Original Research Article

Investigation of the Effects of Solvents on the Structural, Electronic and Thermodynamic Properties of Rosiglitazone Based on Density Functional Theory

6

1

2

7 Abstract

8 Rosiglitazone ($C_{18}H_{19}N_3O_3S$) is an anti-diabetic drug that reduces insulin resistance in patients with type 2 diabetes. The parameters (bond lengths and bond angles), HOMO, LUMO, HOMO-LUMO energy gap, 9 dipole moment, thermodynamic properties, total energy and vibrational frequencies and intensities of the 10 Rosiglitazone molecule in gas phase and in solvents (Water, Ethanol, DMSO and Acetonitrile) were 11 calculated based on Density Functional Theory (DFT) using standard basis sets: B3LYP/6-31G(d,p), 12 B3LYP/6-31+G(d,p) and B3LYP/6-31++G(d,p). Windows version of Gaussian 09 was used for all the 13 calculations. From the results obtained, the solvents have little influence on the optimized parameters of the 14 molecule. The highest HOMO value of -5.433 eV was found in gas phase showing that the molecule will 15 best donate electron in the gas phase, followed by ethanol in comparison with other solvents. The 16 17 values of the HOMO were observed to increase with the decrease in dielectric constants of the solvents across all the basis sets used. The lowest LUMO energy of -1.448 eV was found to be in ethanol which 18 shows that the molecule will best accept electron in ethanol compared to the gas phase and other 19 solvents. The largest HOMO-LUMO gap of 4.285 eV was found in water which shows its higher 20 kinetic stability and less chemical reactivity compared to other solvents and in the gas phase. The 21 chemical softness of the molecule was found to decrease as the dielectric constants of the solvents 22 increased namely from ethanol to water. The chemical hardness was found to slightly increase with the 23 increase in dielectric constants of the solvents. The highest value of the dipole moment of 4.6874 D was 24 found in water indicating that the molecule will have the strongest intermolecular interactions in water 25 compared to other solvents and in the gas phase. The total energy increased as the dielectric constants of 26 27 the solvents decreased from water to ethanol. The vibrational frequencies and intensities increased as the dielectric constants of the solvents increased from ethanol to water. The results confirmed the effects 28 29 of solvents on the structural, electronic and thermodynamic properties of the studied molecule and will be 30 useful in the design and development of rosiglitazone as an anti-diabetic drug.

31 Keywords: DFT, Diabetes, Gaussian 09, Rosiglitazone, Solvents Effects

32 Introduction

Diabetes mellitus is a group of complex metabolic disorders characterized by deficient insulin secretion, 33 impaired insulin action, or a combination of both resulting in hyperglycemia. People with diabetes have an 34 increased risk of developing a number of serious life-threatening health problems resulting in highly medical 35 care costs, reduced quality of life and increased mortality [1]. Persistently high blood glucose levels cause 36 generalized vascular damage affecting the heart, eyes, kidneys, nerves as well as resulting in various 37 complications [1]. Diabetes is now one of the most common diseases that cause sudden death in most of the 38 African countries and cause most of the severe heart disease and stroke, kidney damage, nerve damage, 39 amputation and vision loss. Rosiglitazone is an antihyperglycemic agent that reduces insulin resistance in 40 patients with Type 2 diabetes which represents a disability of the pancreas related to the secretion of insulin 41 and peripheral insulin resistance. Rosiglitazone belongs to the thiazolidinedione class of oral antidiabetic 42 agents [2]. A Molecular modeling study of Rosiglitazone and its metabolites by using the PM6 method have 43 been reported [3]. Similarly, Geometry optimization and the calculation of electronic properties such as 44 HOMO, LUMO, HOMO-LUMO energy gap, dipole moment, the total energy in gas phase and solvents of 45 Rosiglitazone and Pioglitazone using DFT method were also reported [4]. Physical and chemical properties 46 of a molecule depend on the structure and various kinds of the molecule. Chemical reactions of a molecule in 47 solution are affected by the nature of the solvent not only in terms of the energies of HOMO and LUMO of 48 the molecule but also their other properties [5]. 49

The purpose of this work is to investigate the influence of solvation media upon the structural, electronic and thermodynamic properties of rosiglitazone based on DFT employing three basis sets B3LYP/6-31G(d,p), B3LYP/6-31+G(d,p) and B3LYP/6-31++G(d,p). The solvents used in this work included Water, Ethanol, Dimethyl sulfoxide (DMSO) and Acetonitrile with the following dielectric constants at 25°C: Water ($\varepsilon = 79$), Ethanol ($\varepsilon = 25$), Dimethyl sulfoxide (DMSO) ($\varepsilon = 47$) and Acetonitrile ($\varepsilon = 38$).

56 Theoretical Background

57 **Density Functional Theory (DFT)**

Density functional theory (DFT) is a computational quantum mechanical method used in physics, chemistry, and materials science to investigate the electronic structure (principally the ground state) of many body systems, in particular atoms, molecules, and the condensed phases. Using this theory, the properties of manyelectron systems can be determined. DFT comes from the functional (function of a function) of electron density [6]. Within DFT the ground state energy can be determined by the relationship given as [7]:

63
$$\rho(r) = \sum_{i=1}^{n} |\psi_{i(r)}|^{2}$$
(1)

64 Where $\rho(r)$ is electron density and $\psi_{i(r)}$ is the wave function of the electrons. This relation was employed 65 here to, determine the ground state energy of the molecules.

66 Local Density Approximation (LDA) of the electrons. This relation was employed here to determine

The local density approximation (LDA) is the basis of all approximate exchange-correlation functional. At the center of this model is the idea of a uniform electron gas. This is a system in which electrons move on a positive background charge distribution such that the total ensemble is neutral. The central idea of LDA is the assumption that we can write E_{XC} in the following form [8]:

71
$$E_{XC}^{LDA}[\rho] = \int \rho(\vec{r}) E_{XC}(\rho(\vec{r})) d\vec{r}$$

where $E_{XC}(\rho(\vec{r}))$ is the exchange-correlation energy per particle of a uniform electron gas of density $\rho(\vec{r})$. This energy per particle is weighted with the probability $\rho(\vec{r})$ that there is an electron at this position. The quantity $EXC(\rho(\vec{r}))$ can be further split into exchange and correlation contributions given by [8]:

(2)

75
$$E_{XC}(\rho(\vec{r})) = E_X(\rho(\vec{r})) + E_C(\rho(\vec{r}))$$
(3)

The exchange part, E_X , which represents the exchange energy of an electron in a uniform electron gas of a particular density, was originally derived by Bloch and Dirac in the late 1920s.

