
 

 

Modeling Heteroscedasticity in the Presence of Serial Correlations in Discrete-1 

Time Stochastic Series: A GARCH-in-Mean Approach 2 

 3 

  4 

ABSTRACT 5 

Background: In modeling heteroscedasticity of returns, it is often assumed that the series are 6 
uncorrelated. In practice, such series with small time periods between observations can be observed to 7 
contain significant serial correlations, hence the motivation for this research. 8 
Aim: The aim of this research is to investigate the existence of serial correlations in the return series of 9 
Zenith bank Plc, which is targeted at identifying their effects on the parameter estimates of 10 
heteroscedastic models. 11 
Material and Methods: The data were obtained from the Nigerian Stock Exchange spanning from 12 
January 3, 2006 to November 24, 2016 having 2690 observations. The joint Autoregressive Integrated 13 
Moving Average-Generalized Autoregressive Conditional Heteroscedaticity (ARIMA-GARCH-type) 14 
models such as Autoregressive Integrated Moving Average-Generalized Autoregressive Conditional 15 
Heteroscedasticity (ARIMA-GARCH), Autoregressive Integrated Moving Average-Exponential 16 
Generalized Autoregressive Conditional Heteroscedasticity (ARIMA-EGARCH) and the Autoregressive 17 
Integrated Moving Average-Glosten, Jagannathan and Runkle Generalized Autoregressive Conditional 18 
Heteroscedastic (ARIMA-GJRGARCH) under normal and student-t distributions were employed to model 19 
the conditional variance while the GARCH-in-Mean-GARCH-type model corresponding to the selected 20 
ARIMA-GARCH-type model was applied to appraise the possible existence of serial correlations. 21 
Results: The findings of this study showed that heteroscedasticity exists and could adequately captured 22 
by ARIMA(2,1,1)-EGARCH(1,1) model under student-t distribution but failed to account for the presence 23 
of serial correlations in the series. Meanwhile, its counterpart,  GARCH-in-Mean-EGARCH(1,1) model 24 
under student-t distribution sufficiently appraised the existence of serial correlations. 25 
Conclusion: One remarkable implication is that, the estimates of the parameters of ARIMA-GARCH-type 26 
model are likely to be biased when the presence of serial correlations is ignored. Also, the application of 27 
GARCH-in-Mean-GARCH-type model possibly provides the feedback mechanism or interaction between 28 
the variance and mean equations. 29 
Keywords: GARCH-type models, Heteroscedasticity, Time Series, Volatilty 30 
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1. INTRODUCTION 35 

The existence of heteroscedasticity in financial series (returns) always leads to the violation of 36 

assumption of constant variance in linear time series. The linkage between the occurrence of 37 

heteroscedasticity in financial data and the violation of assumption of constant variance in linear time 38 

series has created a vast research area for professionals in Statistics, Economics and Finance. As 39 

required naturally, the assumption of constant variance assumes that the error term of the linear 40 



 

 

stationary model should be homogeneous. By implication, the constant error variance means that the 41 

conditional variance of the dependent variable is also constant. According to [1], the assumption of 42 

constant variance is required to ensure the accuracy of standard errors and asymptotic covariances 43 

amongst estimated parameters. It could be remarked that a major setback on linear stationary models 44 

when applying to financial data (returns) is their failure to account for changing variance. In other words, 45 

whenever the assumption of constant variance is violated, heteroscedasticity has occurred, implying that 46 

the conditional distribution of the dependent variable has different degrees of variability at different levels. 47 

In the Statistical context, heteroscedasticity (i.e. non-constant variance) means the same thing as 48 

volatility in Finance and Economics, although they are generally used interhangeably by some authors. 49 

However, neglecting the presence of heteroscedasticity in linear models makes the ordinary least 50 

squares estimates of ARMA parameters inefficient. Although they are still consistent and asymptotically 51 

normally distributed, their variance-covariance matrix is no longer the usual one. As a result of this, the t-52 

statistics become invalid and cannot be used to examine the significance of the individual explanatory 53 

variables in the model. Also, over-parameterization of an ARMA model and low statistical power are 54 

identified as part of the consequences for neglecting heteroscedasticity. Lastly, neglecting 55 

heteroscedasticity can lead to spurious nonlineality in the conditional mean and difficulty in computing the 56 

confidence interval for forecasts (see [2], [3], [4], [5]). Furthermore, details of heteroscedasticity modeling 57 

are documented in [6], [7], [8], [9], [10], [11], [12], [13]. 58 

Certainly, the motivation for this study is drawn from the fact that serial correlations (a relationship 59 

between a variable and its lagged-value over a period of time) tend to exist in most financial series though 60 

several analyses on such series are often based on the assumption that the series are uncorrelated. 61 

