Original Research Article

GEOPHYSICAL EXPLORATION FOR CLAY IN GOVRNMENT SCIENCE AND TECHNICAL COLLEGE, IGBESA, OGUN STATE, SOUTHWESTERN NIGERIA.

Abstract

Since all geological structures are 3-D in nature, a fully 3-D resistivity survey using a3-D interpretation model should in theory give the most accurate results. At the Present time 3-D surveys are a subject of active research. However it has not reached the level where, like 2-D surveys, it is routinely used. The main reason is that the survey cost is comparatively higher for a 3-D survey of an area which is sufficiently large.

A 3-D resistivity survey was carried out in Government Science and Technical College, Igbesa, Ogun State, a sedimentary terrain of South-western Nigeria. The wenner alpha electrode configuration was engaged through out in this study. Ten profiles were covered; each profile 25 metres apart. A 3-D square grid was generated using parallel 2-D lines. Five transverse lines were in the North –South direction and the others in the West –East direction.

An inverse model resistivity value that utilizes the smoothness constrained least-squares inversion of RES3DINV software was used. Seven iterations were undertaken and this produces an RMS error of 21.5 %. The high RMS error is attributed largely to resistivity variation obtained from the lithological materials within the study area. From the results obtained, clay is suspected only in a small portion in the east of the first layer which is approximately about 2.50m deep. Associated materials like clayey sand and lateritic clay are delineated at the surface to the third layer (i.e. a depth of approximately 9.0m), and at the surface to the fourth layer (i.e. a depth of about 17.0m) respectively.

Keywords: Clay, Clayey sand, Lateritic clay, 3-D slices, Res3Dinv.

1. Introduction

Clay minerals are typically formed over long periods of time by the gradual chemical weathering of rocks, usually silicate-bearing, by low concentrations of carbonic acid and other diluted solvents. These solvents, usually acidic, migrate through the weathering rock after leaching through upper weathered layers. In addition to the weathering process, some clay minerals are formed by hydrothermal activity. Clay deposits may be formed in place as residual deposits in soil, but thick deposits usually are formed as the result of a secondary sedimentary deposition process after they have been eroded and transported from their original location of formation. Clay deposits are typically associated with very low energy depositional environments such as large lakes and marine basins.

Clay and clay minerals have been mined since the stone age and has been indispensable in architecture, in industry and agriculture. Today they are among the most important minerals

used in manufacturing and environmental studies. Clay is wide spread all over the world. In 44 45 Nigeria, clay is widely distributed though not always found in sufficient quantity or suitable quality for modern industrial purposes. It occurs both as residual and sedimentary clay. More 46 than 80 clay deposits have been reported in Nigeria. Clay deposits occur in Abak in Akwa 47 Ibom State, Uruove near Ughelli in Delta State, Ifon in Ondo State, Mokola in Oyo State, 48 49 Sokoto in Sokoto State, Gombe in Gombe State, Dangara in Niger State, Umuahia in Abia State, Onitsha in Anambra State e.t.c. Almost every State in Nigeria has at least one known 50 51 deposit of kaolin. In Anambra State there is the Ozubulu deposit, Darazo kaolin deposit in Bauchi, Akpene-Obom deposit in Cross River State, Kankara in Kaduna State e.t.c. The three 52 53 most extensively studied deposits are the Ozubulu kaolin deposits, Kankara deposits and the 54 Major Porter deposits, in Plateau State (Akhirevbulu and Ogunbayo). The focus of this work 55 is to investigate for clay in Igbesa that could be of economic value.

56 57

58

59

60

61 62

63

64

65 66

67 68

69 70

71

72 73

74

75

76

77

78 79

80 81

82

83 84

85

86

87

88

89

2. Location and Geological Setting of the study area

This research was carried out in Government Science and Technical College Igbesa, Ogun State, between longitude N006⁰ 32 27.2" and N006⁰ 32 30.4" and latitude E003⁰7 27.0" and E003⁰07 30.4", with an average elevation of 59.75m covering about 146km². This community under consideration is located in the South-western part of Nigeria and falls within the Dahomey Basin.

