

emissions and per capita GDP, which means that the per capita household electricity carbon emissions start to 

decrease at the first turning point, and increase with the growth of per capita GDP at the second turning point.  

3.1.2 Spatial econometric model 

Before introducing spatial autocorrelation factors, spatial correlation test of data should be carried out first. 

The spatial correlation index is Moran index (Moran, 1950), and its calculation formula is: 
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Where, I is the Moran index, xi is the observed value of the explained variable in the region i, n is the total 

number of regions, Wi,j is the spatial weight matrix. Different forms of space weight matrix will not substantially 

change the result of space regression (Wu and Tian, 2012). Therefore, this paper adopts the adjacent weight matrix. 

if space region I is adjacent to j, then Wi,j=1; otherwise,Wi,j=0. The value range of Moran index is [-1, 1]. When 

Moran index is greater than 0, it means there is positive spatial autocorrelation; when it is less than 0, it means there 

is negative spatial correlation. 

When Moran index indicates the spatial dependence of panel data, the spatial panel model can be introduced, 

which may contain the dependent variable of spatial lag or the error term of spatial autoregressive. Elhorst (2012)  

proposed three basic spatial econometric models, namely spatial lag model (SLM), spatial error model (SEM) and 

spatial Durbin model (SDM).  

The basic form of SLM is: 

 Y�,� = ρ∑ *�,+,+,�-
�.� + / + 
0�,� + 1� + η� + φ�,�  （3） 

Where, i=1，…，N, and t=1，…，T. Yi,t represents the cross-sectional observation value of unit i at time t, which is 

an N×1 dimensional vector composed of explained variables. Xi,t is the explanatory variable. Ρ represents the 

spatial regression coefficient, Wi,j represents the space weight matrix, the paper uses the adjacent weight matrix, 

namely, such as space region I and j adjacent, then Wi,j=1, otherwise Wi,j=0. α denotes the constant term, β denotes 



the estimated coefficient of the explanatory variable; µi stands for space effect; ηt means time fixed effect; φi,t 

means independent homodistributed error term. 

The basic form of SEM is: 

 Y�,� = βX�,� + μ� + η� +φ�,� （4） 

 φ�,� = λ∑ *�,+7+,� + 8�,�-
+.�  （5） 

Where, φi,t is the spatial autocorrelation error term, λ is the spatial error coefficient.  

The basic form of SDM is: 

 Y�,� = ρ∑ *�,+,+,�
-
+.� + 
0�,� + 9∑ *�,+0+,�

-
+.� + 1� + η� + φ�,� （6） 

3.1.3 Correlation testing and estimation methods 

This article is based on the steps adopted by Elhorst (2012). Firstly, estimate the spatial panel data model. The 

estimation methods respectively are mixed OLS, space-fixed effect, time-fixed effect and time-fixed and space- 

fixed effect. The likelihood ratio test is applied to the fixed effects, and whether the spatial panel data overlooked 

the space effect of panel data is tested according to each kind of model of LM statistics, which is used to determine 

what kind of spatial econometrics model.  

Secondly, Wald test and LR test are used to test whether SDM can be simplified into SLM or SEM. If both 

null hypotheses are rejected, the SDM provides the best fit. Finally, Hausman test is used to select random effects 

and fixed effects. 

3.2 Data description 

This paper mainly adopts two kinds of index data. One is the per capita GDP used to reflect the level of 

regional economic development, which is expressed by yi,t. The other is the carbon emissions caused by the per 

capita household electricity consumption of provincial residents over the years, which is used to reflect the living 

electricity consumption of residents, represented by Ei,t. In the study, the per capita value of household electricity 

carbon emissions can eliminate the scale effect. Referring to other EKC empirical studies, this paper selected 

population density and urbanization rate as control variables. The electricity consumption data used in this study 

were derived from China Energy Statistics Yearbook from 2005 to 2015, and the data of 30 provinces, 

municipalities and autonomous regions (except Tibet, Hong Kong, Macao and Taiwan) were selected.  

