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Abstract  7 
The aim of this study was (i) to establish a typology of farming practices in vegetables 8 

cropping systems in Guadeloupe and (ii) to determinate a relationship between these cropping 9 

systems and soil fauna. Based on the analysis of cropping systems of an initial set on the 10 

whole territory, we selected a representative subset of 18 farms located on vertisols in 11 

Grande-Terre. On these 18 farms, we performed a PCA and a HCA. These methods allowed 12 

us to build a typology in which farms were distributed between two types. In type A, farmers 13 

are using conventional agricultural practices while in type B, farmers are using alternative 14 

farming practices. In a second step, we collected soil fauna, from December 2016 to January 15 

2017 in type A and type B farms. The results showed no significant difference between soil 16 

fauna abundance in both types. However, the number of species richness was higher in type 17 

B. Our results also showed that the abundance of litter transformers was significantly higher 18 

in type B. Soil fauna activity in type A was probably affected by the use of synthetic 19 

fertilizers and herbicides. Taxonomic richness and soil fauna functional diversity thus 20 

strongly depend on agricultural practices in vegetables cropping systems in Guadeloupe.  21 

 22 

Keywords: Vegetables cropping systems, Agroecology, Survey, Soil fauna, Functional 23 

diversity. 24 

 25 

1. Introduction 26 

Intensive agriculture relied heavily on the use of synthetic inputs and low genetic diversity 27 

[1,2,3]. It is well recognized that conventional intensive agriculture had negative impact on 28 

natural resources such as soil (soil pollution, erosion), water quality (pollution of rivers, lakes 29 

and streams), biodiversity loss and human health (inadequate use of pesticides) [4,5,6,7,8,9] . 30 

Therefore, such unsustainable models need to be modified to agroecosystems that can 31 

optimize ecological functions while maintaining high productivity [9] . Since 1990s, there 32 

was a growing interest in developing alternative sustainable farming strategies. All of these 33 

strategies share the same objective in term of minimizing the use of synthetic inputs (or even 34 

non-use at all), enhancing organic matter recycling and improving agroecosystems health, 35 

while maintaining a high production level [10,11,12]. These strategies are part of the field of 36 

agroecology as they promote the development of practices based on the mobilization of 37 

natural regulations. According to Pretty (2008) [13], sustainable agriculture jointly produce 38 

food and goods for farmers and the environment. 39 

In 2017, worldwide agricultural production of vegetables was 182 million metric of tomatoes, 40 

97 million metric of onions, 83 million metric of cucumbers and gherkins, 71 million metric 41 

of cabbages and other brassicas and 52 million metric of eggplants [14]. China, India and the 42 

United States of America were the main producers in 2017 [14]. Market-gardening has a 43 

major place in agriculture production and in human health due to the providing of compounds 44 

such as vitamin A and C, minerals, folic acid and fibers [15,16]. 45 

In Guadeloupe, agriculture is one of the most important economic sectors. It is a major source 46 

of exported goods mainly based on the agroindustrial models developed with banana and 47 

sugarcane. The surface of agriculture land decline mainly due to urban construction (e.g. from 48 

57 385 ha in 1981 to 30 965 ha in 2013 [17]. However, it still occupies one third of the area of 49 
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the archipelago. In 2016, the island’s main crops were sugarcane (590 299 tones) and banana 50 

(66 208 tones). The others crops were vegetables (28 841 tones) and tubers (4 370 tones) [18]. 51 

Sugarcane and banana were the main studied cropping systems in Guadeloupe [19,20] as they 52 

represent agricultural dominant systems, because of the engagement of farmers in market 53 

channels and professional and public organizations. Sugarcane and banana also benefit from 54 

major public subsidies, which helped farmers to invest and maximize their production. By 55 

contrast, we have few informations on vegetables cropping practices though they are models 56 

of alternative diversified systems, assumed less dependent on chemical inputs. Therefore, the 57 

study concentrated on identifying agricultural practices in vegetables farming systems in 58 

Guadeloupe. As we know agricultural practices have an influence on soil fauna activity; 59 

however, we wanted to know what kind of alternative practices are used in vegetable cropping 60 

systems and in what extent those practices affect soil biota. We hypothesized that there was a 61 

positive correlation between practices quality developed in vegetables cropping systems and 62 

soil organisms. Soil is then considered as a indicator of the quality of the practices.  63 

