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Abstract

The mathematical study of waiting lines is mainly concerned with queue performance
measures where several applications have been drawn in past studies. Among the vast uses
and applications of the theory of queuing system in banking halls, is the main focus of this
study where the theory has been used to solve the problem of long queues as witnessed in
banks leads to resource waste. The study aingy to model the waiting times for queucs in
selected banks within Eldoret town, Kenya. The latter component was put under D/D/1
framework and thern'l its mean derived while the stochastic component was put under the
M/M/c framework. Harmonization of the moments of the deterministic and the stochastic
gpmponents was done to come up with the mean of the overall bank queue traffic delay. The
simulation was performed using MATLAB for traffic intensities ranging from 0.1 to 1.9. The
results reveal that both deterministic and the stochastic delay components are compatible in
modelling waiting time. The models also are applicable to recal-time bank queuc data
whereupon simulation, both models depict fairly equal waiting times for server utilisation
factors below 1 and an infinitely increasing delay at rho greater than 1. In conclusion, the
models that estimate waiting time were developed and applied on real bank queue data. The
models need to be implemented by the banks in their systems so that customers are in a
position to know the expected waiting time to be served as soon as they get the ticket from
the ticket dispenser.

Keywords: D/D/1, M/M/c, Utilization factor, Simulation.
1.0: Introduction

Waiting is one of the most unpleasant experiences in life. Queuing theory deals with delays
and queues which are essentials in determining the levels of service in banking halls (Agbola
& Salawu, 2008, Kimber, R. and Hollis, 1979). They also evaluate the adequacy of service
channels and the economic losses that come about as a rggult of long waiting lines.
Quantifying these delays accurately and appropriately in banks is critical for planning design
and analysis of teller services. Tellers referred to herein are the personnel in the bank and will
be represented as servers or service channels (Agbola & Odunukwe, 2013: Bakari, 2014
Beckmann, 1956). In modern banking, queuing has been automated such that customers
arrive and pick ticket numbers from a ticket dispensing machine (Tarko et al., 1993b; Teply
et al., 1995). Electronic quality management systems were implemented for purposes of
instilling order and eliminating or easing/reducing congestion in banks. Bishop et al. (2018)
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stated that the gains expected from this survey are to help review the efficiency ofghe models
used by banks in such geographical locations in sub-Saharan countries as well as estimate the
average waiting time and length of the queue(s).

1

?Aodels that incorporate both deterministic and stochastic components of qucuc performance
are very appealing in modelling bank queues since they are applied in a wide range of
traffic intensitics as well as twarious types of teller services (Darroch, 1964: Erlang.1909:
Gazis, 1974; Kendal.1953). They simplify theoretical models with delay termgythat are
numerically inconsequential. Of the various queueing models, D/D/1 and M/M /¢ were used
in this study. The D/D/1 model assumed that the arrivals and departures werqggniform and
one service channel (teller) existed (Okagbue et al.. 2017: Janos & Eger, 2010). This model is
quite intuitive and easily solvable. Using this form of queueing with an arrival rate, denoted
by 2 and a service rate, indoicated by . certain useful values regz“ing the consequences
of queues were computed (Lindley, 1952; Little, 1961). The M/M /c model used implied that
the customers arrived at an intersection in a Poisson process with rate ). and were treated in
the order of arrival with inter-arrival times following exponential distribution with parameter
p. The service times were treated as independent identically distributed with an arbitrary
distribution. Similarly, several service channels (tellers) were considered in this model
(Liping and Bruce, 1999, McNeil, 1968). The study aims to model the waiting times for
queues in selected banks within Eldoret town, Kenya.

2.0: Modelling Waiting Times

ahe Mean of Deterministic Delay Model

To compute the mean, it is assumed that customer arrivals and departures are uniformly
distributed with rates A and p respectively.

To obtain the mean waiting time for the D/D/1 model, we note the following notations.
cy— Cycle time (min).

g. —Effective service time.

g, — Time necessary for the queue to dissipate.

r — Effective waiting time on the queue before service.

D(t) - Cumulative departures.

A — Arrival rate.

A(t) — Cumulative arrivals.

p - Utilization factor

W, — Deterministic queue delay component.

Tw — Probability of waiting on the queue.
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a

— Steady state probability of having no customers in the system.
Such that the duration of Cy in the bank is given by
Cy=r+g. 1

Ar?
W, =————— 2

1 8e
2(1-£e0)
GP
1]

Finally the expected deterministic delay in the bank queue is obtained by dividing W;, by the
total number of customers in a cycle that is AC, to yield

& _ge)’
E( th) = #

Be
21— —p)
Cy
as the mean of the deterministic component, Wy .
Mean of Stochastic Delay Component
To obtain the mean of the stochastic delay component we also note the following notations,

We begin with the expected waiting time while on service is given by

wszlfp 4

Then proceed to the waiting time on the queue which is obtained as follows
E(t) = f t.m,, (1 — p)e CHL-PIt gt 5
1]

4]
_ Tycp(l —p)

T -p) 7Y

Thus E(t) = W(T;_W—p) =W,
o E(Wtz) /I'I' cu(l — p)

Mean of the overall delay model

To obtain the mean of the overall delay model we sum up the expected waiting times for both
stochastic and deterministic delay model.