According to table 1, the per capita household electricity carbon emissions of residents in each province are 

calculated as follows: 

 E�,� = CE�,� ∗ F�,=/n�,� （7） 

Where, Ei,t represents the per capita household electricity carbon emissions of residents in the province i in the 

year t(i =1,2... , 30; t = 1, 2,... , 11), and the unit is kg/ person; CEi,t represents the household electricity 

consumption in the province i in the year t, and the unit is kWh; Fi.k represents the grid emission factor of the region 

of province i, and the unit is kgCO2/kWh; ni,t refers to the resident population of the province i in the year t. Table 2 



shows the descriptive statistical results of each variable. 

Table 1 carbon emission factors of regional power grid in 2015 

region Grid carbon emission factor (unit: kgCO2/kWh) 

North China 1.0416 

Northeast China 1.1291 

East China 0.8112 

central China 0.9515 

Northwest China 0.9457 

South China 0.8959 

Note: the carbon emission factor of China's regional power grid in 2015 is the weighted average of the marginal 

power emission factor from 2011 to 2013. 

Table 2 descriptive statistical results of variables 

Variable name unit mean 
standard 

deviation 
maximum median 

minimu

m 

Per Capita Household 

Electricity Carbon Emissions 
kg/person 357.75 153.11 838.65 339.35 118.90 

Per Capita Real GDP Yuan(in the constant of 2005) 28735.49 17674.55 95560.13 24012.71 5376.46 

Urbanization Rate % 51.74 14.13 89.60 49.22 26.87 

Population Density persons/square kilometer 436.96 632.75 3772.94 279.39 7.54 

4 Empirical results and analysis 

4.1 Per capita household electricity carbon emissions distribution and spatial autocorrelation analysis 

The software STATA was used to draw the distribution map and Moran scatter plot of the per capita household 

electricity carbon emissions of Chinese residents in 2005, 2010 and 2015 (seen in figure 1, figure 2 and figure 3). 

When drawing the carbon emissions distribution map, the same segmentation method is used: 0~300, 300~400, 

400~500 and above, and the unit is kg/person. Though the distribution maps of three years, it can be found that the 

level of per capita household electricity carbon emissions is similar in the adjacent areas. At the same time, per 

capita household electricity carbon emissions are gradually increased, and that of the coastal areas grow faster. The 

provinces of 500kg/person carbon emissions are mainly concentrated in coastal areas. It can be concluded from the 

Moran scatter diagrams that the global Moran’s I of per capita household electricity carbon emissions is greater 

than zero, and the significance test of 1% indicates that per capita household electricity carbon emissions have a 

significant spatial positive correlation (distribution of agglomeration state), which proves that spatial econometric 

regression test can be conducted. In 2005, 2010 and 2015, the global Moran’s I was 0.321, 0.412 and 0.360 

respectively. It can be seen that per capita household electricity carbon emissions have spatial correlation. Moran 



scatter plot is divided into four quadrants, which embodies the local space contact form. The first, two, three and 

four quadrant show respectively high-high concentration, low-high concentration and low-low concentration and 

high-low agglomeration. For example, high-high concentration shows that if an area is of high per capita household 

electricity carbon emissions, the other areas around the area is of high per capita household electricity carbon 

emissions. Other types are in the same way. The Moran scatter plots of 2005, 2010 and 2015 at the top left of the 

pictures shows that 24/30, 26/30 and 22/30 provinces are in the first and third quadrants. That means most 

provinces or cities are located in the high-high concentration and low-low concentration, which also indicates that 

per capita household electricity carbon emissions have obvious spatial autocorrelation characteristics. In 2010 and 

2015, more provinces were located in high-high concentration than in 2005.  

 
Fig.1 the distribution map and Moran scatter plot of per capita household electricity carbon emissions of Chinese 

residents in 30 province in 2005 

 



 
Fig.2 the distribution map and Moran scatter plot of per capita household electricity carbon emissions of Chinese 

residents in 30 province in 2010 

 

Fig.3 the distribution map and Moran scatter plot of per capita household electricity carbon emissions of Chinese 

residents in 30 province in 2015 

4.2 Spatial diagnostic test 

To test which model could better fit the data, the non-spatial panel data model was first analyzed, and the 

classical Lagrange Multiplier Statistic (LM-lag, LM-error) and Robust Lagrange Multiplier Statistic (Robust 



LM-lag, Robust LM-error) were used to select the spatial panel econometric model (Le Sage and Pace, 2009). The 

equation (1) was estimated by mixed OLS, space-fixed effect, time-fixed effect and space-fixed and time-fixed 

effect. 

