3 Evaluation of In Vitro Nematicidal Efficiency of Copper

Nanoparticles Against Root-Knot Nematode Meloidogyne

5 **incognita**

- 6 Elwy A. Mohamed*1; Sherif F. Elsharabasy1; Doaa Abdulsamad2
- 7 (1) Agricultural Research Center, Giza, Egypt.
- 8 (2) October University for Modern Sciences and Technology

9

10 ABSTRACT

12 Root-knot nematodes (Meloidogyne spp.) are considered among the most deteriorating soilborne parasites that can significantly affect many plants. These nematodes are developing increased resistance against nematicides used currently to control them, therefore, continued use 15f these nematicides poses a challenge, thereby giving rise to the need for newer altedratives. This paper evaluated the *In vitro* nematicidal efficiency of copper nanoparticles (CuNPs) agaiftst root-knot nematode, *Meloidogyne incognita*. In this study, CuNPs were prepared according to the demical reduction method; physicochemical characterization of CuNPs was done using UV-Vis spedtloscopy, Dynamic Light Scattering and Transmission Electron Microscopy. When second stage juve20es (J2) of M. incognita were incubated in soil saturated with CuNPs (spherical shape; 100 nm dian2dter) for 3 days, it was found that J2 mortality is directly proportional to the concentration of CuNPs and 0.2 g/L was sufficient to cause 100% mortality. Statistical analysis showed that all mortalities caused by treatment with CuNPs at different concentrations were statistically significant compared with non-treated control. Conclusively, this paper may provide a potential alternative nem25icide against root-knot nematode Meloidogyne incognita. Further In vivo and toxicological rese26ch on CuNPs should be conducted in order to assess the possible applicability of such nan@particles as a nematicide.

Key Mords: Meloidogyne incognita; Nematicide; Copper Nanoparticles; Nematicide alternative.

29

*Tel.: +02-01028197494

1. INTRODUCTION

Meloidogyne spp. was first reported in cassava (Manihot esculenta) by Neal in 1889 [1]; Since

then 20 ot-knot nematodes (Meloidogyne spp.) are considered among the most deteriorating soilborne

parasses that can significantly affect many field crops, trees and turfgrass [2]. Nematodes are

charaterized with a broad host range of greater than 3,000 plant species [3]. Furthermore, it was

reposted that around 5% of the world crop production was lost annually due to infection with

Melaidogyne species [4] and the losses can reach up to 64% of the yield [5-7].

Negative effects of nematode infections are not limited to decreased productivity of the

econamical crops, since it can also affect the playability and aesthetic quality of golf courses [8].

Meloidogyne species encompass 98 species, among them M. incognita, M. javanica, M. hapla,

and 400. arenaria are considered the most common [9].

After banning Nemacur in 2008 due to environmental concerns, there is a dire need for developing

new42 efficient alternatives to control such plant-parasitic nematodes. In this respect, the narrow

ranges effectiveness characterizing biological control agents limits its applicability. For example, the

bacterial parasite, Pasteuria sp. can control sting nematodes (Belonolaimus longicaudatus) [10];

how 45er, it cannot affect the other species of plant-parasitic nematodes such as root-knot nematodes

(Melodogyne spp.).

4Nanotechnology is considered a promising and effective means for controlling root-knot

nemalode, wherein some papers reported the nematicidal effect of silver nanoparticles (AqNPs) [11,

12], 490ld nanoparticles [26] and silicon carbide nanoparticles [24] against root-knot nematodes. By

virtus of the well-established namaticidal effect of AgNPs, AgNPs were proposed [13] as a potential

alternative nematicide.

152this regard, many papers have established a robust emphasis on the antimicrobial effect of

CuNF3s [14-16]; thus, in this paper, we evaluate the In vitro nematicidal efficiency of CuNPs against J2

M. ifagognita as another potential alternative for controlling such parasites.

55

2. M9ATERIALS AND METHODS

A- Chemicals

All chemicals used were analytical grade of purity and were used without further purification.

*Tel.: +02-01028197494

L-assorbic acid (Future Modern Co., Egypt.); Cetyl trimethylammonium bromide (CTAB) (Sigma-Aldricon, Egypt.); copper sulfate pentahydrate (Elnasr Pharmacuticals Co., Egypt) were used to preparte CuNPs.