78
$$E_X = -\frac{3}{4} \left(\frac{3\rho(\vec{r})}{\pi} \right)^{1/3}$$
 (4)

79 Generalized Gradient Approximation (GGA)

Despite its simplicity, the LDA has been found to be inadequate for some problems and for this reasons extensions of LDA have been developed [6]. The logical steps in this regard are the use of the information not only about the density $\rho(\vec{r})$ at a particular point, \vec{r} but also the gradient of the charge density, $\nabla \rho(\vec{r})$ so as to account for the non-homogeneity of the true electron density distribution in the real system. Thus, we may write the exchange-correlation energy in a form known as Generalized Gradient Approximation (GGA) [6]

$$E_{XC}^{GGA}[\rho(\vec{r})] = \int f^{GGA}[\rho(\vec{r}), \nabla \rho(\vec{r})] d\vec{r}$$
(5)

Where f is the function of electron densities and their gradients [6]. E_{XC}^{GGA} is usually split into the exchange and correlation parts, which are modeled separately

$$E_{XC}^{GGA} = E_X^{GGA} + E_C^{GGA} \tag{6}$$

90 Frontier Molecular Orbitals (FMOs) Energy and Chemical Indices

To explain several types of reaction and for predicting the most reactive position in conjugated systems, 91 molecular orbitals and their properties such as energy are used [9]. The energies of the Highest Occupied 92 93 Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO) are the most important orbitals in a molecule. HOMO can be through the outermost orbital containing electrons tends to give these 94 electrons such as an electron donor. On the other hand, LUMO can be through the innermost orbital 95 containing free places to accept electron [10]. The Energy of the HOMO is directly related to the ionization 96 potential and LUMO Energy is directly related to the electron affinity [11]. The Energy difference between 97 HOMO and LUMO orbital is called an energy gap which is an important parameter that determines the 98 stability of the structures. The energy gap is also used in determining molecular electrical transport 99 100 properties [12].

101 The HOMO and LUMO energies are used for the determination of global reactivity descriptors. It is 102 important that Ionization potential (I), Electron affinity (A), Electrophilicity (ω), Chemical potential (μ), 103 Electronegativity (χ), Hardness (η) and Softness (S) to be put into a Molecular Orbital's framework [12]. We 104 focus on the HOMO and LUMO energies in order to determine the interesting molecular/atomic properties 105 and chemical quantities. In simple molecular orbital theory approaches, the HOMO energy is related to the 106 ionization potential (I) and the LUMO energy has been used to estimate the electron affinity (A) respectively 107 by the following relations [12]:

$I = -E_H$	ОМО				(7)
------------	-----	--	--	--	-----

109
$$A = -E_{LUMO}$$
 (8)
110 $(\mu) = -\frac{I+A}{2}$ (9)

111
$$(\eta) = \frac{I-A}{2} \tag{10}$$

112
$$(S) = \frac{1}{\eta}$$
 (11)

113
$$(\chi) = \frac{I+A}{2}$$
 (12)

114
$$(\omega) = \frac{\mu^2}{2\eta}$$
(13)

In addition, according to Koopmans' theorem the energy gap, E_{gap}, defined as the difference between HOMO
 and LUMO energy [13].

117
$$E_{gap} = (E_{LUMO} - E_{HOMO}) \approx IP - EA$$
(14)

118

119

120 **Computational Methods**

The geometry optimization of Rosiglitazone molecule was performed based on Density Functional Theory 121 (DFT) in Becke's three-parameter hybrid functional [14] combined with Lee-Yang-Parr correlation [15] 122 functional (B3LYP) method together with the standard 6-31G(d,p), 6-31+G(d,p) and 6-31++G(d,p) basis sets 123 utilizing gradient geometry optimization. The geometries were fully optimized without any constraint with 124 the help of analytical gradient procedure implemented in Gaussian 09 package [16]. Prior to the geometry 125 optimization, stability check was performed. All the parameters were allowed to relax and all calculations 126 converged to an optimized geometry which corresponds to a true energy minimum, and revealed by absent of 127 imaginary values in the frequency values. For the study of solvation effects a self-consistent reaction field 128 (SCRF) approach based on Polarizable Continuum Model (PCM) were employed. The effects of four 129 solvents (water, ethanol, DMSO, and acetonitrile) were investigated by means of the SCRF method based on 130 PCM which is default in Gaussian 09 developed by Tomasi and Coworkers [17]. The optimized parameters 131 were evaluated with vibrational frequencies and intensities values. The frontier molecular orbital's 132 calculation has been carried out to explain the charge transfer within the molecule. The energy gap which is 133 the difference between HOMO and LUMO was calculated and used in obtaining chemical hardness, 134 chemical softness, chemical potential, electronegativity, and electrophilicity index. The total energy, 135 thermodynamic properties and dipole moment of the molecule were calculated. All computation were carried 136 out in gas phase and in solvents using windows version of Gaussian 09 software [16]. IR pal 2.0 was used 137 for interpretation of the vibrational frequencies. 138

139 **Results and Discussion**

140 Optimized Bond Lengths (Å) in the Gas phase and in Solvents

141 The bond length is a measurable distance between two atoms covalently bonded together. It is worth noting

- 142 that the shorter the bond length, the greater the value of bond energy and bond strength [18]. The optimized
- bond lengths of rosiglitazone in the gas phase and in solvents are shown in Tables 1, 2 and 3.
- The results obtained show that the lowest value was 1.013Å in the gas phase. In water, ethanol, DMSO and acetonitrile it was observed that the lowest value was 1.0143Å for B3LYP/6-31G(d,p) as shown in Table 1. This indicates that the values are a bit higher in solvents than in the gas phase which implies that the bonds will be slightly stronger in the gas phase than in solvents. The bond R(5,13):N5-H13 between Nitrogen and Hydrogen atoms at the indicated positions have the lowest values of bond lengths. These are the strongest
- bonds and a large amount of energy is needed to break them.

- Also, from the results of bond length obtained the highest value 1.8472Å for B3LYP/6-31G(d,p), 1.8494Å
- for B3LYP/6-31+G(d,p) and 1.8495Å B3LYP/6-31++G(d,p) was exactly the same in both gas phase and
- solvents. The bonds R(1,2):S1-C2 between sulphur and carbon atoms at the specified positions have the
- highest values of bond lengths. From the results obtained increasing or decreasing the dielectric constants of
- the solvents has little influence on the bond lengths particularly the shorter bond lengths.

