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ABSTRACT  14 
 15 
In this study, we used the Path integral method to obtain the bound state 
solutions of the Hellmann potential. Firstly we analytically derived the radial 
kernel expression of the Hellmann potential using the approximation of the 
centrifugal term and space-time transformations. Then we calculated the 
exact energy spectrum and the normalized eigenfunction from the poles of the 
Green function and their residues. We expressed normalized wave functions 
in terms of Jacobi polynoms and Hypergeometric functions. 
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1. INTRODUCTION 21 
 22 
 23 

In recent years, numerous studies have been carried out to obtain the analytical 24 

full solutions of the wave equations of various potentials in relativistic and non-25 

relativistic quantum mechanics. Many methods are used for this purpose: SUSYQM 26 

formalism the Nikiforov-Uvarov approach, Functional analysis approach, 27 

Factorization method, Path Integral, the power series expansion, the asymptotic 28 

iteration method [1–10], 29 

The Hellmann potential expressed as the sum of Yukawa and Coulomb potentials 30 

is 31 
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Here ܣ and ܤ are the strengths of potentials and  ߙ is the screening parameter. ܣ and 33 

 The Hellmann 34 .ߙ may also be positive and negative, assuming positive parameters ܤ



potential, which has many applications in atomic physics and condensed physics, is 35 

used to represent electron-nuclei and electron-ion interactions [11-17]. It has been 36 

used as a model for potential alkaline hydride molecules and has been found to be an 37 

appropriate potential for studying inner shell ionization problems [18,19,20]. 38 

Feynman path integral is one of the methods of obtaining analytical 39 

solution.used to describe the energy spectrum and wave functions of systems. This 40 

method is in complete agreement with the general formalism of quantum mechanics 41 

suggested by Schrödinger, Heisenberg and Dirac. It is based on the propagator 42 

containing quantum mechanical amplitude for a point particle at a position ݔ௔ at time 43 

 ௕ integrate over all possible paths connecting by the 44ݐ௕ at timeݔ ௔ to reach a positionݐ

classical action. Using path integral method, the kernel of the system and the Green 45 

function are obtained so that they can be derived with the help of the energy 46 

spectrum and the corresponding wave functions[21].   Although the path integral 47 

method is a powerful method, it is difficult to calculate the path integral for a number 48 

of quantum mechanical systems. Duru and Kleinert developed a method called 49 

Kustaanheimo-Stiefel (KS) transformation in order to apply this method to the H-50 

atom problem in 1979 [5]. Then, relativistic and non-relativistic wave equations of 51 

various potentials were studied: the Morse oscillator, the Woods-Saxon potential, the 52 

Hulthen potential [6-10]. In spherical symmetric systems, the centrifugal barrier term 53 

appears, which plays an important role in the scattering problems of the physics. The 54 

Schrodinger equation with some exponential type potentials does not have analytical 55 

l-wave solutions. For such potentials, they must use approximation schemes because 56 

of the term centrifugal barrier. Several methods have been used to obtain exact or 57 

approximate solutions of the Schrödinger equation for exponential type potentials 58 

[12-17]. 59 

The object of this study is to evaluate energy spectrum and wave functions of 
60 

the Hellmann potential via path integral method. The organization of this paper is as 
61 

follows. In section 2.1 Kernel and energy dependent Green's function of Hellmann 
62 

potential are derived using space-time transformation. In section 2.2 energy 
63 



eigenvalues and the corresponding wave functions are obtained using Green’s 
64 

function. 
65 

 66 
2. MATERIAL AND METHODS 67 
 68 

2.1.  The Kernel of the Hellmann potential 69 
 70 

The kernel of spherical symmetric potential between the initial position ݎᇱ at time 71 

ᇱݐ ൌ 0 and final position ݎ′′ at time ݐ′′ has the following form [22]:  72 
 73 
 74 
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where ௟ܲሺܿߠݏ݋ሻ is the Legendre Polynomial with the ߠ ≡ ሺݎᇱᇱ,  ᇱሻ and 75ݎ

ݎ௟ሺܭ
ᇱᇱ, ;ᇱᇱݐ ,ᇱݎ  ௝. Path integral express in 76ݐ∆ ᇱሻ is the radial Kernel in the time intervalݐ

terms of an integral over all paths in configuration space. Radial kernel is described 77 
as 78 
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Here ௝ܵ is partial action and ∆ݎ௝ ൌ ௝ݎ െ ߝ ,௝ିଵݎ ൌ ௝ݐ െ ᇱݐ ,௝ିଵݐ ൌ ଴ݐ ൌ ᇱᇱݐ ,௔ݐ ൌ ேݐ ൌ79 

 ௕ . Partial action is  80ݐ
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Using the term of the following approximation instead of the centrifugal term 82 
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inserting the radial kernel Eq.(3) becomes 83 
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Defining the new angular variable ߳ߠሺ0,  ሺ0,∞ሻ 84߳ݎ ሻ to transform the radial variableߨ
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the kernel in Eq.(6) can be written as 85 
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where ߠ݊݅ݏߙ௕ܿߠݏ݋௕ is the contribution to Jacobien because of the coordinate 86 

transformation in Eq.(7). When the factor ߠ²ݏ݋ܿߠ²݊݅ݏ²ߙ  in front of kinetic energy 87 
term is the eliminated by the time transformation [6-9] 88 

 89 

    
ௗ௧

ௗ௦
ൌ

ସ

ఈమ௦௜௡మఏ௖௢௦మఏ
                              ሺ9ሻ 90 

 
  

the Fourier transform of the ߜ െfunction is added to the kernel as follows 91 
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Then radial kernel becomes  92 
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We can symmetrize the contribution from Jacobien to coordinate transformation as 93 
follows 94 
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Thus Eq. (11) takes 95 
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and κ and λ are 96 
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The path integral solutions of the Trigonometric Pöschl-Teller potential are well 97 
known that the kernel in Eq. (14) can be reduced to the potential of this potential 98 
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The expression of the kernel in Eq.(16) in relation to the wave functions is as follows 99 
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where 100 
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 101 

and energy spectrum is ߝ௡ ൌ
ଵ

ଶ
ሺߢ ൅ ߣ ൅ 2݊ሻଶ . 102 

Using the kernel, we can obtain the Green’s function. The Green’s function 103 
for Hellmann potential is written as 104 
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2.2. Energy Eigenvalues and Wave Functions  105 

Green's function and Kernel for the Hellmann potential was calculated in section 106 
(2.1) using Feynman Path integral method. Integrating over dE, the energy 107 
eigenvalues can be derived from the poles of the Green function as 108 
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If Eq.(13) perform 109 
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here 110 
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 111 
where we got 112 
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Using the following equation 113 
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 114 
We can write the wave function in Eq.(21) with the terms of the hypergeometric 115 
functions as 116 
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Therefore we evaluated energy spectrum and wave functions for the Hellmann 117 
potential. 118 
 119 
CONCLUSIONS 120 
 121 

In this work, we have investigated the Schrodinger Equation with the 122 

Hellmann potential for ݊, ݈ quantum states. We used space-time transformation to 123 
obtain energy eigenvalues and corresponding wave functions. We expressed 124 
normalized wave functions in terms of Jacobi polynoms and Hypergeometric 125 
functions.  126 
 127 
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