62

B- Methods

Preparation of CuNPs

65NPs were prepared according to the chemical reduction method [17]. In this method, L-ascorbic acid was used as a reducing agent, in the presence of CTAB as a cationic surfactant, to reduce copper cations provided from copper sulfate pentahydrate into copper atoms, which were aggregated and developed into copper nanoparticles, with their characteristic reddish brown color, at pH 69 6.8 and temperature of 85°C. CuNPs were centrifugally (4000 rpm) collected for further characterization and application.

71

Characterization of CuNPs

The characteristic surface plasmon resonance of the synthesized CuNPs was detected using UV-Vis Spectrophotometer (ORION AQUAMATE 8000). Also, particles size distribution by number of CuNPs was detected using Dynamic light scattering (DLS) (Zetasizer nano series (Nano ZS), Malvæn, UK). Moreover, the shape of the CuNPs was detected through Transmission Electron Microscopy (Tecnai G20, Super twin, double tilt, FEI, Netherland).

78

In vitto application of CuNPs

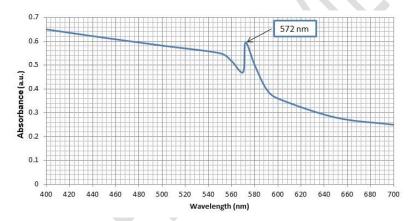
21 jaks (300 cm³) were filled with soil composed of 1:1 beet moss and sand. Water saturation level of 300 &tn³ soil was determined to be 100 ml. Each filled jar was inoculated with 1,000 larva second stag&2juveniles (J2) and homogenized well. Then, each jar was saturated with 100 ml of copper nan&3articles solution at different concentrations, (0.02, 0.04, 0.06, 0.08, 0.1 and 0.2 g/L). Soil jars satu&4ted with water were used as a control. Each concentration was applied in triplicate. All jars were incu&5ted at room temperature for 3 days. After the mentioned exposure time, nematodes were extra&dted, counted and mortality was calculated according to equation (1).

Mor@Tity (%) =
$$\left(\frac{Number\ of\ Dead\ Nematodes}{Total\ Number\ of\ Nematodes}\right) \times 100$$
 (1)

88

*Tel.: +02-01028197494

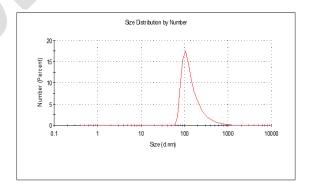
Stat8stical analysis


SPRSS 22 software (Chi Square Method) was used at $P \le 0.05$ to distinguish between the nematicidal efficacies. Each treatment was conducted in triplicate, and the whole experiment was repeated twice [18].

93

3- RESULTS

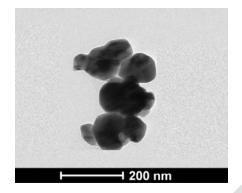
Physicochemical Characterization of CuNPs


Successful synthesis of CuNPs was confirmed through exhibiting their characteristic surface plassion resonance peak which was detected using UV-Vis Spectrophotometer (ORION AQUAMATE 800@8at wavelength of 572 nm [27], as shown in Figure (1).

99

100 Figure (1): characteristic surface plasmon resonance peak of CuNPs at 572 nm.

101 Also, Dynamic Light Scattering revealed that the average size of the synthesized CuNPs was about 0200 nm; as shown in Figure (2).



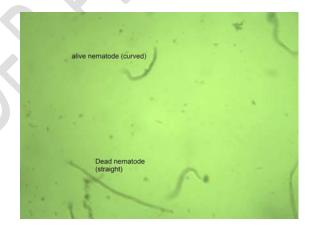
103

Figut **64**(2): Particle size distribution by number of CuNPs, showing the average particle size of about 100 **1005**.

*Tel.: +02-01028197494

In 10 6 ddition, Transmission Electron Microscopy revealed that the synthesized CuNPs have spherozal shape, as shown in Figure (3).

108


Figul@9(3): Transmission Electron Micrograph of the synthesized CuNPs showing the spherical shape

110 of the particles.