156

Figure 1: Optimized molecular structure of Rosiglitazone

157 Table 1: Bond lengths of Rosiglitazone for 6-31G(d,p)

		Solvents				
Bond lengths (Å)	Gas phase	Water	Ethanol	DMSO	Acetonitrile	
R(1,2)	1.8472	1.8472	1.8472	1.8472	1.8472	
R(1,3)	1.7996	1.795	1.7952	1.795	1.7951	
R(2,6)	1.5442	1.5437	1.5438	1.5437	1.5437	
R(24,25)	1.5295	1.5276	1.5278	1.5277	1.5277	
R(2,7)	1.5322	1.5303	1.5304	1.5303	1.5303	
R(5,13)	1.013	1.0143	1.0143	1.0143	1.0143	
R(34,40)	1.0826	1.0821	1.0821	1.0821	1.0821	
R(16,21)	1.0832	1.0831	1.0831	1.0831	1.0831	
R(41,44)	1.0842	1.0841	1.0841	1.0841	1.0841	
R(17,22)	1.0848	1.0852	1.0852	1.0852	1.0852	

158

159 **Table 2: Bond lengths of Rosiglitazone for 6-31+G(d,p)**

	Solvents

Bond lengths (Å)	Gas phase	Water	Ethanol	DMSO	Acetonitrile
R(1,2)	1.8494	1.8494	1.8494	1.8494	1.8494
R(1,3)	1.7932	1.7849	1.7853	1.785	1.7851
R(2,6)	1.5457	1.5452	1.5453	1.5452	1.5452
R(24,25)	1.5299	1.5277	1.5278	1.5278	1.5278
R(2,7)	1.5313	1.5288	1.5289	1.5288	1.5288
R(5,13)	1.0142	1.0155	1.0155	1.0155	1.0155
R(34,40)	1.0827	1.0821	1.0821	1.0821	1.0821
R(16,21)	1.0832	1.0831	1.0831	1.0831	1.0831
R(41,44)	1.0844	1.0844	1.0844	1.0844	1.0844
R(17,22)	1.0851	1.0855	1.0855	1.0855	1.0855

161 Table 3: Bond lengths of Rosiglitazone for 6-31G++(d,p)

		Solvents				
Bond lengths (Å)	Gas phase	Water	Ethanol	DMSO	Acetonitrile	
R(1,2)	1.8495	1.8493	1.8494	1.8494	1.8494	
R(1,3)	1.7932	1.7849	1.7853	1.785	1.7851	
R(2,6)	1.5458	1.5453	1.5453	1.5453	1.5453	
R(24,25)	1.5299	1.5277	1.5278	1.5277	1.5278	
R(2,7)	1.5313	1.5288	1.5289	1.5288	1.5288	
R(5,13)	1.0142	1.0155	1.0155	1.0155	1.0155	
R(34,40)	1.0826	1.0821	1.0821	1.0821	1.0821	
R(16,21)	1.0832	1.0831	1.0831	1.0831	1.0831	
R(41,44)	1.0844	1.0844	1.0844	1.0844	1.0844	
R(17,22)	1.0851	1.0855	1.0854	1.0855	1.0855	

162

163 Optimized bond angle (in degrees) in gas phase and in solvents

Bond angle is the average angle between the orbitals of the central atoms containing the bonding electron pairs in the molecule [19]. The optimized bond angles of Rosiglitazone in the gas phase and in solvents are shown in Tables 4, 5 and 6.

In Table 4, the solvents, in particular water has the least value of 92.6758° and the highest value is 125.2157° while in the gas phase lowest value is 92.7235° and the highest value is 125.0557° . This implies that the bond angles in the gas phase are expected to be greater than in water and others solvents. The bond angles with the least values is A(2,1,3): C2-S1-C3 and the highest values is A(4,3,5): O4-C3-N5 in both the gas phase and solvents.

172 Table 4: Bond Angle of Rosiglitazone for 6-31G(d,p)

Bond Angle	Solvents

(Degree)	Gas phase	Water	Ethanol	DMSO	Acetonitrile
A(1,3,4)	125.6565	125.1499	125.175	125.1577	125.1638
A(4,3,5)	125.0557	125.2157	125.2023	125.2115	125.2083
A(16,20,23)	124.6675	124.6095	124.6118	124.61	124.6107
A(5,7,9)	124.6071	124.413	124.4212	124.4157	124.4176
A(33,39,41)	124.3824	124.4448	124.4453	124.4451	124.4452
A(2,1,3)	92.7235	92.6758	92.6764	92.6759	92.6761
A(2,6,12)	106.0085	106.014	106.0183	106.0152	106.0163
A(29,25,30)	106.4154	106.357	106.3609	106.3584	106.3594
A(1,2,7)	106.9436	106.6192	106.6359	106.6245	106.6286
A(7,2,8)	107.18	107.2646	107.2597	107.2632	107.262

174 Table 5: Bond Angle of Rosiglitazone for 6-31+G(d,p)

Bond Angle			Solvents				
(Degree)	Gas phase	Water	Ethanol	DMSO	Acetonitrile		
A(1,3,4)	125.5962	125.1555	125.1782	125.1627	125.1682		
A(4,3,5)	124.786	124.7454	124.7418	124.7442	124.7433		
A(16,20,23)	124.5853	124.4906	124.4945	124.4917	124.4927		
A(5,7,9)	124.3737	124.1137	124.1258	124.1176	124.1205		
A(33,39,41)	124.2988	124.3408	124.3429	124.3415	124.3421		
A(2,1,3)	92.7103	92.6326	92.6347	92.6332	92.6338		
A(2,6,12)	106.273	106.2484	106.2591	106.252	106.2544		
A(29,25,30)	106.4053	106.322	106.3282	106.324	106.3256		
A(1,2,7)	106.7453	106.4052	106.422	106.4104	106.4146		
A(7,2,8)	107.1984	107.2997	107.3004	107.3001	107.3003		

177 Table 6: Bond Angle of Rosiglitazone for 6-31++G(d,p)

Bond Angle		Solvents				
(Degree)	Gas phase	Water	Ethanol	DMSO	Acetonitrile	
A(1,3,4)	125.5924	125.1536	125.1756	125.1602	125.1657	
A(4,3,5)	124.7902	124.7488	124.7448	124.7473	124.7459	
A(16,20,23)	124.5889	124.4943	124.4964	124.4939	124.4952	
A(5,7,9)	124.3742	124.1171	124.1295	124.1212	124.1239	
A(33,39,41)	124.2994	124.3409	124.343	124.3418	124.342	
A(2,1,3)	92.713	92.6359	92.6374	92.6361	92.6363	
A(2,6,12)	106.2666	106.2418	106.2525	106.2452	106.2492	
A(29,25,30)	106.4028	106.3212	106.3275	106.3235	106.3243	
A(1,2,7)	106.7375	106.4021	106.4179	106.4065	106.4104	
A(7,2,8)	107.2316	107.3286	107.3305	107.3299	107.3299	

- Frontier Molecular Orbitals (FMOs) Energy and Chemical Indices of Rosiglitazone in Gas phase and
 Solvents
- The calculated values of HOMO- LUMO energy and chemical indices in the gas phase and solvents are
 presented in Tables 7, 8 and 9.