Ze

_C_
BW) = —— 2% il Yt 9
I_E_P) cu(l—p)

?(
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3.0: Results
The developed overall traffic delay model was applied to real bank queue data collegged
at the various banks in Eldoret town between 1*' August and 5" August 2016. The
intermediate results from the data are given and simulation on the developed models
using MATLAB software is performed for traffic intensities ranging from 0.1 to 1.9.

Computation of Parameters
The average effective deterministic service time is

1 (440 L 437, 40 426, 413)
e=5\6¢ "6 ' 6 ' 6 ' 6

= 68.23 sec

The average arrival rate is

Total arrivals

- Total number of hours observed

2146

30
= 71.5333 Customers per hour
The average service rate is

_ Total Departures
" Total number of hours observed

m

2092
T30

= 69.7333 Customers per hour
The utilisation factor (probability that a server is busy) is

Average arrival rate

p= .
number of servers * Average service rate

715333
T 3%69.7333

= 0.3419

The probability that a server is idle is
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il o c=1 B
M) () () ()

_ A YRS
2 SRR — W [1+(/cu)+(/cu)+ ]
{1 4102584 (1.0258)2 N (1.0258)3 )7*

- ' 2! 31 (1 - 0.3419)

= (2.8253)71

= 0.3539

For two servers (¢=2)

The utilization factor (probability that a sever is busy) is

Average arrival rate

= number of servers * Average service rate
715333
T 2%69.7333
= 0.5129
The probability that a server is idle is
oL O, O o)
B i wo o \u 0 A A ]
=1+ T2 ttekolt e [1+(/cu)+(/cu) #
— {1+ 10258 + L0258 R
N ' 2!'(1-0.5129)

= (1+ 1.0258 + 1.0801) 2
= (3.1059)"1

= 0.3219
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4.0 Discussion and conclusion

4.,0.1 Discussion

25 T T T T T T T T T

[a*]
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1

mean of deterministic delay

1 1 1 1 1 1 1 1 1

0 02 04 06 08 1 12 14 16 18 2
utilization factor

Figure 1 Diagram representing simulation of deterministic component E [Wh] verses p

From figure 1 . it is clear Hat the deterministic delay model estimates a continuous delay but
does not accommodate the aspect of randomness when the arrival flows are close to
capacityp < 1. The model reveals a steady increase in mean delay with a more increase in
waiting when the flows approach capacity p > 1 which consequently implies infinite delays,

in the long run, queuing of customers.
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Simulation of E(W,,)
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mean of stochastic delay
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Figure 2 Diagram representing the simulation of stochastic component E[Wt2] verses p with
two servers

From figure 2, the stochastic delay model with two servers is also applicable to under
saturated conditions p < 1 and estimates delays tending to infinity when the arrival flow
approaches capacity p > 1. However, comparing the delay with the three server model, it
implies an increased delay which is quite natural due to decreased service channels (Wayne,

2003; Wenny and Whitney, 2004).
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Simulation of E(W,)
We split E(W,) into EW,, and EW,, as described in figure 7 by MATLAB software when

5 5 . . . . . . . . 1 1
service times and inter-arrival times follow exponential distributions with parameters m and =

respectively.

——— E[w,]
7t —— E[w,]
—— Elw]

mean delay
P~ o
T T

(%]
T

1 |
0 02 04 06 08 1 12 14 16 18 2

0 I I 1

utilization factor

Figure 3 Diagram representing the simulation of overall model

E[W,] [-I[WH] E[WlZ] verses p with two servers

From figure 3 it is clear to note that the stochastic delay model is only applicable to under
saturated conditions p < 1 and estimates infinite delay when the arrival flow approaches
capacity. However, when arrival flows exceed capacity, oversaturated queues exist and
continuous delays occur. The deterministic delay model also depicts thatn’ cstimates a
continuous delay which is definitely higher than that of a three sever queue but it does not
completely deal with the effect of randomness when the arrival flows are close to capacity

(Toshiba et al., 2013).
The figure shows that both components of the overall delay model are compatible when the
utilisation factor is equal to 1.0. Therefore the overall delay model is used to bridge the gap
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between the two models. It is important to also note that ultimately the overall model also
indicates of an increased waiting time which is explained by the reduced number of servers
and also provides a more realistic point of view for the results in the estimation of delays in
the bank queue delays for the oversaturated as well as the under saturated conditions is
predicte.d without having any discontinuity (Yusuf, 2013; Zukerman, 2012).

1
4.0.2: Conclusion
Considering the uniform and random properties of queues in banks, the models for estimating
deterministic and stochastic delay components of bank queue delays successfully modelled
waiting times in selected banks in Eldoret town. From the mean waiting time models of
stochastic and deterministic delays, the models are conveniently applicable to real-time bank
queue data. To validate the mean waiting time models, the model was applied to real bank
queue data collected from the various selected banks namely; Kenya Commercial bank,
Equity Bank, National Bank, Barclays Bank and Cgpperative Bank for data between Monday
1 to Friday 5™ August 2016 respectively and simulation was performed for utilization
factors ranging from 0.1 to 1.9 using MATLAB software simulink functions. The simulation
results show that when a queue system is not at equilibrium, it indicates continuous delays
past the equilibrium pointi.e. p > 1.
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