111

Evaluation of the nematicidal effect of CuNPs

Statistical analysis showed that all concentrations of CuNPs exhibited significant inhibitions of the J2 M1 incognita. It was shown that CuNPs have a linear nematicidal effect against J2 M. incognita, i.e. the higher the concentration of CuNPs, the higher the mortality of nematodes. The concentration of 0.2 g/16 was sufficient to completely inactivate all nematodes. Viable nematodes are circular or curved, while the ad nematodes are straight, as shown in Figure (4).

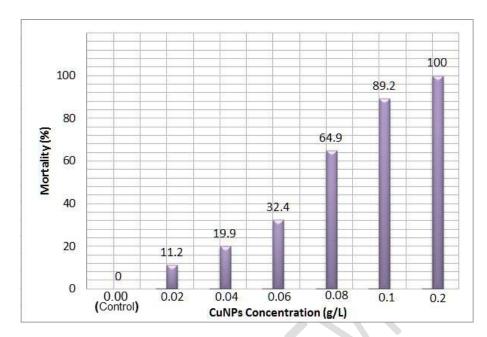

118

Fig19e (4): the shape of viable vs. dead nematodes under compound microscope.

Contattration-dependent mortality of M. incognita caused by CuNPs can be shown in Figure (5).

121

*Tel.: +02-01028197494

123 Figure (5): a graph shows the direct proportionality between CuNPs concentration and J2 mortality.

125

122

4- DISGUSSION

127This study has emphasized on the potential *In vitro* nematicidal effect exhibited by CuNPs again 128the second stage juveniles (J2) of root-knot nematodes, *M. incognita*; this was demonstrated through the significant increase of J2 mortality at various concentrations of CuNPs compared with non-1860ated control.

131Recently, the effect of silicon carbide nanoparticles on hatching and survival of *M. incogneta* was 131Recently, the effect of silicon carbide nanoparticles neither affect hatchability of larvae nor survival of second stage juveniles (J2) of *M. incogneta*. Which urge the need for assessing the nematicidal effect of more toxic nanoparticles against such tolerant nematodes. In this 135ard, CuNPs may offer that alternative due to their potential nematicidal effect against *M. incogneta*, as shown from the present study.

1377so, among different types of nanoparticles, the nematicidal effect of AgNPs has extensively studies, but, from this investigation, it is noteworthy that CuNPs could exhibit a significantly higher nematicidal effect than AgNPs at the same concentration against J2 of root-knot nematodes, *M. incompaeta*. In this regard, it was reported that 200 ppm of AgNPs could cause a mortality of 52% at the trans day of direct exposure in water [19]. On the other hand, CuNPs at the same concentration

*Tel.: +02-01028197494

could 42 chieve a mortality of 100% after 3 days of indirect exposure in soil. This may due to the proformal days of indirect exposure in soil. This may due to the proformal days do not exposure in soil. This may due to the proformal days do not exposure in soil. This may due to the proformal days do not exposure in soil. This may due to the proformal days do not exposure in soil. This may due to the proformal days do not exposure in soil. This may due to the proformal days do not exposure in soil. This may due to the proformal days do not exposure in soil. This may due to the proformal days do not exposure in soil. This may due to the proformal days do not exposure in soil. This may due to the proformal days do not exposure in soil. This may due to the proformal days do not exposure in soil. This may due to the proformal days do not exposure in soil. This may due to the proformal days do not exposure in soil. This may due to the proformal days do not exposure in soil. This may due to the proformal days do not exposure in soil. This may due to the proformal days do not exposure in soil. This may due to the proformal days do not expose in the soil days do not e

14th addition, it was reported [23] that the highest percentage of mortality achieved after 3 days of diredt4exposure of second stage juveniles (J2) to AgNPs was 95%; while higher mortality percentage (100249) was attained using CuNPs, despite the indirect exposure, which reflect the superior nem25ticidal efficiency of CuNPs over both silicon carbide nanoparticles and AgNPs.

15 Turthermore, the non-specific nematicidal effect of copper nanoparticles provided a relative advalstage over the microbial agents of bio-control, which are limited with their relatively high specific host listing among different nematode species.