The results shown in Table 7 of the energy gap in the gas phase is 4.4451eV which is close to a value of 183 4.4628eV reported by [4] compared to the results in Tables 8 and 9. The highest HOMO value of -184 5.43288eV was found in the gas phase followed by -5.45954eV in ethanol both in 6-31G(d,p). This 185 indicates that the molecule will be best electron donor in the gas phase followed by in ethanol compared to 186 other solvents. The value of the HOMO was observed to increase with the decrease in dielectric 187 constants of the solvents across all the basis sets used. The lowest LUMO energy of -1.44795eV was 188 found to be in ethanol which shows that the molecule will be the best electron acceptor in ethanol 189 compared to the gas phase and other solvents. The largest HOMO-LUMO gap of 4.28507eV was found 190 in water which implies a higher kinetic stability and less chemical reactivity [20] followed by 191 192 4.28344eV found in the gas phase both in the 6-31+G(d,p) basis set and a gradual increase in the frontier molecular orbital energy gap as the dielectric constants of the solvents increased was observed, 193 this can be observed across all the basis sets used [21-22]. 194

Also in Tables 7-9 the chemical softness of the molecule was found to decrease as the dielectric constants of the solvents increased from ethanol to water and was observed across all the basis sets. Further, it was observed that as the dielectric constant of the solvents was increased from ethanol to water, the chemical hardness was found to slightly increased and this was observed across all the basis sets. The chemical potential was found to decrease as the dielectric constant of the solvents increased namely from ethanol to water.

		Solvents			
Parameters (eV)	Gas phase	Water	Ethanol	DMSO	Acetonitrile
НОМО	-5.43288	-5.46607	-5.45954	-5.46389	-5.46226
LUMO	-0.98779	-1.01119	-1.01201	-1.01147	-1.01174
HOMO-LUMO Gap	4.4451 a(4.4628)	4.4549	4.4475	4.4524	4.4505
$I = -E_{HOMO}$	5.43288	5.46607	5.45954	5.46389	5.46226
$A = -E_{LUMO}$	0.98779	1.01119	1.01201	1.01147	1.01174
Chemical Hardness	2.22255	2.22757	2.22376	2.22621	2.22526
Chemical Softness	0.44993	0.44892	0.44969	0.44919	0.44939
Electronegativity	3.21047	3.23877	3.23578	3.23768	3.23714
Chemical Potential	-3.21047	-3.23877	-3.23578	-3.23768	-3.23714

201 Table 7: HOMO-LUMO Energy and Chemical Indices of Rosiglitazone for 6-31G(d,p)

Electrophilicity Index					
	2.3185	2.3538	2.3538	2.3538	2.3538

202 a [4]

203 Table 8: HOMO-LUMO Energy and Chemical Indices of Rosiglitazone for 6-31+G(d,p)

		Solvents			
Parameters (eV)	Gas phase	Water	Ethanol	DMSO	Acetonitrile
НОМО	-5.70962	-5.71125	-5.70499	-5.70908	-5.70772
LUMO	-1.42618	-1.42618	-1.44605	-1.44550	-1.44577
HOMO-LUMO Gap	4.28344 a(4.4628)	4.28507	4.25894	4.26358	4.26195
$I = -E_{HOMO}$	5.70962	5.71125	5.70499	5.70908	5.70772
$A = -E_{LUMO}$	1.42618	1.42618	1.44605	1.44550	1.44577
Chemical Hardness	2.14172	2.14254	2.12947	2.13179	2.13098
Chemical Softness	0.46691	0.46674	0.46960	0.46909	0.46927
Electronegativity	3.56790	3.56872	3.57552	3.57729	3.57675
Chemical Potential	-3.56790	-3.56872	-3.57552	-3.57729	-3.57675
Electrophilicity Index					
-	2.97189	2.97212	3.00177	3.00147	3.00169

204 a [4]

205 Table 9: HOMO-LUMO Energy and Chemical Indices of Rosiglitazone 6-31++G(d,p)

		Solvents				
Parameters (eV)	Gas phase	Water	Ethanol	DMSO	Acetonitrile	
НОМО	-5.71071	-5.71262	-5.70636	-5.71044	-5.70908	
LUMO	-1.42863	-1.44741	-1.44795	-1.44768	-1.44768	
HOMO-LUMO Gap	4.28208 a(4.4628)	4.26521	4.25841	4.26276	4.26140	
$I = -E_{HOMO}$	5.71071	5.71262	5.70636	5.71044	5.70908	
$A = -E_{LUMO}$	1.42863	1.44741	1.44795	1.44768	1.44768	
Chemical Hardness	2.14104	2.13261	2.12921	2.13138	2.13070	
Chemical Softness	0.46706	0.46891	0.46966	0.46918	0.46933	
Electronegativity	3.56967	3.58002	3.57716	3.57906	3.57838	
Chemical Potential	-3.56967	-3.58002	-3.57716	-3.57906	-3.57838	
Electrophilicity Index						
	2.97578	3.00489	3.00489	3.00502	3.00483	

206 a [4]

207 Dipole moment (µ) of Rosiglitazone molecule in gas phase and solvents

The electric dipole moment is defined as the product of the magnitude of charge at either end of the dipole and the distance between the centers of positive and negative charge. The dipole moment is expressed in Debye (D). The trend that the higher the value of dipole Moment the stronger the intermolecular interactions would be expected. Also, higher dipole moment means higher polarity of the molecule. For calculating the total dipole moment, the mathematical expression is defined as $\langle \mu \rangle =$ ($\mu_x^2 + \mu_y^2 + \mu_z^2$)^{1/2} [12] and the obtained dipole moments of the Rosiglitazone in the gas phase and in solvents are shown in Tables 10, 11 and 12.

In Table 10, the dipole moment in the gas phase was found to be 3.1948D which is closer to a value of 3.24931D reported by Kumar [3] compared to the results in Tables 11 and 12. From Tables 10, 11 and 12, it can be seen that the dipole moment increased as the dielectric constants of the solvent increased from ethanol to water. The highest value of the dipole moment of 4.6874D was found in water as shown in Table 11 indicating that the molecule will have strongest intermolecular interactions in water compared to other solvents and the gas phase [3].

