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The Arbitrary I-state Solutions of the Hellmann Potential by
Feynman Path Integral Approach
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ABSTRACT

In this study, we used the Path integral method to obtain the bound state
solutions of the Hellmann potential. Firstly we analytically derived the radial
kernel expression of the Hellmann potential using the approximation of the
centrifugal term and space-time transformations. Then we calculated the
exact energy spectrum and the normalized eigenfunction from the poles of the
Green function and their residues. We expressed normalized wave functions
in terms of Jacobi polynoms and Hypergeometric functions.

Keywords: Path Integral, Hellmann Potential, Green’s function, space-time transformation,
centrifugal term

1. INTRODUCTION

In recent years, numerous studies have been carried out to obtain the analytical
full solutions of the wave equations of various potentials in relativistic and non-
relativistic quantum mechanics. Many methods are used for this purpose: SUSYQM
formalism the Nikiforov-Uvarov approach, Functional analysis approach,
Factorization method, Path Integral, the power series expansion, the asymptotic
iteration method [1-10],

The Hellmann potential expressed as the sum of Yukawa and Coulomb potentials

1S

V() =-2+B— (1)

Here A and B are the strengths of potentials and « is the screening parameter. A and

B may also be positive and negative, assuming positive parameters a. The Hellmann
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potential, which has many applications in atomic physics and condensed physics, is
used to represent electron-nuclei and electron-ion interactions [11-17]. It has been
used as a model for potential alkaline hydride molecules and has been found to be an
appropriate potential for studying inner shell ionization problems [18,19,20].

Feynman path integral is one of the methods of obtaining analytical
solution.used to describe the energy spectrum and wave functions of systems. This
method is in complete agreement with the general formalism of quantum mechanics
suggested by Schrodinger, Heisenberg and Dirac. It is based on the propagator
containing quantum mechanical amplitude for a point particle at a position x, at time
t, to reach a position x;, at timet,, integrate over all possible paths connecting by the
classical action. Using path integral method, the kernel of the system and the Green
function are obtained so that they can be derived with the help of the energy
spectrum and the corresponding wave functions[21].  Although the path integral
method is a powerful method, it is difficult to calculate the path integral for a number
of quantum mechanical systems. Duru and Kleinert developed a method called
Kustaanheimo-Stiefel (KS) transformation in order to apply this method to the H-
atom problem in 1979 [5]. Then, relativistic and non-relativistic wave equations of
various potentials were studied: the Morse oscillator, the Woods-Saxon potential, the
Hulthen potential [6-10]. In spherical symmetric systems, the centrifugal barrier term
appears, which plays an important role in the scattering problems of the physics. The
Schrodinger equation with some exponential type potentials does not have analytical
l-wave solutions. For such potentials, they must use approximation schemes because
of the term centrifugal barrier. Several methods have been used to obtain exact or
approximate solutions of the Schrodinger equation for exponential type potentials
[12-17].

The object of this study is to evaluate energy spectrum and wave functions of
the Hellmann potential via path integral method. The organization of this paper is as
follows. In section 2.1 Kernel and energy dependent Green's function of Hellmann

potential are derived using space-time transformation. In section 2.2 energy
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eigenvalues and the corresponding wave functions are obtained using Green’s

function.

2. MATERIAL AND METHODS

2.1. The Kernel of the Hellmann potential

The kernel of spherical symmetric potential between the initial position r' at time
t’ = 0 and final position '’ at time t" has the following form [22]:

K(r”,t”;r’,t’) — Zl o (Zl"'l) Kl( " t” r! t )PI(COSH)

(2)

(rur/)

where P;(cosf) is the Legendre Polynomial with the 6 = (r",r') and
K,(r",t";r',t") is the radial Kernel in the time interval At;. Path integral express in

terms of an integral over all paths in configuration space. Radial kernel is described
as

Ky, £ 17, ) =
llmn_mfZN 1exp[ ]H (

)1/2 — (1)

2mich J=1 71

Here §; is partial action and Arj =15 —7j_q, e = t; —tj_q, t' =ty =tg, "' =ty =
t, . Partial action is

p; | R2(+1)
S =pj(r —1-1) = [ﬁ + St V(rj)]- )
Using the term of the following approximation instead of the centrifugal term
1 a?
r2 = (1 — e—ar)2 (5)
inserting the radial kernel Eq.(3) becomes
n+1 n+1
Kl(r”,t”;r,lt,) :rlll_l)’rc}o f ndnl_[ o exp {hz p](r T} 1)
—o0 J= (6)
h2l(l+1
o ) —arz| ~ V(1)-
2p 2u (1-e ‘”)

Defining the new angular variable 8€(0, ) to transform the radial variable r€(0, o)

_ L ncor?o) — £ sinbcoso
r=——ln(=co pr = 5 sinfcosdpy 7



85 the kernel in Eq.(6) can be written as
K, (6",0;T) = %sin@bcos% [ DODpgexp {i fOT dt[peb
a’ 2L+ 1
—Tsmzecos 923 %
86  where asinf,cos6;, is the contribution to Jacobien because of the coordinate