The Dahomey Basin is a combination of inland/coastal/offshore basin that stretches from southeastern Ghana through Togo and the Republic of Benin to southwestern Nigeria. It is separated from the Niger Delta by a subsurface basement high referred to as Okitipupa Ridge. Its offshore extent is poorly defined. Sediment deposition follows an east-west trend. In the republic of Benin, the geology is fairly well known. In the onshore, cretaceous strata are about 20m thick. A non-fossiliferous basal sequence rests on the Precambrian basement. This is succeeded by coal cycles, clays and marls which contain fossiliferous horizons. Offshore, a 1000m thick sequence consisting of sandstones followed by black fossiliferous shale towards the top has been reported. This was dated by Billman (1976) as being pre-Albian to Maastrichtian. The cretaceous is divisible into two geographic zones, north and south. The sequence in the northern zone consists of a basal sand that progressively grades into clay beds with intercalations of lignite and shales. The uppermost beds of the Maastrichtian are almost entirely argillaceous. The southern zone has a more complicated stratigraphy with limestone and marl beds constituting the major facies. This sequence rests on the basement; the transitional facies is marked by a conglomerate or white to grey sandy and kaolinitic clays derived as degradation products from the surrounding Precambrian rocks. Among the major lithostratigraphic units of the eastern Dahomey basin are the Araromi, Ewekoro, and Akinbo formations. The Dahomey basin is one of the sedimentary basins on the continental margin of the Gulf of Guinea, extending from southeastern Ghana in the west to the western flank of the Niger Delta Jones and Hockey, 1964; Omatsola and Adegoke, 1981. The basin is bounded in the west by faults and other tectonic structures associated with the landward extension of the fracture zone. Its eastern limit is similarly marked by the Hinge line, a major fault structure marking the western limit of Niger Delta (Adegoke, 1969; Omatsola & Adegoke, 1981). Stratigraphic studies of Dahomey basin were conducted by various researchers among whom

90 91

92 93 are Jones and Hockey, (1964); Adegoke. (1975); Omatsola and Adegoke, (1981). The general

sequence for the rock unit from the top are the Coastal plain sands, Ilaro formation, Oshosun

formation, Akinbo formation, Ewekoro formation, and Abeokuta formation lying on the

Southwestern Basement Complex of Nigeria.

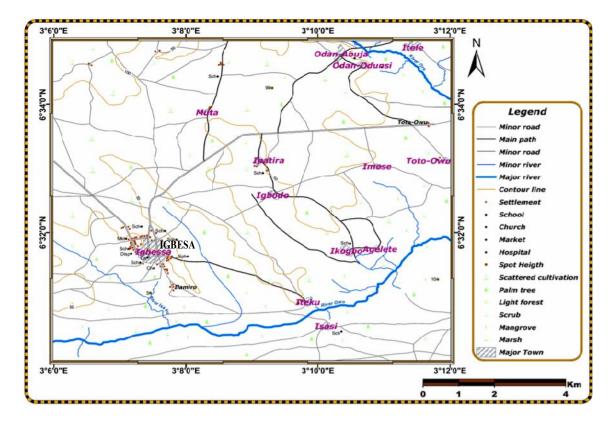


Figure 1: Location map of the study area

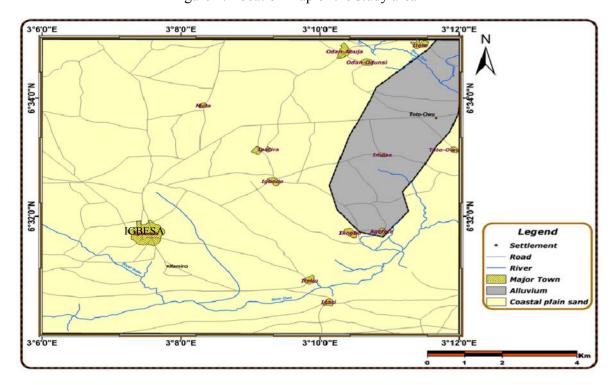


Figure 2: Geological map of the study area

3. Method

In this case, measurements are made only in one direction. The 3-D data set consists of a number of parallel 2-D lines. The data from each 2-D survey line is initially inverted independently to give 2-D cross-sections. Finally, the whole data set is combined into a 3-D data set and is inverted with RES3DINV to give a 3-D picture. While the quality of the 3-D model is expected to be poorer than that produced with a complete 3-D survey, such a "poor man's" 3-D data set could reveal major resistivity variations across the survey lines. Until multi-channel resistivity instruments are widely used, this might be the most cost effective Solution to extract some 3-D information from 2-D surveys.