221 Table 10: Dipole Moment of Rosiglitazone for 6-31G(d,p)

	$\mu_x(D)$	$\mu_{\rm y}({\rm D})$	$\mu_z(D)$	μ(D)
Gas phase	-1.8015	1.4681	2.1923	3.1948 b(3.2493)
Water	-1.6396	2.1049	3.4253	4.3418 b(4.4240)
Ethanol	-1.6560	2.0789	3.3434	4.2711
DMSO	-1.6447	2.0965	3.3987	4.3187
Acetonitrile	-1.6487	2.0903	3.3787	4.3015

222 b [3]

223 Table 11: Dipole Moment of Rosiglitazone for 6-31+G(d,p)

	$\mu_x(D)$	$\mu_{\rm y}({\rm D})$	$\mu_z(D)$	μ (D)
Gas phase	-2.1369	1.3458	2.2985	3.4148 b(3.2493)
Water	2.0321	1.9435	-3.7503	4.6874 b(4.4240)
Ethanol	-2.0469	1.9097	3.6477	4.5981
DMSO	2.0367	1.9324	-3.7167	4.6579
Acetonitrile	2.0404	1.9242	-3.6918	4.6363

224 b [3]

225 Table 12: Dipole Moment of Rosiglitazone for 6-31++G(d,p)

	$\mu_{x}(D)$	$\mu_y(D)$	$\mu_z(D)$	μ(D)
Gas phase	-2.1455	1.3318	2.2906	3.4094 b(3.2493)
Water	2.0457	1.9193	-3.7381	4.6736 b(4.4240)
Ethanol	2.0607	1.8832	-3.6343	4.5827
DMSO	2.0505	1.9073	-3.7040	4.6435
Acetonitrile	2.0545	1.8973	-3.6783	4.6207

226 b [3]

227 Thermodynamic Properties of Rosiglitazone molecule

The total energy of a molecule is the sum of translational, rotational, vibrational and electronic energies. i.e., 228 $E = E_t + E_r + E_v + E_e$. Thus, the molecular partition function is the product of the translational, rotational, 229 vibrational and electronic partition functions of the molecule [23]. The relations between partition functions 230 and various thermodynamic functions were used to evaluate the latter due to translation, vibration and 231 rotation degrees of freedom of molecular motions. The calculated thermodynamic parameters of 232 rosiglitazone both in the gas phase and solvents are presented in Tables 13-15. From Tables 13-15, the values 233 234 of the thermodynamic properties obtained appeared to be much closer to one another across all the solvents and gas phase. This shows that the solvents have no effect on the thermodynamic properties of rosiglitazone. 235 Also, from the observed results, the values of the Heat capacity, Entropy, Rotational constants and Zero 236 Point Vibrational Energy (ZPVE) in both the gas phase and solvents are approximately the same when 237 considering only one decimal place. 238

	Gas phase		Water		Ethanol	
Position	Heat Capacity (Cal/mol- Kelvin)	Entropy (Cal/mol- Kelvin)	Heat Capacity (Cal/mol- Kelvin)	Entropy (Cal/mol- Kelvin)	Heat Capacity (Cal/mol- Kelvin)	Entropy (Cal/mol- Kelvin)
Electronic	0.000	0.000	0.000	0.000	0.000	0.000
Translational	2.981	43.512	2.981	43.512	2.981	43.512
Rotational	2.981	36.330	2.981	36.324	2.981	36.324
Vibrational	80.146	90.542	80.172	89.932	80.167	89.943
Total	86.108	170.384	86.134	169.768	86.129	169.779
Rotational Constants (GHZ)	0.62393 0.05775 0.05544		0.62288 0.05795 0.05567		0.62341 0.05793 0.05564	
Zero Point Vibrational Energy (ZPVE) (Kcal/mol)	220.08825		219.99057		220.00287	
	DMSO		Aceto	onitrile		
Position Electronic	Heat Capacity (Cal/mol- Kelvin) 0.000	Entropy (Cal/mol- Kelvin) 0.000	Heat Capacity (Cal/mol- Kelvin) 0.000	Entropy (Cal/mol- Kelvin) 0.000		

239 Table 13: Thermodynamic properties of Rosiglitazone for 6-31G(d,p)

Translational	2.981	43.512	2.981	43.512
Rotational	2.981	36.324	2.981	36.324
Vibrational	80.171	89.955	80.169	89.968
Total	86.132	169.791	86.131	169.804
Rotational	0.62306		0.62320	
Constants	0.05794		0.05794	
(GHZ)	0.05566		0.05565	
Zero Point				
Vibrational				
Energy				
(ZPVE)	219.99439		219.99733	
(Kcal/mol)				

241 Table 14: Thermodynamic properties of Rosiglitazone for 6-31+G(d,p)

	Gas phase		Water		Ethanol	
Position	Heat Capacity (Cal/mol- Kelvin)	Entropy (Cal/mol- Kelvin)	Heat Capacity (Cal/mol- Kelvin)	Entropy (Cal/mol- Kelvin)	Heat Capacity (Cal/mol- Kelvin)	Entropy (Cal/mol- Kelvin)
Electronic	0.000	0.000	0.000	0.000	0.000	0.000
Translational	2.981	43.512	2.981	43.512	2.981	43.512
Rotational	2.981	36.345	2.981	36.341	2.981	36.341
Vibrational	80.374	90.807	80.399	90.179	80.402	90.496
Total	86.335	170.664	86.361	170.032	86.364	170.349
Rotational	0.62789		0.62402		0.62447	
Constants (GHZ)	0.05713		0.05742		0.05740	
	0.05483		0.05513		0.05511	
Zero Point Vibrational Energy						
(ZPVE)	219.53272		219.41399		219.41260	
(Kcal/mol)	DN	ISO	Aceto	onitrile		
	Heat		Heat			
	Capacity (Cal/mol-	Entropy (Cal/mol-	Capacity (Cal/mol-	Entropy (Cal/mol-		
Position	Kelvin)	Kelvin)	Kelvin)	Kelvin)		
Electronic	0.000	0.000	0.000	0.000		

Translational	2.981	43.512	2.981	43.512		
Rotational	2.981	36.341	2.981	36.341		
Vibrational	80.400	90.259	80.401	90.336		
Total	86.362	170.112	86.362	170.189		
Rotational	0.62417		0.62428			
Constants (GHZ)	0.05741	0.05741		0.05741		
(0112)	0.05513		0.05512			
Zero Point Vibrational Energy (ZPVE) (Kcal/mol)	219.41430		219.41402			