Moreover, these serial correlations are believed to be introduced by those in the time-varying 62 

heteroscedasticity process [14]. However, failure to account for these serial correlations when modeling 63 

heteroscedasticity would amount to obtaining a biased estimate of the true degree of persistence (see 64 

also [15]). To capture these high variations over time with regards to risk and volatility, [16] proposed the 65 

modification of standard (generalized autoregressive conditional heteroscedastic) GARCH-type model 66 

under the assumption that the variance coefficient in the mean equation measures the relative risk 67 

aversion. Also, according to [17], the increasing roles played by the risk and uncertainty in financial 68 



 

 

assets have led to the development of new time series techniques for measuring time variations. One of 69 

such techniques is the GARCH-in-Mean (GARCH-M) model. It allows the conditional variance of the 70 

series to influence the conditional mean. Also, the formulation of the GARCH-M model implies that there 71 

are serial correlations in the series and are being introduced by those in the heteroscedasticity process. 72 

This particular specification is useful and effective in modeling the risk-return relationship in financial 73 

series. The major advantage of GARCH-M model over the standard GARCH-type models is that any 74 

misspecification of variance function would not affect the consistency of the estimators of parameters of 75 

the mean. Meanwhile, prior studies of [18], [17], [19], [20], [21], [22], [23] and [24]) have applied GARCH-76 

M technique to capture varying property of risk aversion and autocorrelation of return series as well as 77 

interaction between the mean and variance equations of GARCH-type models. Particularly, this study 78 

seeks to improve on the work of [25] that detected and modeled the asymmetric GARCH effects using 79 

GARCH-type models under the assumption that the return series is uncorrelated. This is captured by 80 

applying GARCH-M technique to ascertain the presence of serial correlation in the return series 81 

considered. 82 

The study is further organized as follows: materials and methods are presented in section 2, 83 

discussion of results is handled in section 3 while section 4 concludes the study.  84 

2. MATERIAL AND METHODS 85 
2.1 Returns 86 

The return series, ܴ௧, can be obtained given that ௧ܲ is the price of a unit share at time t, and ௧ܲିଵ  is the 87 

share price at time tെ1. Thus,  88 

ܴ௧ ൌ ݈݊ ௧ܲ  ൌ ሺ1 െ ሻ݈݊ܤ ௧ܲ   ൌ ݈݊  ௧ܲ  െ ݈݊  ௧ܲିଵ                                                           (1) 89 

Here, ܴ௧is regarded as a transformed series of the share price ( ௧ܲ) meant to attain stationarity, that is, 90 

both mean and variance of the series are stable [25] whileܤis the backshift operator. 91 

2.2 Autoregressive Integrated Moving Average (ARIMA) Model 92 

[26] considered the extension of ARMA model to deal with homogenous non-stationary time series in 93 

which ܺ௧, itself is non-stationary but its ݀௧difference is a stationary ARMA model. Denoting the ݀௧ 94 

difference of ܺ௧ by   95 

߮ሺܤሻ ൌ ߶ሺܤሻௗܺ௧ ൌ  ௧                         (2) 96ߝሻܤሺߠ



 

 

where ߮ሺܤሻ is the nonstationary autoregressive operator such that d of the roots of ߮ሺܤሻ  ൌ 0 are unity 97 

and the remainder lie outside the unit circle while߶ሺܤሻ is a stationary autoregressive operator. 98 

2.3 Standard GARCH-type Models 99 

Conceptually, heteroscedastic models are hybridized of both mean and variance equations. The 100 

mean equation is represented by the ARIMA Model as shown in equation (3), ܴ௧ ൌ ௧ߤ  ܽ௧,                                              101 