But \$5 the concerns may arise due to the emphasized toxicity of CuNPs [25]. In this regard, our paper just £55 firms the nematicidal effect of copper nanoparticles, this effect can be exploited to control nemation in page infecting, for example, ornamental plants in pots or turfgrass, but not to control nematodes infecting, for example, edible crops; so as not to harm the human or environment. Otherwise, further reseased should be conducted to minimize such toxic effect of CuNPs through, for example, masking CuNPs or loading them on non-toxic matrix such that increase its specific targeting to only nematiodes.

161

5- CONCLUSION

168 sum up all, it can be concluded that CuNPs may provide an alternative nematicide against the root 164 nematodes, *M. incogneta*. But, further research should be conducted in order to investigate the 464 ronmental consequences of CuNPs, hence determining the optimum doses and methods that can becapplied in field without considerable hazards.

167

6- REFERENCES

[1] Neal, J. C. (1889). The root-knot disease of the peach, orange and other plants in Florida, due to the work of Anguillula. *Bulletin US Division of Entomology*. Volume No.20.

*Tel.: +02-01028197494

172	[2] Gill, H.K.& Mcsorley, R. (2011) Cover Crops for Managing Root-Knot
173	Nematodes. University of Florida, IFAS Extension, ENY-063(July), 1–6.
174	[3] Reddy, D. D. R. (1985). Analysis of crop losses in tomato due to Meloidogyne
175	incognita. Indian Journal of Nematology, 15(1), 55-59.
176	[4] Karajeh, M. (2008). Interaction of root-knot nematode (Meloidogyne javanica)
177	and tomato as affected by hydrogen peroxide. Journal of Plant Protection
178	Research, 48(2), 181-187.
179	[5] Roberts, P. A., Matthews, W. C., & Ehlers, J. D. (2005). Root-knot nematode
180	resistant cowpea cover crops in tomato production systems. Agronomy
181	Journal, 97(6), 1626-1635.
182	[6] Sikora, R. A., Schäfer, K., & Dababat, A. A. (2007). Modes of action associated
183	with microbially induced in planta suppression of plant-parasitic
184	nematodes. Australasian Plant Pathology, 36(2), 124-134.
185	[7] Balbaa E.M.E. (2010). Biological and environmental studies on root-knot
186	nematode affecting Leguminosae [M.Sc. Thesis]. Egypt: Faculty of Agriculture,
187	Alexandria University; p. 50.
188	[8] Crow, W. T. (2005). Plant-parasitic nematodes on golf course turf. Outlooks on
189	Pest Management, 16(1), 10-15.
190	[9] Jones, J. T., Haegeman, A., Danchin, E. G., Gaur, H. S., Helder, J., Jones, M.
191	G., Kikuchi, T., Manzanilla-López, R., Palomares-Rius, J.E., Wesemael, W.M., &
192	Perry, R. N. (2013). Top 10 plant-parasitic nematodes in molecular plant
193	pathology. Molecular Plant Pathology, 14(9), 946-961.
194	[10] Luc, J. E., Pang, W., Crow, W. T., & Giblin-Davis, R. M. (2010). Effects of
195	formulation and host nematode density on the ability of in vitro-produced
196	Pasteuria endospores to control its host Belonolaimus longicaudatus. Journal of
197	Nematology, 42(2), 87.
198	[11] Roh, J. Y., Sim, S. J., Yi, J., Park, K., Chung, K. H., Ryu, D. Y., & Choi, J. (2009).
199	Ecotoxicity of silver nanoparticles on the soil nematode, Caenorhabditis elegans
200	using functional ecotoxicogenomics. Environmental Science &
201	Technology, 43(10), 3933-3940.