Considering the lack of scientific kwnowledge on vegetables cropping systems influence on 64 

soil organisms, this article intends to fill this gap by providing consistent informations on the 65 

functioning of such agroecosystems. Thus, this paper aims at: (i) identifying the practices 66 

developed in vegetables cropping systems and explaining their degree of ecologization. (ii) 67 
On this basis, a typology of cropping practices in these agrosystems in Guadeloupe was 68 

established. (iii) Using this typology, we demonstrate the relationship between cropping 69 

systems and the quality of soils proxied by biological indicators (abundance and diversity of 70 

soil fauna).  71 

 72 

2. Materials and Methods  73 

2.1 Research area  74 
The study was carried out in Guadeloupe (French West Indies), which is a part of the 75 

Winward islands,in the eastern Caribbean Sea. This archipelago includes two main islands 76 

with distinct environment. Basse-Terre (848 km2) is dominated by a mountain chain oriented 77 

North-West to South-East. The annual temperature is comprised between 20.1 and 31.9 °C 78 

(France Meteorological Service, http://www.meteo.gp). This island is characterized by a 79 

humid tropical climate and a variety of soil types: ferralsols, nitisols, andosols and vertisols 80 

[20]. The mean annual rainfall in Basse-Terre is comprised between 1400 mm and 3500 mm 81 

(France Meteorological Service, http://www.meteo.gp). At the opposite, Grande-Terre (586 82 

km2) is characterized by a slightly undulating surface, and the relief rarely exceed 40 m [20]. 83 

The climate is tropical, with a mean annual rainfall between 1300 mm and 1600 mm, and 84 

soils are mostly vertisols.  85 

 86 

2.2 Farm surveys and typology  87 
To collect data on the practices declined in vegetables cropping systems, a survey was carried 88 

out between September and November 2016. 49 farms were randomly sampled: 21 in Grande-89 

Terre and 28 in Basse-Terre. We only targeted farms, which have all or a part of their 90 

productions devoted to vegetables cropping systems.We visited those farmers to observe their 91 

practices. In the survey, we used variables that best described and discriminated farms. Some 92 

variables are intangible (i.e. soil type) while others depend on farmers strategies: crops 93 

rotation, soil tillage, irrigation, use of pesticides, weed control, use of synthetic fertilizer or 94 

organic amendment, mulch, and management of crop residues. Based on cropping systems of 95 

the initial set of 49 farms on the whole territory, we selected a representative subset of 18 96 

farms developed on vertisols in Grande-Terre. This selection was due to the fact that in 97 

Guadeloupe, vegetables cropping systems are mostly concentrated on vertisol [21]. Indeed, 98 

these soils are rich in calcium, magnesium, potassium and they maintain a pH neutral to 99 
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slightly basic [22] . In addition, the large diversity of soils in Basse-Terre makes it difficult to 100 

build a typology.  101 

On the 18 farms, we performed a PCA and a HCA. These methods allowed us to build a 102 

typology, by gathering farms based on their characteristics and practices. This analysis was 103 

realized by using the following variables: (i) soil tillage separated farms into 3 classes: deep, 104 

superficial and manual tillage ; (ii) the type of pesticides divided farms in 3 classes: chemical 105 

pesticides, pesticides used in biological agriculture or no pesticides; (iii) the use of synthetic 106 

herbicides distributed farms in 3 classes: intensive, intermediate and occasional; (iv) weed 107 

control separated farms in two classes: mechanical or manual; (v) amendment divided farms 108 

in 4 classes: application of synthetic fertilizer, application of organic matter, application of 109 

both, and no fertilization; (vi) the use of the mulch practice separated farms in 2 classes: 110 

presence or absence; (vii) the management of crop residues divided farms in three classes: 111 

removed from the field, incorporated into the soil, and left in the plot; (viii) the application of 112 

slash-and-burn practices distributed farms in two classes: with or without slash-and-burn 113 

practices; (ix) finally, the observation of soil biodiversity on the surface separated farms in 114 

four classes: high, medium, low and no activity. 115 

 116 

2.3 Soil fauna 117 
From December 2016 to January 2017, in each selected farms on Vertisol, five soil samples of 118 

25 cm (length) × 25 cm (width) × 20 cm (deep) were taken for soil macrofauna extraction 119 

using TSBF method [23] . Each sample was separated at least 200 m from the others, and was 120 

collected 1 km far away from any road and walking path. Animals were collected in alcohol, 121 

counted and identified at the taxonomic level under a dissecting microscope. The following 122 

taxonomic groups of soil fauna were identified: Oligochaeta, Formicidae, Isoptera, Isopoda, 123 