243 Table 15: Thermodynamic properties of Rosiglitazone for 6-31++G(d,p)

	Gas phase		Water		Ethanol	
Position	Heat Capacity (Cal/mol- Kelvin)	Entropy (Cal/mol- Kelvin)	Heat Capacity (Cal/mol- Kelvin)	Entropy (Cal/mol- Kelvin)	Heat Capacity (Cal/mol- Kelvin)	Entropy (Cal/mol- Kelvin)
Electronic	0.000	0.000	0.000	0.000	0.000	0.000
Translational	2.981	43.512	2.981	43.512	2.981	43.512
Rotational	2.981	36.345	2.981	36.341	2.981	36.342
Vibrational	80.377	90.806	80.396	90.196	80.401	90.595
Total	86.338	170.664	86.358	170.050	86.362	170.448
Rotational	0.62698		0.62294		0.62333	
Constants (GHZ)	0.05716		0.05745		0.05743	
	0.05486		0.05516		0.05514	
Zero Point Vibrational Energy (ZPVE)	219.52615		219.41032		219.40613	
(Kcal/mol)	DMSO		Acetonitrile			
Position	Heat Capacity (Cal/mol- Kelvin)	Entropy (Cal/mol- Kelvin)	Heat Capacity (Cal/mol- Kelvin)	Entropy (Cal/mol- Kelvin)		
Biccuoine	0.000	0.000	0.000	0.000		

2.981	43.512	2.981	43.512		
2.981	36.342	2.981	36.342		
80.398	90.325	80.399	90.406		
86.360	170.179	86.360	170.259		
0.62307		0.62313			
0.05744	0.05744		0.05744		
0.05515		0.05515			
219.40830		219.40787			
	2.981 2.981 80.398 86.360 0.62307 0.05744 0.05515 219.40830	2.981 43.512 2.981 36.342 80.398 90.325 86.360 170.179 0.62307 0.05744 0.05515 219.40830	2.98143.5122.9812.98136.3422.98180.39890.32580.39986.360170.17986.3600.623070.623130.057440.057440.055150.05515219.40830219.40787		

Total Energy of Rosiglitazone molecule in the Gas phase and in Solvents

The calculated total energy of the Rosiglitazone in gas phase and in solvents is shown in Tables 16, 17 and 18. The results obtained in the gas phase Tables 16-18 were in good agreement with those reported by Maltarollo [4]. In Tables 16, 17 and 18, the values of the total energy increased as the dielectric constant of the solvents decreased from water to ethanol. The minimum energy was found to be -1485.58768572a.u in water as shown in Table 18.

251 Table 16: Total Energy of Rosiglitazone for 6-31G(d,p)

	Total I		
	(a.u)	(eV)	
Gas phase	-1485.52565826	-40424.12421	In Gas phase
Water	-1485.54290398	-40424.59348	a (-1485.5854 a.u)
Ethanol	-1485.54204931	-40424.57024	
DMSO	-1485.54263192	-40424.58607	a (-40425.7499 eV)
Acetonitrile	-1485.54242393	-40424.58041	

252 a[4]

253

254

Table 17: Total Energy of Rosiglitazone for 6-31+G(d,p)

	Total I		
	(a.u)	(eV)	
Gas phase	-1485.56679200	-40425.24354	In Gas phase
Water	-1485.58716633	-40425.79796	a (-1485.5854 a.u)
Ethanol	-1485.58613979	-40425.77001	
DMSO	-1485.58683932	-40425.78906	a (-40425.7499 eV)
Acetonitrile	-1485.58658948	-40425.78226	

256 a [4]

257 Table 18: Total Energy of Rosiglitazone for 6-31++G(d,p)

	Total I (a.u)	Energy (eV)	
Gas phase	-1485.56735914	-40425.25897	In Gas phase
Water	-1485.58768572	-40425.81208	a (-1485.5854 a.u)
Ethanol	-1485.58666137	-40425.78422	
DMSO	-1485.58735937	-40425.80321	a(-40425.7499 eV)
Acetonitrile	-1485.58710998	-40425.79641	

258 a[4]

259 Vibrational frequencies and IR Intensities of Rosiglitazone in the Gas phase and Solvents

The vibrational frequencies and intensities of Rosiglitazone in the gas phase and solvents are shown in
Tables 19-21.

The most intense frequency was found to be about 1724.3 cm^{-1} which occurred at an intensity of 1726.4Km/mole in water in Table 21. The second most intense frequency was found to be about $1724.3103 \text{ cm}^{-1}$ which occurred at an intensity of 1725.8 Km/mole in water in Table 20. Also the third most intense frequency was found to be about 1777.3 cm^{-1} which occurred at an intensity of 1295.6 Km/mole in water in Table 19. At these frequencies, there is strong C=O stretch asymmetry mode of vibrations. From

- Tables 19, 20 and 21, it can be seen that the intensities increased as the dielectric constants of the solvents
- 268 increased namely from ethanol to water. For, the correction of theoretical errors in this work, the theoretical
- harmonic frequencies above 1700 cm^{-1} were scaled by a scaling factor of 0.958, and frequencies less than
- 270 1700 cm^{-1} were scaled by 0.983 [24].

271 Some selected values of vibrational frequencies and intensities

272 Table 19: Vibrational Frequencies and Intensities of Rosiglitazone for 6-31G(d,p)

Gas phase		Water		Ethanol	
Frequency	Intensity	Frequency	Intensity	Frequency	Intensity
1823.4605	659.5572	1777.3042	1295.63	1779.4797	1262.1074
1288.9854	486.431	1280.4535	600.5999	1280.8465	599.0695
1546.693	259.9662	1539.9364	395.3251	1540.385	385.977
1656.535	269.0981	1650.0193	376.9528	1650.314	371.4033
1323.0752	217.8641	1321.0194	367.2942	1321.1988	360.2493
25.6816	0.0075	26.5313	0.0334	26.5062	0.0338
62.7469	0.0359	61.7593	0.0828	62.0969	0.0825
33.075	0.0433	35.464	0.1203	35.5273	0.1152
46.6348	0.0924	15.2418	0.2006	44.9437	0.1839
13.9723	0.1773	15.2418	0.2006	15.0385	0.1896

DM	ISO	Acetonitrile		
Frequency	Intensity	Frequency	Intensity	
1777.9997	1284.9509	1778.5286	1276.786	
1280.5839	600.0653	1280.6801	599.6399	
1540.0862	392.2909	1540.204	389.9213	
1650.1165	375.1845	1650.1878	373.8289	
1321.0709	365.1194	1321.1129	363.4361	
26.5091	0.0341	26.5004	0.0344	
61.8698	0.0834	61.9672	0.0837	
35.4821	0.1177	35.4976	0.1163	
45.0077	0.1937	44.9005	0.1895	
15.1763	0.1968	15.1229	0.1941	

273

274 Table 20: Vibrational Frequencies and Intensities of Rosiglitazone for 6-31+G(d,p)

Gas phase		Water		Ethanol	
Frequency	Intensity	Frequency	Intensity	Frequency	Intensity
1789.1283	849.7389	1724.3103	1725.7785	1727.467	1677.5066