Due to the different situation of each province and city, there may be omission variables that do not change 

with time. The fixed effect is still the first choice for two reasons according to the current empirical analysis. This is 

because: firstly, when modeling spatial panel data, the fixed effect is usually more appropriate than the random 

effect. Secondly, Lee and Yu (2014) believed that the fixed effect was robust, and the calculation was as simple as 

the random effect model. Therefore, the fixed effect model is considered in this paper. The estimated results are 

shown in table 3. 

Table 3 estimation results of non-spatial panel model 

estimation method mixed OLS space-fixed time-fixed 
time-fixed and 

space-fixed 

C 
130.911*** 

（3.604） 
   

Lny 
-39.806*** 

（-3.677） 

-5.310 

（-0.974） 

-52.386*** 

(-5.599) 

-6.918 

(-1.361) 

(lny) 2 
4.125*** 

(3.847) 

0.663 

（1.216） 

5.283*** 

(5.710) 

0.722 

(1.424) 

(lny) 3 
-0.140*** 

(-3.949) 

-0.024 

（-1.344） 

-0.176*** 

(-5.785) 

-0.025 

(-1.487) 

lnUR 
-0.052 

(-0.505) 

1.060 *** 

（6.710） 

0.596*** 

(5.686) 

1.232*** 

(7.805) 

lnPD 
0.033*** 

(3.349) 

0.1496 

（0.906） 

0.0523*** 

(6.057) 

-0.752 

(-3.733) 

R2 0.821 0.934 0.777 0.513 

σ2 0.036 0.006 0.026 0.005 

D-W 1.620 1.873 2.132 2.003 

Log-likelihood 82.318 370.039 136.258 396.110 

LM spatial lag 
59.453*** 

(p=0.000) 

9.790*** 

（p=0.002） 

0.298 

(p=0.585) 

0.467 

(p=0.495) 

Robust LM spatial lag 
15.528*** 

(p=0.000) 

0.139 

(p=0.710) 

5.919** 

(p=0.015) 

10.776*** 

(p=0.001) 

LM spatial error 
59.857*** 

(p=0.000) 

19.812*** 

(p=0.000) 

13.001*** 

(p=0.000) 

1.971 

(p=0.160) 



Robust LM spatial error 
15.932*** 

(p=0.000) 

10.160*** 

(p=0.001) 

18.622*** 

(p=0.000) 

12.280*** 

(p= 0.000) 

per capita real GDP (Yuan) corresponding to 

the EKC minimum point 
8604 —— 5014 —— 

Real Per capita GDP (Yuan) corresponding to 

EKC maximum point 
56954 —— 67507 —— 

Note: lny represents the logarithm of carbon emissions generated by per capita household electricity consumption 

at the provincial level, lny represents the logarithm of per capita income at the provincial level, lnUR represents the 

logarithm of urbanization rate, lnPD represents the logarithm of population density at the provincial level, lnL 

represents the logarithm of maximum likelihood value, and D-W represents the statistic of Durbin-Waston. The 

estimated value of the explanatory variable is the corresponding t value in square brackets, and the corresponding p 

value in square brackets for each LM test statistic. ***, ** and * represent significant at the significance level of 

1%, 5% and 10% respectively. 

The estimation results of the non-spatial panel data model show that the estimation results of the time-fixed 

effect model are the best in this set of estimation methods. Since the estimators of independent variables and 

control variables of the time-fixed effect model are both significant at the significance level of 1%, the model 

fitting degree reaches 0.777, and the D-W statistic close to 2 indicates that the sequence correlation problem is not 

significant. Due to the introduction of the cubic form of regional per capita GDP in explanatory variables, the EKC 

curve estimated by the time-fixed effect model is of inverted N-shaped, and there are EKC minimum point and 

maximum point. The EKC minimum point corresponds to a per capita GDP of 5,014 Yuan (at constant price in 

2005), while the EKC maximum point corresponds to a per capita GDP of 67,507 Yuan. The LM-lag and LM-error 

test results of the time-fixed effect model showed that the time-fixed effect model rejected the hypothesis that there 

was no spatial error term at the significance level of 1%, and whether there was a spatial lag term did not pass the 

test. Therefore, the spatial error model of time fixed effect was used for estimation next (seen in table 4). 