110111112

113

114

115

116117

118

119

120

121 122

131

132

101

102

103 104

105

106 107

108

109

The wenner array was used in all the ten traverses; five in the north-south direction, and the other five in the west-east direction. The spacing between adjacent electrodes is 5 metres. The first step was to make all the possible measurements with the wenner array with electrode spacing of 5 metres. For the first measurements, electrode number 1, 2, 3, and 4 were used. Notice that electrode 1 was used as the first current electrode C1, electrode 2 as the first potential electrode P1, electrode 3 as the second potential electrode P2 and electrode 4 as the second current electrode C2. For the second measurement, electrodes 2, 3, 4, and 5 were used for C1, P1, P2, and C2 respectively. This is repeated down the line of electrodes until electrodes 18, 19, 20, and 21 were used for the last measurement with 5 metres spacing. For this system with 21 electrodes, there are 18(21-3) possible measurements with 5 metres spacing for the Wenner array.

After completing the sequence of measurements with 5 metres spacing, the other sequences 123 124 of measurements with 10, 15, 20, 25, and 30 metres electrode spacing were made. This 125 procedure was followed in all the ten transverses where this experiment was undertaken. The distance between adjacent transverse is 25 metres. In order to get the best results in this field 126 127 survey, all possible measurements were made as fast as possible, as these would affect the 128 quality of the interpretation model obtained from the inversion of the apparent resistivity measurements (Dahlin and Loke, 1998). Note that as the electrode spacing increases, the 129 130 number of measurements decrease.

4. Results and Discussion

3-D resistivity imaging results in slices

- The x-axis runs approximately from along the west-east and the y-axis along the north-south
- directions respectively.
- 135 Layer One (Depth: 0.00 2.50m)
- There is the presence of a small and elongated portion of clay/surface water which is about
- 40.0m long in the north-east. Clayey sand is suspected in three locations, two in the north-
- west and one in the extreme south-west (Barker *et. al.*, 1992).
- Laterite with varied apparent resistivity ranging from about 326.0 Ωm to 1, 200.0 Ωm is
- concentrated in the west, most especially in the north-west. Inhomogeneous mixture of
- 141 laterite and lateritic sand are found scattered within the layer with apparent resistivity values
- of about 1,200.0 Ωm to 1,500.0 Ωm (Kearey et. al. 2002). Patches of sandstone is delineated
- at the centre and east of the layer with apparent resistivity values of approximately 2,000.0
- 144 Ωm to 4,400.0 Ωm .

145

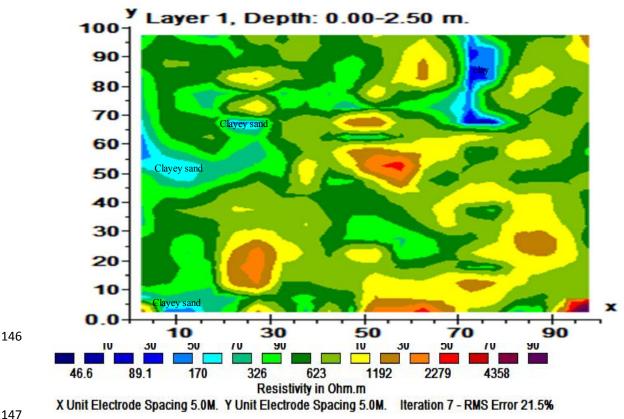


Figure 3: A 3-D resistivity inversion slice along x-y coordinates at a depth of (0.00 -2.50m).

