
Abstract The first integrals of a second order ordinary differential equations are considered. The

necessary conditions of the existence of analytical first integrals for the equation are presented. Then, the

first integrals of the equation are obtained using Lie symmetry method. The results of the first integrals are

applied to certain classes of partial differential equations, the conditions of nonexistence of the traveling wave

solutions of the partial differential equations are obtained, and traveling wave solutions of the equations under

the certain parametric conditions are also obtained.
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1 Introduction

It is well known that the study of the integrability of differential equations has been one of the main

topics in mathematics and physics, and other subjects. The integrability of system of ordinary differ-

ential equations has been studied by many authors[1]-[5]. First integrals are the powerful tool in the

study of the integrability of ordinary differential equations and partial differential equations (see for in-

stance Refs.[6]-[9] and the references therein). As we know, searching for first integrals of a differential

equations system plays a very important role for studying the system. Many different methods have

been used for studying the existence and searching for first integrals of ordinary differential systems.

For example, the Lie groups ([10]), the Darboux theory of integrability ([11]), the Painlevéanalysis

([12]), the use of Lax pairs ([13]), etc. In [2], some simple criteria for the nonexistence of analytic

integrals of general nonlinear systems are given. There provided a link between the number of first

integrals and the resonant relations for a quasi-periodic vector field in [14]. In the paper, we consider

first integrals of the differential equation,

y′′ = ay′ + by2 + cy, (1)

a, b, c are constants, and abc ̸= 0. Let y′ = z, equation (1) can be written as the system,{
ẏ = z

ż = az + by2 + cy.
(2)

(2) has two equilibrium points O1(0, 0) and O2(−
c

b
, 0). Let us denote the Jacobi matrix of the vector

field of (2) at Oi as Ai, (i = 1, 2), and

A1 =

(
0 1

c a

)
,
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A2 =

(
0 1

−c a

)
.

So, it is easy to get the eigenvalues of A1 are λ1,2 =
a±

√
a2 + 4c

2
, those of A2 are λ1,2 =

a±
√
a2 − 4c

2
.

In [15]-[16], the existence of first integrals of plane systems are studied. If the system has nontrivial

analytic first integrals in a neighbourhood of a trivial solution, then the eigenvalues of the Jacobi

matrix of the system at the trivial solution have to satisfy certain resonant condition. In the paper,

we first consider the existence of analytical first integrals of (1) and obtain the first integrals of (1)

using Lie sysmmetry method. Then, we consider the certain partial differential equations, and present

the traveling wave solutions of the equations. The paper is organized as follows. In Section 2, The

sufficient conditions of the nonexistence for first integrals of system (2) are given. In Section 3, Lie

symmetries admitted by (2) are found by differentiating the symmetry condition, and first integrals

of (2) are deduced by constructing an algebraic equations system using Lie symmetries admitted by

(2). In Section 4, the parametric conditions of the nonexistence of traveling wave solutions of the

certain partial differential equations are given. Some classes of traveling wave solutions of the partial

differential equations are presented in Section 5. Section 6 is conclusions.

2 The necessary conditions of the existence of first integrals

As we know, if the system ẋ = f(x), x ∈ D ⊂ Cn, has nontrivial analytic first integrals in a neighbour-

hood of a trivial solution, then the eigenvalues of the matrix
∂f

∂x
(0) have to satisfy certain resonant

conditions[15], where f(0) = 0. So, for system (1), we have the following result.

Theorem 1. 1) c > 0 and
a2 + 2c− a

√
a2 + 4c

2c
is not a nonnegative rational number.

2) c < 0, a2 + 4c > 0.

3) a2 + 4c < 0.

If one of above conditions is satisfied, then system (2) has no nontrivial analytic first integrals in

a neighbourhood of O1(0, 0).