1279.3981	503.6094	1268.6036	435.9116	1269.0596	468.9467
1539.7682	266.2268	1532.2012	415.7792	1532.7203	405.9961
1646.1383	305.688	1639.4958	437.6898	1639.7649	431.3961
1322.0872	224.9443	1322.4794	392.6738	1322.6153	383.1451
25.0717	0.0201	25.7266	0.0276	25.3949	0.0283
60.9003	0.0151	59.5114	0.1745	58.5184	0.1384
32.7727	0.0977	34.6629	0.312	34.413	0.2849
44.7636	0.0535	46.8142	0.2641	46.3231	0.2904
14.783	0.2208	16.5159	0.3153	16.2997	0.2873
DM	ISO	Aceto	nitrile		
Frequency	Intensity	Frequency	Intensity		
Frequency 1725.3105	Intensity 1710.3367	Frequency 1726.0814	Intensity 1698.6039		
Frequency 1725.3105 1268.7451	Intensity 1710.3367 447.0253	Frequency 1726.0814 1268.8554	Intensity 1698.6039 455.144		
Frequency 1725.3105 1268.7451 1532.3789	Intensity 1710.3367 447.0253 412.5115	Frequency 1726.0814 1268.8554 1532.5156	Intensity 1698.6039 455.144 410.0266		1
Frequency 1725.3105 1268.7451 1532.3789 1639.5804	Intensity 1710.3367 447.0253 412.5115 435.7071	Frequency 1726.0814 1268.8554 1532.5156 1639.6454	Intensity 1698.6039 455.144 410.0266 434.1826		
Frequency 1725.3105 1268.7451 1532.3789 1639.5804 1322.5235	Intensity 1710.3367 447.0253 412.5115 435.7071 389.6349	Frequency 1726.0814 1268.8554 1532.5156 1639.6454 1322.5562	Intensity 1698.6039 455.144 410.0266 434.1826 387.3057		
Frequency 1725.3105 1268.7451 1532.3789 1639.5804 1322.5235 25.6204	Intensity 1710.3367 447.0253 412.5115 435.7071 389.6349 0.0273	Frequency 1726.0814 1268.8554 1532.5156 1639.6454 1322.5562 25.5371	Intensity 1698.6039 455.144 410.0266 434.1826 387.3057 0.0275		
Frequency 1725.3105 1268.7451 1532.3789 1639.5804 1322.5235 25.6204 59.1901	Intensity 1710.3367 447.0253 412.5115 435.7071 389.6349 0.0273 0.1645	Frequency 1726.0814 1268.8554 1532.5156 1639.6454 1322.5562 25.5371 58.9418	Intensity 1698.6039 455.144 410.0266 434.1826 387.3057 0.0275 0.1555		
Frequency 1725.3105 1268.7451 1532.3789 1639.5804 1322.5235 25.6204 59.1901 34.5919	Intensity 1710.3367 447.0253 412.5115 435.7071 389.6349 0.0273 0.1645 0.3029	Frequency 1726.0814 1268.8554 1532.5156 1639.6454 1322.5562 25.5371 58.9418 34.5308	Intensity 1698.6039 455.144 410.0266 434.1826 387.3057 0.0275 0.1555 0.2962		
Frequency 1725.3105 1268.7451 1532.3789 1639.5804 1322.5235 25.6204 59.1901 34.5919 46.7199	Intensity 1710.3367 447.0253 412.5115 435.7071 389.6349 0.0273 0.1645 0.3029 0.2729	Frequency 1726.0814 1268.8554 1532.5156 1639.6454 1322.5562 25.5371 58.9418 34.5308 46.6041	Intensity 1698.6039 455.144 410.0266 434.1826 387.3057 0.0275 0.1555 0.2962 0.2796		

276 Table 21: Vibrational Frequencies and Intensities of Rosiglitazone for 6-31++G(d,p)

				·	
Gas phase		Water		Ethanol	
		$\langle \rangle$			
Frequency	Intensity	Frequency	Intensity	Frequency	Intensity
1789.0468	849.0196	1724.2718	1726.4059	1727.4128	1677.8912
1279.2518	504.5875	1268.3718	443.951	1268.8294	479.7689
1539.4409	265.0407	1531.8544	416.4613	1532.3543	406.7253
1645.9775	304.8604	1639.3157	437.289	1639.5815	430.9777
1322.117	224.2846	1322.465	392.3501	1322.6115	382.6015
25.0928	0.02	25.5922	0.0253	25.1776	0.0234
60.7918	0.0148	59.4854	0.1828	58.32	0.1601
32.6603	0.0998	34.1396	0.3114	33.6902	0.2829
44.8145	0.0543	46.737	0.2622	46.3603	0.2841
14.7831	0.2192	16.5287	0.3204	16.3163	0.2938
DMSO		Acetonitrile			
Frequency	Intensity	Frequency	Intensity		
1725.2706	1710.8528	1726.0147	1699.0202		
1268.5159	456.3994	1268.62	465.314		
1532.0083	413.3726	1532.1171	411.1129]	

1639.4019	435.2329	1639.4639	433.7244
1322.5103	389.2687	1322.5578	386.8128
25.4695	0.0244	25.3779	0.0235
59.1095	0.1786	58.8376	0.1754
33.9608	0.3016	33.8242	0.2944
46.6652	0.2672	46.5966	0.2713
16.4973	0.3115	16.461	0.3059

278 Conclusion

279 The geometry of Rosiglitazone was optimized using DFT methods using 6-31G(d,p), 6-31+G(d,p) and 6-31+G(d,p)31++G(d,p) basis sets. Solvent effects on molecular structural parameters, electronic and thermodynamic 280 properties of the optimized geometry of the molecule were investigated and reported. From the results 281 obtained, the solvents have little influence on the optimized parameters (bond lengths and bond angles) of 282 the molecule. The bond R(5,13):N5-H13 between Nitrogen and Hydrogen atoms at the indicated position has 283 the lowest value of 1.013Å showing it is the strongest bond and large amount of energy is needed to break it. 284 The bond R(1,2):S1-C2 between sulphur and carbon atoms at the specified position has the highest value of 285 1.8472Â showing it is the weakest bond of the molecule. The vibrational frequencies of the fundamental 286 modes of the compounds have been precisely assigned and analyzed. The values of the vibrational frequencies 287 obtained in the gas phase and in solvents are observed to be positive which shows that the studied molecule 288 was very stable that is no imaginary frequencies exist. Also, the vibrational band assignments of the 289 frequencies in solvents were the same. The dipole moment of Rosiglitazone was found to be higher in 290 different solvents than in gas phase. We found that the frontier molecular orbitals energy gap decreases rapidly 291 in the low dielectric solvents and gradually comes to saturation in high dielectric solvents. In a nutshell, it was 292 293 found that the variation of the environment (solvent effects) influences the structural, electronic and molecular properties of the Rosiglitazone and will be useful in the design and development of rosiglitazone as an anti-294 diabetes drug. 295