(3)                                102 

where  ߤ௧ ൌ ߮   ∑ φ
୨
R୲ି୨

୮
୨ୀଵ  ∑ θ୧


ୀଵ ܽ୲ି୧. 103 

Also, 104 

ܽ୲  ൌ  ௧݁௧,                                                                                                                         (4) 105ߪ 

where ݁௧ is a sequence of independent and identically distributed (i.i.d.) random variables with zero 106 

mean,i.e.E(݁௧) = 0  and variance 1. In practice, ݁௧ is often assumed to follow the standard normal or a 107 

standardized student-t distribution while ܽ୲ is the standardized residual term that follows autoregressive 108 

conditional heteroscedastic (ARCH(q)), generalized autoregressive conditional heteroscedastic (GARCH 109 

(q, p)), exponential generalized autoregressive conditional heteroscedastic (EGARCH(q,p))  and glosten, 110 

jagannathan and runkle generalized autoregressive conditional heteroscedastic (GJR-GARCH(q,p)) 111 

models in (5), (6), (7) and (8), respectively.  112 

2.3.1 ARCH model 113 

The first model that provides a systematic framework for modeling volatility is the ARCH model of 114 

[27]. Specifically, an ARCH (q) model assumes that, 115 

௧ߪ
ଶ ൌ  ߱  ଵܽ௧ିଵߙ

ଶ  ⋯ ߙܽ௧ି
ଶ ,                                                                                     (5) 116 

where ߱   0, ,ଵߙ݀݊ܽ . . , ߙ   0 [28]. The coefficients ߙ, for ݅   0, must satisfy some regularity conditions 117 

to ensure that the unconditional variance of ܽ௧is finite. From the structure of the model, it is seen that 118 

large squares of past shocks,ሼܽ௧ି
ଶ ሽୀଵ

 , imply a large conditional variance,ߪ௧
ଶ,  for the innovation, ܽ୲. 119 

Consequently, ܽ୲ tends to assume a large value (in modulus). This means that, under the ARCH 120 

framework, large shocks tend to be followed by another large shock. 121 

2.3.2 GARCH model 122 



 

 

Although the ARCH model is simple, it often requires many parameters to adequately describe 123 

the volatility process of a share price return. As a functional alternative,[29] proposed a useful extension 124 

known as the generalized ARCH (GARCH) model. The GARCH (q, p) is defined as; 125 

௧ߪ
ଶ ൌ  ߱  

ݍ
∑

݅ ൌ 1
ܽ௧ିߙ

′ଶ 


∑

݆ ൌ 1
௧ିߪߚ

ଶ                                                                       (6) 126 

where ߱  0, ߙ  0, ߚ  0, ܽ݊݀
,ሺݔܽ݉ ሻݍ

∑
݅ ൌ 1

ሺߙ  ߚሻ ൏  1 (Tsay, 2010). 127 

Here, it is understood that ߙ ൌ 0,  for ݅  ߚ and , ൌ 0, for ݅  ߙ The later constraint on .ݍ  ߚ implies 128 

that the unconditional variance of ܽ௧
′  is finite, whereas its conditional variance,ߪ௧

ଶ, evolves over time. In 129 

most cases, estimates of the GARCH (1,1) model on returns yield ߙଵ  ߚଵ ൎ 1, and this results in an 130 

explosive process, that is, the volatility process is not mean-reverting. So, the conditional variance is 131 

nearly integrated (Integrated GARCH model) [14].  132 

2.3.3 EGARCH model 133 

The Exponential GARCH (EGARCH) model represents a major shift from ARCH and GARCH 134 

models [30]. Rather than model the variance directly, EGARCH models the natural logarithm of the 135 

variance, and so no parameter restrictions are required to ensure that the conditional variance is positive. 136 

The EGARCH (q, p) is defined as,   137 

௧ߪ݈݊
ଶ  ൌ  ߱  ∑ ܽ୲ି୩ߛ


ୀଵ   ∑ ߙ ቀ|ܽ୲ି| െ ඥ2 ⁄ߨ ቁ


ୀଵ  ∑ ߚ


ୀଵ ௧ିߪ݈݊

ଶ                               (7) 138 

Alternatively, EGARCH(q, p) model with respect to student-t distribution can be represented by 139 

௧ߪ݈݊
ଶ  ൌ  ߱  ∑ ܽ୲ି୩ߛ


ୀଵ   ∑ ߙ ቀ|ܽ୲ି| െ

ଶ√௩ିଶ௰ሺ௩ାଵሻ ଶ⁄

ሺ௩ିଵሻ௰ሺ௩ ଶሻ√గ⁄
ቁ


ୀଵ  ∑ ߚ


ୀଵ ௧ିߪ݈݊

ଶ                    (8) 140 

, 141 

where  ߛ is the asymmetric coefficient. In the original parameterization of Nelson (1991), p and r were 142 

assumed to be equal. The process is covariance stationary if and only if∑ ߚ

ୀଵ ൏ 1. The ߛ parameter 143 

thus signifies the leverage effect of  ܽ୲ି. Again, we expect ߛ to be negative in real applications [14]. 144 