Layer Two (Depth: 2.50 – 5.38m

There are four parches of clayey sand scattered within the layer with apparent resistivity values of about $100.0\,\Omega m$ to $200.0\,\Omega m$ (Loke *et.al*, 2003). These are enclosed by lateritic clay/laterite which is mostly concentrated in the western side of the layer at a distance of 0.00m to 60.0m in the x-axis, and with apparent resistivity values ranging from about 200.0 Ωm to $900.0\,\Omega m$ (Loke and Barker, 1995). The eastern part of the layer is highly resistive, having inhomogeneous distribution of lateritic sand and sand with characteristic apparent resistivity values of about $908.0\,\Omega m$ to over $4,358.0\,\Omega m$.

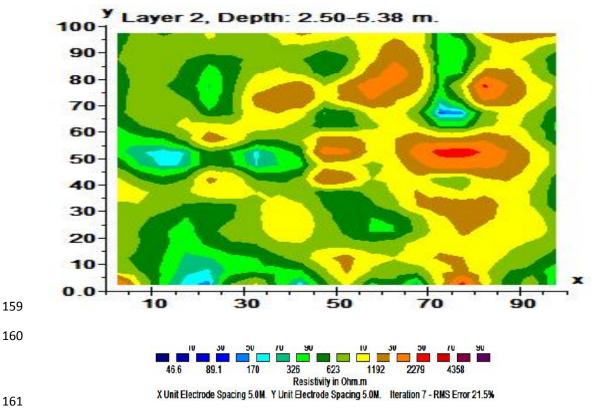


Figure 4: A 3-D resistivity inversion slice along x-y coordinates at a depth of (2.50 -5.38m)

Layer Three (Depth: 5.38 – 8.68m)

Low resistivity material is delineated in the south indicating the presence of clayey sand which is presence at a distance of about 0.0m to 47.0m in the x-axis with apparent resistivity values of about $100.0\,\Omega m$ to $200.0\,\Omega m$ (Lawson and Hanson,1974) Uneven distribution of lateritic clay occurs mostly in the west with apparent resistivity values of $300.0\,\Omega m$ to $550.0\,\Omega m$. Laterite of apparent resistivity values of about $850.0\,\Omega m$ to $1,200.0\,\Omega m$ is spread all over the layer especially in the north and centre. The enclosed irregular and unaligned wet sand, and a deposit of dry sand which appears as a spot in the north have approximate apparent resistivity values ranging from about 1, $00.0\,\Omega m$ to above $4,500.0\,\Omega m$ (Scales, 1985)..

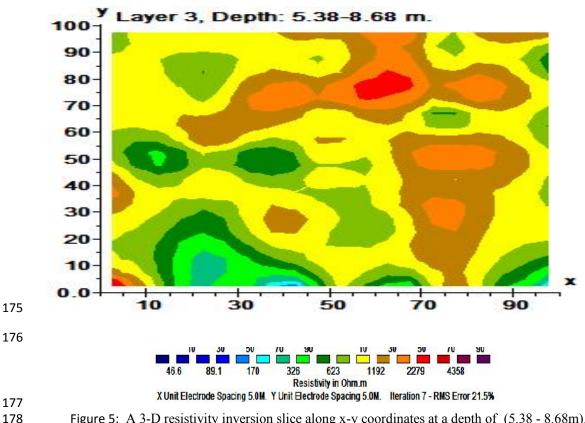


Figure 5: A 3-D resistivity inversion slice along x-y coordinates at a depth of (5.38 - 8.68m).

Layer Four (Depth: 8.68 – 12.50m)

179

180 181

182

183

184

185

186 187

188

189

190

191 192

193

194 195

196

197

Apparent resistivity increases northward in this layer. In the extreme south, there is low resistive material interpreted to be lateritic clay with apparent resistivity values range of about $320.0 \Omega m$ to $900.0 \Omega m$ (Golub and van Loan, 1989). Over sixty percent (60%) of the entire layer is occupied by moderate laterite spreading from the north to the south. Suspended at the mid-north, and having some patches down south is a material depicted to be lateritic sand with an apparent resistivity values ranging from about $1,000.0 \Omega m$ to $1,500.0 \Omega m$. Like layer three, a spot in the north with apparent resistivity values above $1,500.0 \Omega m$ indicates the presence of sand (Schwarz et. al, 1973).