296 **References**

297 1. Cho, N. H., Shaw, J. E., Karuranga, S., Huang, Y., da Rocha Fernandes, J. D., Ohlrogg

A. W., & Malanda, B. (2018). IDF Diabetes Atlas: Global estimates of diabetes prevalence

for 2017 and projections for 2045. Diabetes Research and Clinical Practice

- Cox PJ, Ryan DA, Hollis FJ, Harris AM, Miller AK, Vousden M *et al.* (2000). Absorption,
 disposition, and metabolism of rosiglitazone, a potent thiazolidinedione insulin sensitizer, in
 humans. Drug Metab Dispos, 28(7):772–80. PMID: 10859151
- 303 3. Kumar, A., Kumar, S., Jain, S., & Kumar, P. (2010). Rosiglitazone Metabolism : A Molecular
 304 modeling study using PM6 Model, 1(2), 92-104.
- Maltarollo Vinicius G., Paula Homen-de-Mello and Kathia Honorio M. (2010). Theoretical
 study on the molecular and electronic properties of some substances used for diabetes mellitus
 treatment, J Mol 16:799-804. DOI 10.1007/s00894-009-0627-6
- Srivastava, K. K., Shubha Srivastava, Md. Tanweer Alam and Rituraj. Theoretical study of
 the effects of solvents on the ground state of TCNQ *Advances in Applied Science Research*,
 2014, 5(1):288-295
- 311 6. Gupta, V. P. (2016). Density Functional Theory (DFT) and Time-Dependent DFT (TDDFT).
- Principles and Applications of Quantum Chemistry. https://doi.org/10.1016/B978-0-12-8034781.00005-4
- 314 7. Kohn, W. and Sham L. J. (1965) "Self-Consistent Equations Including Exchange and
 315 Correlation Effects" Physical Review 140, 20-30.
- 8. Wolfram K and Max C.H (2001). A Chemist's Guide to Density Functional Theory. Second
 Edition, ISBN: 3-527-30372-3 (Soft cover): 3-527-60004-3 (Electronic)
- 9. Tahar A., Amel B. and Didier V. (2018) "Molecular Structure, HOMO, LUMO, MEP, Natural
 bond orbital analysis of Benzo and Anthraquinodimethane Derivatives". Pharmaceutical and
 Biological Evaluation 2018 Vol. 5(2) 27-39.
- 321 10. Gece G., The use of quantum chemical methods in corrosion inhibitor studies, Corrosion.
 322 Science 50 (2008) 2981-2992.

11. Fukui K., Theory of Orientation and Stereo selection, Springer-Verlag, Berlin, 1975.

Janaki, C., Sailatha, E., Gunasekaran, S., & Kumar, G. R. R. (2016). Molecular structure and
spectroscopic characterization of Metformin with experimental techniques and DFT
quantum chemical calculations, Int J TechnoChem 2(2), 91-104.

13. Musa A., Saeed M.A., Shaari A., Riadh S. and Lawal M. (2015) "Effects of delocalised π electrons around the linear acenes ring (n = 1 to 7): an electronic properties through DFT and quantum chemical descriptors" Molecular Physics: An International Journal at the Interface Between Chemistry and Physics, Vol. 113. No. 11 pp 1347-1358.

331 14. Becke D., Density functional thermos chemistry-III, The role of exact exchange, J.
332 Chem. Phys.98 (1993)5648.

Lee C., Yang W., and R.G. Parr, Development of Colle-Salvetti correlation energy
formula into a functional of the electron density Phys. Rev., B37 (1988)785-789.

16. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman 335 J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., X. 336 Li, H. Hratchian P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., 337 Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao 338 O., Nakai H., Vreven T., Montgomery J. A., Jr., Peralta J. E., Ogliaro F., Bearpark 339 M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., 340 Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., 341 Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., 342 Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., 343 Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador 344 P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. 345 V., Cioslowski J., and Fox D. J., Gaussian, Inc., Wallingford CT, 2009. 346

347 17. Surendra N.B. and Teshome A.L. (2012) "Computational Studies of solvent effects on
348 Structure and Vibrational spectra of Isoflavonoid 5, 7- Dihydroxy-3-(4-hydroxyphenyl)
349 Chromen-4-one (Genistein) by ab initio, HF and DFT methods" Advanced in Applied Science
350 Research, 2012 3(6):3916-3934.

18. Suzuki S., Morita Y., Fukui K., Sato K., Shiomi D., T., Nakasuji K. (2006) 'Aromaticity on
the pancake-bonded Dimer of Neutral phenalenyl Radical as studies by MS and NMR
Spectroscopies and NICS Analysis' *J. Am. Chem. Soc.* 128 (8): 2530-2531.

Mason P.E. and Brady J.W. Phys. Chem. B; (2007) Tetrahedrality and the Relationship
between Collective Structure and Radial Distribution Functions in Liquid Water.

20. Tahar Abbaz, Amel Benjeddou and Didier Villemin (2018).' Molecular structure, HOMO,

LUMO, MEP, Natural bond orbital analysis of benzo and Anthraquinodimethane Derivatives'.
 Pharmaceutical and Biological Evaluations 5(2) 27-39

Adesoji A. Olanrewaju, Collins U. Ibeji2, Festus S. Fabiyi1 Synthesis, Characterization,
 and Computational Studies of Metal(II) Complexes Derived from β-diketone and Para-

aminobenzoic Acid. Indian Journal of Heterocyclic Chemistry Vol. 28 - Number 03 (Jul-Sep
2018) 351-361

363

364 22. Ibeji, C.U., Adejoro, I.A., Adeleke, B.B. A benchmark study on the properties of
365 unsubstituted and some substituted polypyrroles, *J. Phys. Chem. Biophys.*, 2015, 5, 1–11.

Srinivasan S, Gunasekaran S, Ponnambalam U, Savarianandam A, Gnanaprakasam S, and
 Natarajan S, "Spectroscopic and thermodynamic analysis of enolic form of 3-oxo L gulofuranolactone", *Indian J Pure & Appl Phys*, 2005; 43: 459-462.

369 24. Sundaraganesan, N.; Ilakiamani, S.; Saleem, H.; Wojciechowski, P.M.; Michalska, D. FT-

370 Raman and FT-IR spectra, vibrational assignments and density functional studies of 5-bromo-2-

nitropyridine. *Spectrochim. Acta A Mol. Biomol. Spectrosc.* **2005**, *61*, 2995–3001

372

373