Proof. We will use the proof by contradiction. Let us suppose there is an analytic first integral

Ω(y, z) of system (2) in a neighbourhood of O1(0, 0). Without loss of generality, we assume that

Ω(0, 0) = 0. Let us expand the first integral into the Taylor series

Ω(y, z) = Ω(1)(y, z) + Ω(2)(y, z) + ...+Ω(k)(y, z) + ...,

where Ω(k)(y, z), k = 1, 2, ... are homogeneous polynomials in (y, z),

Ω(k)(y, z) =
1

k!
(y

∂

∂y
+ z

∂

∂z
)kΩ|(0,0).

We can rewrite the field vector of (2) in a neighborhood of O1(0, 0) as(
z

az + by2 + cy

)
= A1

(
y

z

)
+ o

(
∥ y

z
∥

)
.

After a nonsingular linear transformation, A1 can be changed to a Jordan canonical form J1. For

simplicity, we rewrite the factor field of system (2) as the following form,(
z

az + by2 + cy

)
= J1

(
y

z

)
+ o

(
∥ y

z
∥

)
.
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1) c > 0.

In the case, a2 + 4c > 0, and J1 =

(
λ1 0

0 λ2

)
. So, in a neighbourhood of O1, we have

λ1y
∂(Ω(1) +Ω(2) + ...)

∂y
+ λ2z

∂(Ω(1) +Ω(2) + ...)

∂z
= 0. (3)

Let us equate all the terms in (3) of the same order with respect to the variables y, z to 0, we have

λ1y
∂Ω(1)

∂y
+ λ2z

∂Ω(1)

∂z
= 0,

that is, (
λ1 0

0 λ2

)
∂Ω(1)

∂y
|(0,0)y

∂Ω(1)

∂z
|(0,0)z

 = 0.

That maens J1 has a zero eigenvalue, which contradicts the condition that λ1λ2 ̸= 0. So, one can have

Ω(1) = 0. We suppose that we have proved that Ω(1) = Ω(2) = ... = Ω(k−1) = 0. Then it follows from

(3) that Ω(k) has to satisfy the following the equation,

λ1y
∂Ω(k)

∂y
+ λ2z

∂Ω(k)

∂z
= 0.

Because Ω(k) is a sum of elementary monomials, Ω(k) = Σk1+k2=kΩk1k2y
k1zk2 , as follows from (3), the

formula can be obtained,

(λ1k1 + λ2k2)Σk1+k2=kΩk1k2y
k1zk2 = 0. (4)

So,

λ1k1 + λ2k2 = 0,

that is,
k1
k2

= −λ2

λ1
=

a2 + 2c− a
√
a2 + 4c

2c
. (5)

when c > 0, (5) contradicts the condition that
a2 + 2c− a

√
a2 + 4c

2c
is not a nonnegative rational

number.

2) c < 0.

When a2 +4c > 0, the left part of (5) is nonnegative number, and the right part of (5) is negative

number. That is a contradictory.

When a2 + 4c < 0, A1 has a pair of conjugate imaginary eigenvalues λ1,2 =
a±

√
−(a2 + 4c)i

2
.

There is the nonsingular linear transformation in C2, which changes A1 to the Jordan canonical

J1 =

(
λ1 0

0 λ2

)
. Similarly, from (4), one get

(λ1k1 + λ2k2) = (k1 + k2)a+ (k1 − k2)
√
−(a2 + 4c)i = 0.

This is not valid for ki, i = 1, 2 ∈ N, k1k2 ̸= 0.

Therefore, system (2) has no analytic first integrals in a neighborhood of O1.

Theorem 2. 1) c < 0 and
−a2 + 2c+ a

√
a2 − 4c

2c
is not a nonnegative rational number.

2) c > 0, a2 − 4c > 0.
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3) a2 − 4c < 0.

If one of above conditions is satisfied, then system (2) has no nontrivial analytic first integrals in

a neighbourhood of O2(−
c

b
, 0).

Proof. Similarly, we can proof the result.

3 Finding first integrals in other parametric conditions using

Lie symmetry

In the section, we attempt to look for the first integrals of system (2) in other regions using Lie

symmetry.

3.1 Infinitesimal generators

Let X = ξ(x, y)∂x + η(x, y)∂y be the infinitesimal generator of the symmetry group G admitted by

(1).