*Tel.: +02-01028197494

202	[12] Lim, D., Roh, J. Y., Eom, H. J., Choi, J. Y., Hyun, J., & Choi, J. (2012). Oxidative
203	stress-related PMK-1 P38 MAPK activation as a mechanism for toxicity of silver
204	nanoparticles to reproduction in the nematode, Caenorhabditis
205	elegans. Environmental Toxicology and Chemistry, 31(3), 585-592.
206	[13] Cromwell, W. A., Yang, J., Starr, J. L., & Jo, Y. K. (2014). Nematicidal effects of
207	silver nanoparticles on root-knot nematode in bermudagrass. Journal of
208	Nematology, 46(3), 261.
209	[14] Karthik, A. D., & Geetha, K. (2013). Synthesis of copper precursor, copper and
210	its oxide nanoparticles by green chemical reduction method and its antimicrobial
211	activity. Journal of Applied Pharmaceutical Science, 3(5), 16.
212	[15] Betancourt-Galindo, R., Reyes-Rodriguez, P. Y., Puente-Urbina, B. A., Avila-
213	Orta, C. A., Rodríguez-Fernández, O. S., Cadenas-Pliego, G., Lira-Saldivar, R.H.
214	& García-Cerda, L. A. (2014). Synthesis of copper nanoparticles by thermal
215	decomposition and their antimicrobial properties. Journal of
216	Nanomaterials, 2013, 1-5.
217	[16] Viet, P. V., Nguyen, H. T., Cao, T. M., & Hieu, L. V. (2016). Fusarium antifungal
218	activities of copper nanoparticles synthesized by a chemical reduction
219	method. Journal of Nanomaterials, 2016, 1-7.
220	[17] Biçer, M., & Şişman, İ. (2010). Controlled synthesis of copper
221	nano/microstructures using ascorbic acid in aqueous CTAB solution. Powder
222	Technology, 198(2), 279-284.
223	[18] McDonald, J.H. (2008). Handbook of Biological Statistics. Sparky House
224	Publishing, Baltimore.
225	[19] Taha, Entsar H. (2016). Nematicidal Effects of Silver Nanoparticles on Root-knot
226	Nematodes (Meloidogyne incognita) in Laboratory and Screenhouse. Journal of
227	Plant Protection and Pathology, Mansoura Univ., Vol. 7 (5): 333 – 337.
228	[20] Lok, C. N., Ho, C. M., Chen, R., He, Q. Y., Yu, W. Y., Sun, H., Tam, P. K., Chiu,
229	J. F., & Che, C. M. (2006). Proteomic analysis of the mode of antibacterial action
230	of silver nanoparticles. Journal of Proteome Research, 5(4):916–924.

*Tel.: +02-01028197494

231	[21] Choi, O., & Hu, Z. (2008). Size dependent and reactive oxygen species related
232	nanosilver toxicity to nitrifying bacteria. Environmental Science &
233	Technology, 42(12), 4583-4588.
234	[22] Ahamed, M., Posgai, R., Gorey, T. J., Nielsen, M., Hussain, S. M., & Rowe, J. J.
235	(2010). Silver nanoparticles induced heat shock protein 70, oxidative stress and
236	apoptosis in <i>Drosophila melanogaster. Toxicology and Applied</i>
237	Pharmacology, 242(3), 263-269.
238	[23] Hassan, M. E., Zawam, H. S., El-Nahas, S. E., & Desoukey, A. F. (2016).
239	Comparison study between silver nanoparticles and two nematicides against
240	Meloidogyne incognita on tomato seedlings. Plant Pathology Journal, 15(4), 144-
241	<mark>151.</mark>
242	[24] Al Banna, L., Salem, N., Ghrair, A., & Habash, S. (2018). Impact of Silicon
243	Carbide Nanoparticles on Hatching and Survival of Soil Nematodes
244	Caenorhabditis Elegans and Meloidogyne Incognita. Applied Ecology and
245	Environmental Research, 16(3), 2651-2662.
246	[25] Karlsson, H. L., Cronholm, P., Gustafsson, J., & Moller, L. (2008). Copper oxide
247	nanoparticles are highly toxic: a comparison between metal oxide nanoparticles
248	and carbon nanotubes. Chemical research in toxicology, 21(9), 1726-1732.
249	[26] Thakur, R. K., Shirkot, P., & Dhirta, B. (2018). Studies on effect of gold
250	nanoparticles on Meloidogyne incognita and tomato plants growth and
251	development. bioRxiv, 428144.
252	[27] Kaminskienė, Ž., Prosyčevas, I., Stonkutė, J., & Guobienė, A. (2013). Evaluation
253	of Optical Properties of Ag, Cu, and Co Nanoparticles Synthesized in Organic
254	Medium. Acta Physica Polonica, A., 123(1).
255	
256	
257	
258	
259	
260	

*Tel.: +02-01028197494

*Tel.: +02-01028197494