Layer Five (Depth: 12.50 – 16.90m)

Laterite with an apparent resistivity values range of about 1,000.0 Ωm to 1,500.0 Ωm is depicted in the south-west within a distance of 20.0m to 48.0m along the x-axis (i.e. in the south-west of the layer). Three parches of laterite are also delineated in the east. High resistive contaminated laterite spreads across the layer especially in the east with apparent resistivity values of about $900.0 \Omega m$ to $1{,}192.0 \Omega m$ (Broyden, 1972). There are huge deposits of lateritic sand in the west (but more concentrated in the north west) with an apparent resistivity values ranging from about 1,192.0 Ωm to 1,500.0 Ωm (More and Trangenstein, 1976)..

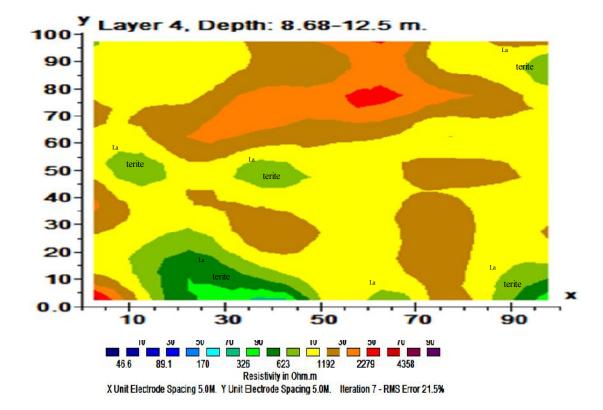


Figure 6: A 3-D resistivity inversion slice along x-y coordinates at a depth of (5.38 -12.50m)

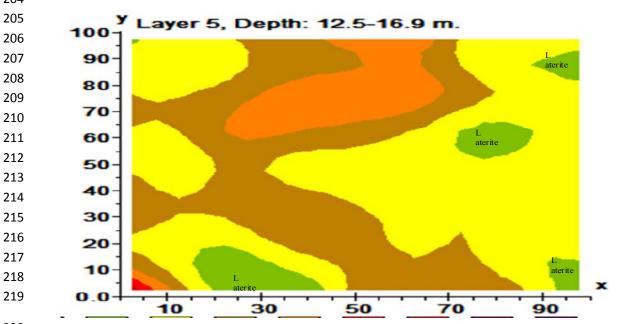
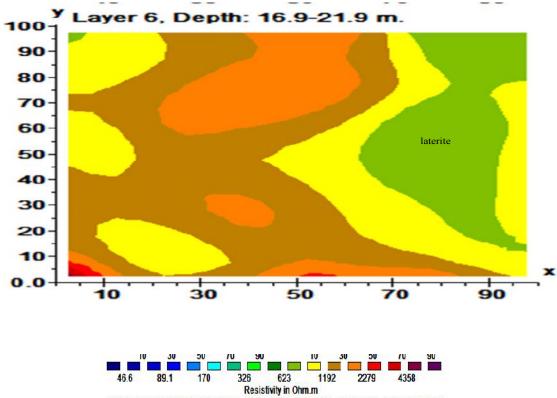



Figure 7: A 3-D resistivity inversion slice along x-y coordinates at a depth of (12.50 - 16.90m).

Laver Six (Depth: 16.90 – 21.90m)

Laterite with an apparent resistivity values ranging from $450.0\,\Omega m$ to $900.0\,\Omega m$ (appearing as a hanging structure) is enclosed by a highly resistive contaminated laterite with an apparent resistivity values ranging from $900.0\,\Omega m$ to $1,192.0\,\Omega m$ (Sheriff, 1991). Like layer five, there are huge deposits of lateritic sand in the west with an apparent resistivity values ranging from about $1,192.0\,\Omega m$ to $1,500.0\,\Omega m$.

X Unit Electrode Spacing 5.0M. Y Unit Electrode Spacing 5.0M. Iteration 7 - RMS Error 21.5%

Figure 8: A 3-D resistivity inversion slice along x-y coordinates at a depth of (16.90 - 21.90m).