X(2) = ξ(x, y)∂x + η(x, y)∂y + η(1)∂y′ + η(2)∂y′′

is the prolonged infinitesimal generator, where

η(1) = ηx + (ηy − ξx)η
′ − ξyy

′2,

η(2) = ηxx + (2ηxy − ξxx)η
′ + (ηyy − 2ξxy)y

′2 − ξyyy
′3 + (ηy − 2ξx − 3ξyy

′)y′′.

By the linearized symmetry condition, we have

η(−2by − c) + {ηx + (ηy − ξx)y
′ − ξyy

′2}(−a) + ηxx + (2ηxy − ξxx)y
′

+(ηyy − 2ξxy)y
′2 − ξyyy

′3 + (ηy − 2ξx − 3ξyy
′)(ay′ + by2 + cy) = 0.

(6)

After setting the coefficients of the powers (y′)i (i = 1, 2, 3) in (6) to zero, one can get the determining

equations system

ξyy = 0,

aξy + (ηyy − 2ξxy)− 3aξy = 0,

−aξx + 2ηxy − ξxx − 3ξy(by
2 + cy) = 0,

η(−2by − c)− aηx + ηxx + (ηy − 2ξx)(by
2 + cy) = 0.

(7)

The first equation of (7) gives

ξ(x, y) = a1(x)y + a2(x). (8)

After substituting (8) into the second equation of (7), one can have

η(x, y) = [a′1(x) + aa1(x)]y
2 + a3(x)y + a4(x), (9)

where a1(x), a2(x), a3(x) and a4(x) are functions of x to be determined. Inserting (8) and (9) into

the third equation of (7), we have a polynomial of y with degree 2 which is zero if and only if each

variable coefficient is set to zero

ba1(x) = 0,

−aa′2(x) + 2a′3(x)− a′′2(x) = 0.
(10)

Owing to b ̸= 0, we have a1(x) = 0. We deduce that

ξ(x) = a2(x), η(x, y) = a3(x)y + a4(x).

4
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Similarly, substituting ξ(x) and η(x, y) into the last equation of (7), we obtain a polynomial of y with

degree 2 which is zero if and only if the following equations are satisfied

b(a3(x) + 2a′2(x)) = 0,

−2ba4(x)− aa′3(x) + a′′3(x)− 2ca′2(x) = 0.

−ca4(x)− aa′4(x) + a′′4(x) = 0.

(11)

Analyzing the first equation of (11) and the second equation of (10), we have

a2(x) = c1e
− a

5 x + c2

and

a3(x) =
2a

5
c1e

− a
5 x,

where c1, c2 are integration constants. Substituting a2(x) and a3(x) into the second equation of (11),

we have

a4(x) =
c1a

b
(
6a2

125
+

c

5
)e−

ax
5 .

Substituting a4(x) into the last equation of (11), we obtain one parametric condition:

6a2 ± 25c = 0. (12)

Because c1 and c2 are arbitrary constants, for simplicity, we may assume c1 = 0, c2 = 1, Then we find

ξ = 1, η = 0.

Hence, one infinitesimal generator is generated as X1 = ∂x. We also assume c1 = 1, c2 = 0, then we

obtain

a2(x) = e−
ax
5 , a3(x) =

2a

5
e−

ax
5

and

a4(x) =
a

b
(
6a2

125
+

c

5
)e−

ax
5 .

So, we have two expressions

ξ = e−
ax
5 , η =

2a

5
e−

ax
5 y +

a

b
(
6a2

125
+

c

5
)e−

ax
5 .

Two infinitesimal generators are obtained as follows

X1 = ∂x X2 = e−
ax
5 ∂x + e−

ax
5 [

2a

5
y +

a

b
(
6a2

125
+

c

5
)]∂y. (13)

3.2 Obtaining first integrals

Let us return to consider equation (1). (1) can also be rewritten as the following third order au-

tonomous system, 
ẋ = 1

ẏ = z

ż = az + by2 + cy.