2.3.4    GJR-GARCH model 145 

The GJR GARCH (q, p) model [31] is a variant, represented by  146 

௧ߪ
ଶ  ൌ  ߱   ∑ ܽ௧ିߙ

ଶ
ୀଵ    ∑ ௧ିܽ௧ିܫߛ

ଶ
ୀଵ   ∑ ௧ିߪߚ

ଶ
 ୀଵ                                                    (9) 147 



 

 

Or written as 148 

௧ߪ
ଶ  ൌ  ߱   ∑ ሺߙ  ߛܫ௧ିሻܽ௧ି

ଶ
ୀଵ   ∑ ௧ିߪߚ

ଶ
 ୀଵ                                                                  (10) 149 

where ܫ௧ିଵ is an indicator for negative ܽ୲ି, that is, 150 

௧ିଵܫ   ൌ    ൜
0   ݂݅  ܽ௧ି   ൏ 0,
1   ݂݅  ܽ௧ି      0,

  151 

and ߙ,   are nonnegative parameters satisfying conditions similar to those of GARCH models.  152ߚ , andߛ

Also the introduction of indicator parameter of leverage effect, ܫ௧ିଵ in the model accommodates the 153 

leverage effect, since it is supposed that the effect of  ܽ௧ି
ଶ  on the conditional variance ߪ௧

ଶ is different 154 

accordingly to the sign ofܽ୲ି. From the model, it is obvious that a positive ܽ୲ି contributes ߙܽ௧ି
ଶ  to ߪ௧

ଶ, 155 

whereas a negative ܽ୲ି has a larger impacts ሺߙ  ߛሻܽ௧ି
ଶ  with ߛ> 0 as established by (Tsay, 2010). The 156 

model uses zero as it threshold to separate the impacts of past shocks (see,[28], [14]). 157 

2.4 GARCH-in-Mean Model 158 

The mean equation (3) is modified to obtain GARCH-in-mean model in (11) such that the return 159 

series depends on its variance. The specification of GARCH-in-mean model implies that there are serial 160 

correlations in the return series (see [14]). 161 

ܴ௧ ൌ ௧ߤ  ௧ߪ߬ 
ଶ  ܽ௧,                                                                                               (11) 162 

where the parameter ߬ is the variance functional coefficient. Thus the presence of variance functional 163 

coefficient ߪ௧
ଶ, indicates that the return series has serial correlation, which implies that the return series is 164 

related to its variance. 165 

 166 

 167 

 168 

3 RESULTS AND DISCUSSION. 169 

3.1 Interpretation of Time Plot 170 

The share price series of the  Nigerian bank considered was found to be nonstationary given the 171 

random fluctuations away from the common mean (see Figure 1). 172 



 

 

 173 

Figure 1: Share Price Series of Zenith Bank 174 

 Stationarity was achieved by transforming the share price series using equation (1)  and the 175 

transformed series was found to cluster round the common mean and thus indicated the presence of 176 

heteroscedasticity (see Figure 2). 177 

 178 

  Figure 2: Return Series of Zenith Bank 179 

3.2 Modeling Joint ARIMA-GARCH-type Processes of Return Series of Zenith Bank 180 

Based on Box and Jenkins procedures, out of the several models identified tentatively, the 181 

following joint ARIMA-GARCH-type models with respect to both normal (norm) and student-t (std) 182 

distributions were considered (see Table 1). 183 

 184 

Table 1: Output of ARIMA-GARCH-type Models of Return Series of Zenith Bank 185 

Model Parameter Estimate s.e t-ratio p-value 
Information Criteria

AIC BIC HQIC

     
ARIMA(2,1,1)- 
GARCH 
(1,0)-std 

െ1.38eିସ 1.2eିସ െ1.1518 ߤ 0.2494 

െ6.4622 െ6.4469 െ6.4567 

߮ଵ െ1.0182 0.0094 െ108.3242 0.0000 
߮ଶ െ0.0828 0.0211 െ3.9297 0.0001 
ଵ 0.9268 0.0197 47.0444ߠ 0.0000 
߱ 6.4eିହ 6.0eି 10.7403 0.0000 
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 ଵ 0.9990 0.1339 7.4598 0.0000ߙ