87  transformation in Eq.(7). When the factor a®sin®*fcos*8 in front of kinetic energy
88  term is the eliminated by the time transformation [6-9]
89

dt 4

90 Lo )

ds a?sin20cos?0

a’sin*@ + Aasin®0 + Bacos?0]}  (8)

91 the Fourier transform of the § —function is added to the kernel as follows

4 1
1= T —
fd a sm2t9bc0529b ( jds azsin2900529>

1
i(ET — | d ]
f ,[2710{ stBbcoszeb exp [L( J- SazsinZHCOSZH)
92  Then radial kernel becomes

K(H” HIT) — 1 de iETf deDGD iZhZI(li-{-l)S
R = sinG,cos0, ) 21 ¢ Pge
—00 0

(10)

(11)

2
xexp{lfds [P — — — — + a

pé . _8,uB+8uE 4fl2l(l+1) 8,uA+8uE
2u  2u stG cos?0

93  We can symmetrize the contribution from Jacobien to coordinate transformation as
94  follows

asinezcoseb - am ( f ds(=0) Z)S;Z ) (12)
95  Thus Eq. (11) takes
Kz(g‘o",r': E) .
=jd5ei2ms jd—EeiET ! K(6,,645) (13)
. Jom a\/sin26,sin26,

where
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K(6y,0,S) = fDHng exp{if ds[pe6 —Z_fl
0

1 (k(k—=1) A(A1-1) ipgcos 20 14
2u\ sin?6 cos? 0 2sin26
and x and A are
1 32 (uE
K=3 1+ 1+—<—+uB)
(15)

a=tlis 122 (s B HE
20— a H 2 a

The path integral solutions of the Trigonometric Poschl-Teller potential are well
known that the kernel in Eq. (14) can be reduced to the potential of this potential

(S . ps 1 k(k—1)

K(6,,6,S) = f DODpg exp{ lf ds[peb — 5 —5(—F=7
0 2 2" sin“0 (16)

A(A-1)
cos? 6 )]
The expression of the kernel in Eq.(16) in relation to the wave functions is as follows
K(0,0055) = ) expl=i(S/2)(k + A+ 20?1 40", 0)  (17)
n=0

where

I'n+DI'(k+A+n)
rA+n+1/2)F(k+n+1/2) (18)

X (cos 0)*(sin H)KPTEK_l/Z‘A_l/Z)(l — 25sin?0)

Vn(0) = J2(k + 2+ Zn)\]

and energy spectrum is €, = %(K + A+ 2n)?.

Using the kernel, we can obtain the Green’s function. The Green’s function
for Hellmann potential is written as

—4i
G(xp,x; E) =
bra a\/sin20,cos 26,
i OodE o lET (19)
L o u 0V, (0))
28w T ek 2+ 2002 = 4110+ 1)

2.2. Energy Eigenvalues and Wave Functions

Green's function and Kernel for the Hellmann potential was calculated in section
(2.1) using Feynman Path integral method. Integrating over dE, the energy
eigenvalues can be derived from the poles of the Green function as
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E N h2a?l(l+1)
" 32u * 2u

2
2
az%[ﬁi%%EQ—Qn+DF—hHU+U—%¥42%z
—— . (20)
2 2
U ,4h l(/i+1)_(2n+1)

If Eq.(13) perform

oo

K, rE) = ) e g (1) gh ()

n=0
here

'nm+ I, +x, +n)
A, +n+1/2)I'(k, +n+1/2)

i(—e=@")Mn1/2 (Kn—1/2,An—1/2) (_ 1+ e_ar)
0((1 — e—ar)kn+/1n+2(1 + e—ar)l/z n 1 —e—ar

on(r) = Zﬁ\/(Kn + A, + 2n)
(21)

where we got

1 4h21(1+1)
An =51 % e (=~ @+ DY - R +1) -
[ T— (2n+ 1)
2UA h2a?l(l+1)

—+@]+\/—i—aA+—}

a a 32u 2u

and (22)
—@2n+1)%2—-n%{+1) -

1 a 4h21(1+1)

1o+
W=y tE [ /ﬂffﬂ)—(mﬂ)]z [ K

22
24 +M]_\/_L _ A + Py
a a 32u 2u

Using the following equation
'n+a+1)
P (a;ﬁ’) P
" @) n!I'(a+1)

, , 1+z
F(—n,n+a+[3 +1,p +1'T> (22)

We can write the wave function in Eq.(21) with the terms of the hypergeometric
functions as

F(n+1)I"(Kn+)ln+n)1"(n+}cn+%)

¢(x) = \/(Kn + A, +2n)

r (n + 1, + %)
(e~ 2 (24)
a(l — e—ar)xn+ln—2(1 — e—ar)%

X F (—n, Kn+ A, +n,4, +1/2,— 1_;ZT).

X
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Therefore we evaluated energy spectrum and wave functions for the Hellmann
potential.

CONCLUSIONS

In this work, we have investigated the Schrodinger Equation with the
Hellmann potential for n, [ quantum states. We used space-time transformation to
obtain energy eigenvalues and corresponding wave functions. We expressed
normalized wave functions in terms of Jacobi polynoms and Hypergeometric
functions.
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