Table 4 estimation results of spatial error model 

Explanatory variables Space error model of time - fixed effect 

lny 
-56.291*** 

(-5.951) 

(lny) 2 
5.684*** 

(6.073) 

(lny) 3 
-0.190*** 

(-6.151) 

lnUR 
0.529*** 

(5.116) 

lnPD 
0.051*** 

(5.219) 



λ 
0.302*** 

(4.576) 

σ2 0.025 

R2 0.8705 

corr-R2 0.7765 

log-likelihood 143.723 

The per capita real GDP (Yuan) corresponding to the EKC minimum point 10198 

Real Per capita GDP (Yuan) corresponding to the EKC maximum point 44355 

From the estimation results of the spatial error model of time-fixed effect, the fitting degree R
2
 of the spatial 

error model of time fixed effect was 0.875, which was higher than that of the non-spatial and time-fixed effect 

model, indicating that the spatial error model could better fit the data. The spatial error coefficient is 0.302 at the 

significance level of 1%, which again indicates that the household electricity carbon emissions have a strong spatial 

autocorrelation. At the significance level of 1%, the logarithmic coefficients of per capita GDP are all significant, 

and the coefficients of the primary, secondary and tertiary terms are negative, positive and negative respectively, 

indicating that the Environmental Kuznets Curve of household electricity carbon emissions is of inverted N-shaped. 

The per capita real GDP of the maximum point and minimum point of EKC are 10198 Yuan and 44355 Yuan 

respectively. That means when per capita real GDP of the region is less than 10198 Yuan, per capita household 

electricity carbon emissions of residents are in a state of decline. When per capita real GDP of the region is between 

10198 and 44355 Yuan, per capita household electricity carbon emissions are on the rise. When per capita real GDP 

of the region is greater than 44355 Yuan, per capita household carbon emissions are in a state of decline. In 2015, 

the per capita real GDP of 20 provinces (at constant price in 2005) was between 10198 and 44355 Yuan, and per 

capita real GDP of 10 provinces (at constant price in 2005) was above 44355 Yuan. Per capita household electricity 

carbon emissions are still rising in most of the provinces in China. Income is a key variable affecting residents' 

electricity consumption, and its influence on residents' electricity demand is mainly through the following two ways: 

first, indirectly affecting residents' electricity consumption by affecting their electric complementary-home 

appliances; second, through the impact of residents on the frequency of electrical appliances to produce a direct 

impact. At the same time, the coefficient of urbanization rate and population density is also significantly positive, 

indicating that the carbon emissions of household electricity will also increase with the acceleration of urbanization 

process and the increase of population. In the context of economic growth, accelerated urbanization and increasing 

population, reducing household carbon emissions from electricity can improve energy conservation and emission 

reduction.  

5 conclusion 

This paper selects the panel data of 30 Chinese provinces from 2005 to 2015, and calculates the EKC of per 

capita household electricity carbon emissions through spatial error model. The main conclusions of this paper are as 



follows: according to the spatial statistical analysis and the estimation results of the spatial econometric model, 

there is a significant positive spatial autocorrelation between the household electricity carbon emissions of residents 

in various provinces or cities in China. Provinces and cities with high carbon emissions are usually adjacent to or 

surrounded by those with high carbon emissions, while those with low carbon emissions are usually adjacent to or 

surrounded by those with low carbon emissions. This is because the economic development level, population size 

and urbanization rate of neighboring provinces are similar. Therefore, in the theoretical summary, empirical test and 

formulation of energy-saving and emission reduction measures for household energy use, the impact of 

geographical space factors on carbon emissions from household energy consumption should be considered. When 

exploring the relationship between household electricity carbon emissions and income, the study shows that the per 

capita electricity carbon emissions and income of residents show an inverted N shape. At present, per capita 

household electricity carbon emissions of most provinces are in the rising stage, while that of some developed 

provinces are in the declining stage. The increase of urbanization rate and population growth will also lead to the 

increase of per capita household electricity carbon emissions. Therefore, under the trend of economic growth, 

increase of population size and acceleration of urbanization process, reducing household carbon emissions is still 

the key to energy conservation and emission reduction. 
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