ARIMA(2,1,1)- 
GARCH 
(2,0)-norm 

 5.11eିସ 1.85eିସ 2.7590 0.0058 ߤ

 
 
 
 

െ6.3503 െ6.3350 െ6.3448 

߮ଵ 0.8695 0.0208 41.7691 0.0000 
߮ଶ 0.1140 0.0202 5.6563 0.0000 
 ଵ െ0.9529 0.0022 െ442.0869 0.0000ߠ
߱ 5.1eିହ 2. 0eି    20.9116 0.0000 
 ଵ 0.4918 0.0463 10.6297 0.0000ߙ
 ଶ 0.2357 0.0314 7.5012 0.0000ߙ

  ARIMA(2,1,1)- 
GARCH (2,0)-

std 

െ2.48eିସ 2.3eିସ െ1.0367  ߤ 0.29987 

െ6.5041 െ6.4866 െ6.4978 

߮ଵ 0.8644 0.0212 40.8256 0.0000 
߮ଶ 0.1193 0.0211 5.6551 0.0000 
ଵ െ0.9722 0.0011 െ851.2935ߠ 0.0000 
߱ 4.0eିହ 4.0eି 11.2777 0.0000 
 ଵ 0.6418 0.0754 8.5143 0.0000ߙ
 ଶ 0.3572 0.0553 6.4607 0.0000ߙ

ARIMA(2,1,1)- 
GARCH 

(1,1)-norm 

7.4eିହ 1.4eିହ 5.4230 ߤ 0.0000 

െ6.4261 െ6.4108 െ6.4206 

߮ଵ 0.1655 0.3888 0.4256 0.6704 
߮ଶ 5.9eିହ 0.0386 0.0015 0.9988 
 ଵ െ0.2458 0.3883 െ0.6330 0.52670ߠ
߱ 2.0eି 0.0000 11.6607 0.0000 
ଵ 0.1753 0.0125 13.9806ߙ 0.0000 
 ଵ 0.8237 0.0092 89.6875 0.0000ߚ

ARIMA(2,1,1)- 
GARCH(1,1)-
std 

 െ0.0035 0.9972 0.0000 0.0000 ߤ

െ7.0699 െ7.0524 െ7.0635

߮ଵ െ0.1192   0.9558 െ0.1247 0.9007 
߮ଶ 0.0011 0.0860 0.0129 0.9897 
 ଵ 0.0139 0.9550 0.0145 0.9884ߠ
߱ 0.0000 0.0000 0.0000 1.0000 
ଵ 0.2646 0.0101 26.3116ߙ 0.0000 
 ଵ 0.7252 0.0055 131.5636 0.0000ߚ

ARIMA(2,1,1)- 
EGARCH(1,1)-

norm 

2.22eିସ 9.5eିହ 2.33943 ߤ 0.0193 

 
 
 
 
െ6.4624 െ6.4448 െ6.4560 

߮ଵ െ0.0068 0.0139 -0.4929 0.6221 
߮ଶ െ0.0061 0.0276 െ0.21981 0.8260 
 ଵ െ0.0719 0.0226 െ3.18238 0.0015ߠ
߱ െ0.6502 0.0034 െ191.7116 0.0000 
 ଵ െ0.0040 0.0160 െ0.2489 0.8034ߙ
 ଵ 0.9260 1.9eିସ 4871.3044 0.0000ߚ
 ଵ 0.3794 0.0207 18.3618 0.0000ߛ

ARIMA(2,1,1)- 
EGARCH(1,1)-

std 

. ࣆ  0.0000 .  0.2276 

െૠ. ૡૢ െ. ૢૢૢ െૠ. ૡ

. െ࣐ ૡ 0.0106 െ29.0801 0.0000 
. ࣐ ૢ 0.0171 2.8972 0.0038 
. ࣂ ૢ 0.0105 ૠ. ૠૡૠ 0.0000 
࣓ െ. ૢ 8.62ି܍ െ33.7888 0.0000 
. െࢻ ૢૠૢ 9.8ି܍ െ7150.4179 0.0000 
  0.9996 6.3eିହ 15825.7924 0.0000ࢼ
. ࢽ ૢૡ 9.8eିହ 7147.6333 0.0000 