Summary and Conclusion

From the results obtained, clay with an apparent resistivity values ranging from $45.0 \Omega m$ to $1,000.0 \Omega m$ is suspected only in a small portion in the east of the first layer which is approximately about 2.50m deep. Clayey sand with an apparent resistivity values range of about $100.0 \Omega m$ to $200.0 \Omega m$ is found at the surface to a depth of about 8.68m. Lateritic clay is delineated at a depth of 2.50m to 12.50m (second, third and fourth layers) with an approximate thickness of about 10.0 m, and apparent resistivity values range of $200.0 \Omega m$ to

- 243 $500.0 \Omega m$. Moderate as well as highly resistive laterite are depicted at in all the six layers
- 244 investigated (from a depth of 0.0m to 21.90m), and apparent resistivity values range of about
- $500.0 \Omega m$ to $1,000.0 \Omega m$. From the surface to a depth of 21.90m (all the six layers) are 245
- 246 lateritic sand and sand with approximate resistivity values range of $1,000.0 \Omega m$ to 1,500.0
- Ωm and above 1,500.0 Ωm respectively. 247
- 248 It was discovered that although there is suspected deposit of clay at a shallow depth but the
- 249 quantity is minima and as such it is not economical viable and cannot be exploited for
- 250 industrial purpose.

252

253 254

255

256

257

258

259

260

261

262

263

264

265 266

269

270

274

275

References

- Akhirevbulu O.E. and Ogunbayo M. I., 2011. The geotechnical properties of clay occurrence among Kuti, central Bida Basin, Nigeria. Ethiopian journal of environmental studies and management, vol. 4, No. 1, 25 - 35.
- Barker, R. D.; C. C. White and J. F. T. Houston., 1992. Borehole siting in an African Accelerated drought relief project In: E. P. Wight and W. G. Burgess, (eds). The Hydrogeology of crystalline basement aquifers in Africa. Geological society special Publication, 66:183 - 201.
- Broyden C.G. 1972. Quasi-Newton methods. Numerical methods for unconstrained Optimization (ed. W. Murray), pp. 87 – 106. Academic Press, Inc.
- Burden R.L., Faires J.D. and Reynolds A. C. 1981. Numerical Analysis. Prindle, Webber and Schmidt. 59: 244 – 259.
- Dahlin, T. & Loke, M. H., 1998. Resolution of 2-D Wenner resistivity imaging as assessed by numerical modelling. Journal of Applied Geophysics, 38, 237 -249.
- 267 Golub G. H. And van Loan C.F. 1989. Matrix computations. The Johns Hopkins University 268 Press.
 - Jones N.A. and Hockey R.D., 1964. Geology of some parts of Southwestern Nigeria, Geological Survey of Nigeria, Bull No 31, 1-101.
- Kearey, P., Brook, M. & Hills, I., 2002. An introduction to geophysical exploration, 3rd ed. 271 272 Blackwell science, 262p.
- Lawson C.L. and Hanson R.J., 1974. Solving least-squares Problem. Prentice –Hall Inc. 273
 - Loke, M.H. & R. D. Barker, 1995. Least-squares deconvolution of apparent resistivity Pseudosections, Geophysics, 60 (6) – 1682 1690.
- 276 More J.J. and Trangenstein J.A. 1976. On the global convergence of Broyden's method. 277 Mathematics of Computations 30, 523 - 540.
- 278 Omatsola M.E., and Adegoke O.S., 1981: Tectonic Evolution and Cretaceous Strtigraphy 279 of Dahomey Basin, Journal of Mineral Science, Vol. 18, 130-137.
- 280 Scales L. E., 1985. Introduction to Non-linear Optimization. MacMillan Publishing Co.
- 281 Schwartz H.R., Rutishauser H., Stiefel E. and Hertelendy P. 1973. Numerical Analysis of 282 Symmetric Matrices. Prentice- Hall Inc.
- 283 Sheriff R.E., 1991. Enclopedic Dictionary of Exploration Geophysics. Society of Exploration 284 Geophysicists.