Diplopoda, Dictyoptera, Coleoptera, Diptera, Lepidoptera, Gasteropoda, Homoptera, 124 

Orthoptera, Heteroptera, Arenaidae, Chilopoda, Dermaptera, Turbellaria, Insects larvae, and 125 

Other insects. They were gathered in different functional groups: litter transformers, predators 126 

and ecosystem engineers, and we calculated the taxonomic richness. This functional approach 127 

can provide information on soil framework and vegetation quality [24,25]. 128 

 129 
2.4 Data analysis methods 130 

To establish a typology of farming practices in vegetables cropping systems, a principal 131 

component analysis (PCA) was performed. PCA is a multivariate data analysis that based on 132 

projection methods. It is a useful technique for reducing the dimensionality of such datasets, 133 

increasing interpretability but at the same time minimizing information loss [26]. Base on the 134 

PCA, a hierarchical cluster analysis (HCA) was performed. HCA build a tree diagram, which 135 

identify groups of similar observations in a dataset. These analysis were realized with R 136 

statistical software (http://www.r-project.org/) using R Commander package (Rcmdr). For the 137 

relationship between the two types of farming practices and soil fauna, we used Welch's t-test. 138 

This test was carried out using R software. 139 

 140 

3. Results and discussion 141 

3.1 Characterization of vegetables cropping systems  142 

3.1.1 Description of 49 farms based on surveys  143 

The survey showed the diversity of agricultural practices in vegetables cropping systems in 144 

Guadeloupe. In Basse-Terre and in Grande-Terre, we saw similar crops such as lettuce, 145 

zucchini, tomatoes, melon, chili pepper, and eggplant. In addition, in Basse-Terre, we also 146 

observed cucumber, pumpkin, cabbage, ochra and chives. We also observed various types of 147 

cropping systems, from monoculture to polyculture, and a wide range of practices, from 148 

conventional to agroecological. 149 
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Farming practices are mainly territorially anchored. Tillage is used to ameliorate soil 150 

conditions in relation to the water balance and crop growth, to loose upper soil layers to 151 

prevent soil compaction, to diminish weed growth and to prepare the seedbed ([27, 28, 29, 152 

30]. Our results showed that in Grande-Terre, most farmers used deep tillage (76%) compared 153 

to superficial tillage (24%). In this region, vertisols which are clay rich soils which are 154 

extremely hard when they dry with cracks and polygonal structures [31] are dominant. Deep 155 

tillage is thus used to prepare field for the next culture, by moving and mixing the topsoil with 156 

crop residues, which are incorporated into the soil [28]. On the contrary, farmers from Basse-157 

Terre used superficial tillage (71%) rather than deep tillage (29%), due to the type of soils met 158 

in this region. Ferralsols have loose and friable fragments [22]. Nitisols are very similar to 159 

ferralsols but are an early stage. Finally, andosols are slightly sticky and friable to very friable 160 

[32] . Tillage reduced soil organic matter availability by accelerating decomposition and by 161 

increasing soil erosion and soil degradation [33]. Moreover, it has a detrimental effect on 162 

environmental quality because of it impact on greenhouse gas emissions [34, 35]. Soil 163 

disturbance such as tillage has a strong influence on soil fertility and water availability [36]. 164 

At the opposite, by minimizing mechanical disturbance of soil and macro-aggregate 165 

destruction, reduced tillage strongly decrease soil erosion [37,38] and improve water use 166 

efficiency [39]. Reduced tillage has thus positive effects on nutrient cycling and soil 167 
biodiversity [40.41].  168 

During the survey, we observed that use of synthetic pesticides was widely spread among the 169 

different farms. In Guadeloupe, crop yield was subjected to pest damage and diseases mainly 170 

during rainfall season. Farmers usually prevent economic loss due to pest by spreading heavy 171 

pesticides treatments [42]. Additionally, the application rate of herbicides depended on the 172 

area. Farmers from Grande-Terre combined herbicides and deep tillage. The mixture of those 173 

two methods regulated the abundance of weed species in field [43]. In fact, Chauhan and 174 