ARIMA(2,1,1)- 
GJR-

GARCH(1,0)-
norm  

െ4.1eିସ 2.0eି െ260.0268 ߤ 0.0000 

1.6422 1.6576 1.6478 

߮ଵ 1.7704 0.0049 363.9136 0.0000 
߮ଶ െ1.2088 0.0019 െ642.61109 0.6056 
ଵ 0.7873 6.41eିସ 1228.7631ߠ 0.0000 
߱ 0.0000 1.0eି 0.0952 0.92418 
 ଵ 0.961136 0.0029 328.0539 0.0000ߙ



 

 

 ଵ 0.8486 0.0064 131.9359 0.0000ߚ
 ଵ 0.0754 0.0364 2.072042 0.0383ߛ

ARIMA(2,1,1)- 
GJR-

GARCH(1,0)-
std 

 െ4.32eିସ 2.57eିସ െ1.677346 0.0935 ߤ

െ6.4675 െ6.4499 െ6.4611 

߮ଵ 0.8733 0.0216 40.3732 0.0000 
߮ଶ 0.1086 0.0217 5.0124 1.0eି 
 ଵ െ0.9684 0.0012 െ810.3464 0.0000ߠ
 ߱ 6.3eିହ 6.0eି 10.9327 0.0000 
 ଵ 0.993393 0.1474 6.7378 0.0000ߙ
 ଵ 0.0112 0.1536 0.0730 0.9418ߛ

ARIMA(2,1,1)- 
GJR-

GARCH(2,0)-
norm  

 െ1.21eିସ 9.9eିହ െ1.2223 0.2216 ߤ

െ6.3556 െ6.3359 െ6.3485 

߮ଵ 0.8713 0.0233 37.3883 0.0000 
߮ଶ 0.1115 0.0234   4.7763 0.0000 
 ଵ െ0.9526 0.0014 െ659.3565 0.0000ߠ
߱ 5.0eିହ 2.0eି 20.8695 0.0000 
 ଵ 0.3549 0.0468 7.5802 0.0000ߙ
 ଶ 0.1918 0.0383 5.0032 1.0eିߙ
 ଵ 0.3147 0.0845 3.7230 0.0002ߛ
 ଶ 0.0804 0.0561 1.4328 0.1519ߛ

ARIMA(2,1,1)- 
GJR-

GARCH(2,0)-
std 

 െ3.46eିସ 2.52eିସ െ1.3744 0.1693 ߤ

െ6.5037 െ6.4817 െ6.4957 

߮ଵ 0.8722 0.0091 96.194 0.0000 
߮ଶ 0.1181 0.0090 13.111 0.0000 
 ଵ െ0.9811 9.5eିହ െ1.0310 0.0000ߠ
߱ 4.0eିହ 4.0eି 11.367 0.0000 
 ଵ 0.6411 0.0911 7.0376 0.0000ߙ
 ଶ 0.2869 0.0614 4.6756 3.0eିߙ
 ଵ െ0.0047 0.1105 െ0.0042 0.9663ߛ
 ଶ 0.1467 0.0906 1.6205 0.1051ߛ

ARIMA(2,1,1)- 
GJR-

GARCH(1,1)-
norm 

 7.7eିହ 1.4eିହ 5.6257 0.0000 ߤ

െ6.4254 െ6.4079 െ6.4191 

߮ଵ   0.1732 0.1767 0.9802 0.3270 
߮ଶ െ1.13eିସ 0.0342 െ0.0033 0.9974 
 ଵ െ0.2540 0.1921 െ1.3223 0.1861ߠ
߱ 2.0eି 0.0000 4.1180 3.8eିହ 
 ଵ 0.1775 0.0330 5.3738 0.0000ߙ
 ଵ 0.8243 0.0239 34.5612 0.0000ߚ
 ଵ െ0.0056 0.0370 െ0.1528 0.8785ߛ

ARIMA(2,1,1)- 
GJR-

GARCH(1,1)-
std 

 0.75959 0.306023 0.0000 0.0000 ߤ

െ7.0480 െ7.0282 െ7.0408 

߮ଵ െ0.0417 0.4469 െ0.0933 0.9257 
߮ଶ െ0.0029 0.0578 െ0.0509 0.9594 
 ଵ െ0.0813 0.4390 െ0.1851 0.8531ߠ
߱ 0.0000 0.0000 0.0000 1.0000 
 ଵ 0.2737 0.0186 14.7192 0.0000ߙ
 ଵ 0.7013 0.0067 104.9602 0.0000ߚ
 ଵ 0.0367 0.0295 1.2459 0.2128ߛ