Johnson (2008) [44] showed that when seeds are deeply buried, the emergence rate was very 175 

low. 176 

33% of farmers in Grande-Terre and 11% of farmers in Basse-Terre applied mineral 177 

fertilizers. Agricultural production has increased, since 1950s, due to the large input of 178 

mineral fertilizers [45]. However, the intensive use of mineral fertilizers has a negative impact 179 

on soil fertility (soil acidification) and yield production [46]. 25% of farmers applied organic 180 

matter in Basse-Terre and 24% in Grande-Terre. Organic fertilizers are used as an alternative 181 

to synthetic ones, in order to restore or ameliorate soil physical, chemical and biological 182 

properties [47]. Organic matter is not only a source of plants nutrients in soils, but also, it has 183 

an important role in preserving soil fertility, reducing soil erosion, nutrient cycling, water 184 

retention and disease suppression [48, 49]. During the study, we noticed that in most cases, 185 

farmers mixed organic matter and mineral fertilizer together, 54% in Basse-Terre compared to 186 

33% in Grande-Terre. A meta-analysis, across sub-Saharian Africa, demonstrated that the use 187 

of both input types leads to a greater crops production [50] . Other studies have reported that 188 

organic input prevents the rapid leaching of nitrogen fertilizer by immobilizing the nitrogen 189 

temporarily [51, 52, 53]. 190 

For the management of crops residues, most farmers left crops residues in the plot (68% and 191 

52% for Basse-Terre and Grande-Terre respectively). Some farmers removed crop residues 192 

from the field, 29% in Grande-Terre and 18% in Basse-Terre, or incorporated them into the 193 

soil (19% and 14% for Grande-Terre and Basse-Terre respectively). Crop residues can serve 194 

as a nutrient source for soil organisms [54]. Moreover, crop residues can ameliorate soil 195 

structure, increase organic matter in soil and reduce evaporation [55]. At the same time, we 196 

did an observation of soil biodiversity activity on soil surface (observation of ant nests and 197 

earthworm casts), and most farms had an activity between high and medium.The presence of 198 

ant nests and earthworn casts may be an indicator of soil health.  199 
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 245 
3.1.3. Soil macrofauna on farms located on vertisols  246 
Soil macrofauna were collected on selected farms. We found 171 ± 52 (mean ± SE) 247 

individuals.m-2 in type A, and 554 ± 239 individuals.m-2 in type B. The abundance of soil 248 

fauna was slightly higher in type B (Figure 2b). However, there was no significant difference 249 

in soil fauna abundance between both types (t-test Welch; P = .13). In general, ecosystems 250 

engineers were more abundant than litter transformers and predators (Figure 2a). In type B, 251 

the amount of ecosystem engineers (432 ± 229 individuals.m-2) and predators (48.8 ± 16.88 252 

individuals.m-2) was slightly higher than in type A (ecosystem engineers: 116 ± 41 253 

individuals.m-2, biological regulators: 24 ± 6 individuals.m-2). However, there was no 254 

significant difference between the quantity of ecosystems engineers and predators between 255 

type A and type B (t-test Welch; P = .21 and P = 0.15 ). On the other hand, the quantity of 256 

litter transformers was significantly different between the two types (t-test Welch; P = .02) 257 

(Figure 2a). The amount of litter transformers was higher in type B (72 ± 18 individuals. m-2) 258 

than in type A (30 ± 10 individuals. m-2). Also, in Figure 2c, the taxonomic richness was 259 

significantly higher in type B (11 ± 0.4 taxonomic richness) compared to type A (6.5 ± 260 

0.61taxonomic richness) (t-test Welch; P < .001). 261 

Soil macrofauna may be used as bioindicators of soil health and contributed to ecosystems 262 

services [25]. Soil macrofauna play an important role in soil organic matter decomposition 263 
(litter transformers), regulations of pests (predators), formation of stable aggregates, water 264 

regulation and erosion control (ecosystems engineers) [71]. Our results showed that soil 265 

macrofauna may be directly or indirectly impacted by agricultural practices. In type A, we 266 

observed a number of conventional agriculture practices (deep tillage, application of high 267 

amounts of chemical pesticides, synthetic fertilizer, and herbicides), which are well known to 268 

have a negative impact on soil biodiversity [59]. Our study showed that litter transformers are 269 

strongly impacted by these conventional practices. They had an essential role in soil carbon 270 

sequestration [72]. As a consequence, by decreasing the quantity of litter transformers, 271 

conventional agriculture may have profound effects on climate change. On the contrary, by 272 

decreasing the input of synthetic fertilisants and herbicides, by reducing the rate of tillage and 273 

by increasing the application of organic matter, farmers in type B are stabilizing their soil. 274 

Moreover, type B applied mulching, which can have a positive effect on soil habitat. 275 

Mulching helps to preserve the ecosystem by reducing the rate of tillage. Sustainable 276 
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