 186 

Comparing the values of the information criteria of the models as indicated in Table 1, it is shown 187 

that the information criteria for ARIMA(2,1,1)-GARCH(1,1)-std model is the smallest, followed by 188 

ARIMA(2,1,1)-GJR-GARCH(1,1)-std mode, although they are characterized by several non-significant 189 

parameters. However, ARIMA(2,1,1)-EGARCH(1,1)-std model, which is next to ARIMA(2,1,1)-GJR-190 



 

 

GARCH(1,1)-std model has all its parameters significant except the constant term of the mean equation, 191 

which assumes the value of zero. Hence, ARIMA(2,1,1)-EGARCH(1,1)-std model is selected as the 192 

appropriate heteroscedastic model for the return series of the Bank. 193 

Table 2: Diagnostic Checking for ARIMA-GARCH-type Model of Return Series of Zenith 194 
 Bank 195 

Model Standardized Residuals Standardized Squared Residuals 

ARIMA(2,1,1)-
EGARCH(1,1)-

std 

Lag 
Weighted 

LB p-value  Lag 
Weighted 

LB p-value  Lag 
Weighted 
ARCH-LM p-value 

1 0.0014  0.9697 1 0.0014 0.9704 3 0.0014 0.9704 
8 0.0066 1.0000 5 0.0041 1.0000 5 0.0033 0.9999 

14 0.0111 1.0000 9 0.0069 1.0000 7 0.0049 1.0000 
 196 

The model was found to be adequate given that the p-values corresponding to weighted Ljung-197 

Box Q statistics at lags 1, 8 and 14 on standardized residuals, weighted Ljung-Box Q statistics at lags 1, 5 198 

and 9 on standardized squared residuals and weighted Lagrange Multiplier statistics at lags 3, 5 and 7 199 

are all greater than 5% level of significance [see Table 2]. That is to say, the hypotheses of no 200 

autocorrelation and no remaining ARCH effect are not rejected.  201 

3.4 Modeling GARCH-in-Mean-EGARCH Processes of the Return Series of Zenith  202 
            Bank 203 
Table 3: Output of GARCH-in-Mean-EGARCH Model of Return Series of Zenith Bank 204 

Model Parameter Estimate s.e t-ratio p-value 
Information Criteria

AIC BIC HQIC 

GARCH-in-
Mean-

EGARCH(1,1)-
std 

. ࣆ  0.0000 .  0.8806 

െ. ૢ െ. ૡૠૢ െ. ૡૢ

  0.6845 0.0040 170.0493 0.0000࣐
  0.0428 0.0038 11.3871 0.0000࣐
  െ0.7089 0.0041 െ170.894 0.0000ࣂ
 0.0000 9.8773 0.0043 0.0428 ࣎
࣓ െ. ૠૢ 0.0029 െ43.9733 0.0000 
. െࢻ  . ૠି܍ െ2436.7359 0.0000 
  26149.3241 0.0000ି܍ 0.9904 3.8ࢼ
  2433.8259 0.0000ି܍ 0.6632 2.72ࢽ

 205 
All the parameters of joint GARCH-in-Mean-EGARCH(1,1)-std model are significant at 5% level of 206 

significance except the constant term of the GARCH-in-Mean equation which assumes the value of zero. 207 

Of particular interest is the GARCH-in-Mean coefficient whose significance points to the presence of 208 

serial correlation in the return series(see Table 3).  209 

     Table 4: Diagnostic Checking for GARCH-in-Mean-EGARCH Models of Return 210 
                   Series of Zenith Bank 211 

Model Standardized Residuals Standardized Squared Residuals 
GARCH-in-

Mean- Lag 
Weighted 

LB p-value  Lag 
Weighted 

LB p-value  Lag 
Weighted 
ARCH-LM p-value 



 

 

EGARCH(1,1)-
std 

1 0.0008  0.978 1 0.0009 0.9757 3 0.0009 0.9757 
8 0.0059 1.0000 5 0.0028 1.0000 5 0.0022 0.9999 

14 0.0099 1.0000 9 0.0046 1.0000 7 0.0033 1.0000 
 212 

The model was found to be adequate given that the p-values corresponding to weighted Ljung-213 

Box Q statistics at lags 1, 8 and 14 on standardized residuals, weighted Ljung-Box Q statistics at lags 1, 5 214 

and 9 on standardized squared residuals and weighted Lagrange Multiplier statistics at lags 3, 5 and 7 215 

are all greater than 5% level of significance [see Table 4]. That is to say, the hypotheses of no 216 

autocorrelation and no remaining ARCH effect are not rejected.  217 

3.5 Effects of Serial Correlation on Parameters of ARIMA-GARCH-type Model 218 

     Table 5: Biased Effects of Serial Correlations on the Parameters of  219 
                    ARIMA(2,1,1)-EGARCH(1,1)-std Model of Zenith Bank 220 

Parameter 

ARIMA(2,1,1)-
EGARCH(1,1)-std 

Model fitted to 
Returns Series of 

Zenith Bank 

GARCH-in-Mean-
EGARCH(1,1)-std 

Model fitted to 
Returns Series of 

Zenith Bank 
 Biases 

introduced 
Constant Term (ߤ) 0.0000 0.0000 0.0000 

Autoregressive of order 1 Coefficient (߮ଵሻ 0.6094 0.6845 െ0.0751 
Autoregressive of order 2 Coefficient (߮ଶሻ 0.0852 0.0428 0.0424 
Moving Average of order 1 Coefficient (ߠଵሻ െ0.6012 െ0.7089 0.1077 

Garch-in-Mean Coefficient (߬) 0.0428 - - 
Constant Term (߱) െ0.0960 െ0.1279 0.0319 

ARCH Coefficient (ߙ) െ0.8581 െ0.6616 െ0.1965 
GARCH Coefficient(ߚ) 0.9904 0.9903 െ0.0001 

Asymmetric Coefficient ሺߛሻ 0.8591 0.6632 0.1959 

 221 

Substantial biases are being introduced into the parameters of the ARIMA(2,1,1)-EGARCH(1,1)-222 

std model when the possible existence of serial correlation is ignored as indicated in Table 5. That is, in 223 

the presence of serial correlations, the Autoregressive of order 1, ARCH and GARCH parameters were 224 

reduced by 0.0751, 0.1965 and 0.0001, respectively while Autoregressive of order 2 Coefficient, Moving 225 

Average of order 1 Coefficient, Constant term of the variance equation and asymmetric parameters were 226 

hyped by 0.0424, 0.1077, 0.0319 and 0.1959, respectively. Hence, it can be deduced that the presence of 227 

serial correlations, the parameters of ARIMA-GARCH-type models are biased. 228 

 In brief, the findings of this study showed that serial correlations exist in the return series of the 229 

bank understudy. Thus building an ARIMA(2,1,1)-EGARCH(1,1)-std model without accounting for the 230 

existence of serial correlations results in biased parameters as indicated in Table 5.Consequently, the 231 



 

 

extent of bias associated with the existence of serial correlation was appraised by GARCH-in-Mean-232 

EGARCH(1,1)-std model as shown in Table 3. 233 

 Although this study showed similarity to the work of (25) by confirming that EGARCH model is 234 

suitable to the return series of Zenith bank Plc, yet, it provides enough evidence of substantial 235 

improvement by modifying the mean equation of the model to account for the presence of serial 236 

correlations. In addition, the introduction of variance parameter in the mean equation creates a feedback 237 

mechanism between heteroscedasticity and returns. 238 

 By implication, the study revealed that the return is positively related to its variance, which implies 239 

that any high increase in conditional variance would likely lead to a high increase in the returns. 240 

4 CONCLUSION 241 

In summary, the findings of this very study revealed that the standard Joint ARIMA- GARCH-type 242 

model is not sufficient for capturing serial correlations and their application without considering the 243 

existence of serial correlations often results in biased parameters. Consequently, the GARCH-in-Mean-244 

GARCH-type model provided the much needed modification that accounts for the existence of serial 245 

correlations in return series. Therefore, the formulation of GARCH-in-Mean equation by incorporating 246 

variance component ensures that the risk-return relationship is properly depicted. It is recommended that 247 

the similar formulation be undertaken by replacing the variance component with the standard deviation or 248 

probably the natural logarithm of the variance in future studies.  249 
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