(14)

The partial differential operator associated to (14) is

X =
∂

∂x
+ z

∂

∂y
+ (az + by2 + cy)

∂

∂z
. (15)

Based on Lie symmetry method in [17]-[19], we can have the following result.
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Theorem 3. If system (1) admits the Lie symmetry with generators (13) under the condition

(12), then the generator of the corresponding Lie symmetry admitted by system (14) is

V1 =
∂

∂x
,

V2 = e−
ax
5

∂

∂x
+ e−

ax
5 [

2a

5
y +

6a3

125b
+

ac

5b
]
∂

∂y

+e−
ax
5 [−a

5
(
2a

5
y +

6a3

125b
+

ac

5b
) +

3a

5
z]

∂

∂z
.

(16)

Proof. It is easy to prove the result based on Theorem 1 in [18].

Next, we will apply the above results to (14) for obtaining first integrals under the condition (12).

3.2.1 The first integral under the condition 6a2 = 25c

(14) admits two one-parameter Lie symmetries with generators

V1 =
∂

∂x
,

V2 = e−
ax
5

∂

∂x
+ e−

ax
5 [

2a

5
y +

2ac

5b
]
∂

∂y

+e−
ax
5 [− c

3
y − c2

3b
+

3a

5
z]

∂

∂z
.

(17)

It is easy to find that

[V1, V2] = −a

5
V2.

So we can obtain the corresponding structural coefficients

C1
1,2 = −C1

2,1 = 0, C2
1,2 = −C2

2,1 = −a

5
.

We can let b1 = 1, b0 = 0, and get the solution f1, f2, f3 from the corresponding algebraic system[17],


1 z az + by2 + cy

1 0 0

e−
ax
5 e−

ax
5 [

2a

5
y +

2ac

5b
] e−

ax
5 [− c

3
y − c2

3b
+

3a

5
z]


 f1

f2

f3

 =

 0

b1

b0

 , (18)

and a first integral Ω(x) of (14) is given by the following line integral

Ω(x) =

∫ x

x0

f1dx+ f2dy + f3dz,

f1 = 1,

f2 =
by2 + 4cy

3 + 2az
5 + c2

3b

−2cyz − 2c2z
b + 3az2

5 − 2aby3

5 − 4acy2

5 − 2ac2y
5b

,

f3 =
2a
5 y + 2ac

5b − z

−2cyz − 2c2z
b + 3az2

5 − 2aby3

5 − 4acy2

5 − 2ac2y
5b

.

(19)

Then, we can obtain a first integral of (14),

Ω(x, y, z) = − 5

6a
ln(−2cyz − 2c2z

b
+

3az2

5
− 2aby3

5
− 4acy2

5
− 2ac2y

5b
) + x.

It can be rewritten as

Ω1 = e−
6ax
5 (−2cyz − 2c2z

b
+

3az2

5
− 2aby3

5
− 4acy2

5
− 2ac2y

5b
) = I1, (20)

where I1 is an arbitrary constant.
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3.2.2 The first integral under the condition 6a2 = −25c

In this case, (14) admits two one-parameter Lie symmetries with generators is

V1 =
∂

∂x
,

V3 = e−
ax
5

∂

∂x
+ e−

ax
5
2a

5
y
∂

∂y

+e−
ax
5 (

c

3
y +

3a

5
z)

∂

∂z
.

(21)

It is easy to find that

[V1, V3] = −a

5
V3.

So we can obtain the corresponding structural coefficients

C1
1,3 = −C1

3,1 = 0, C2
1,3 = −C2

3,1 = − a

5.

We can let b1 = 1, b0 = 0, and get the solution f1, f2, f3 from the corresponding algebraic system[17],
1 z az + by2 + cy

1 0 0

e−
ax
5 e−

ax
5
2a

5
y e−

ax
5 (

c

3
y +

3a

5
z)


 f1

f2

f3

 =

 0

b1

b0

 , (22)

and a first integral Ω(x) of (14) is given by the following line integral

Ω(x) =

∫ x

x0

f1dx+ f2dy + f3dz,

f1 = 1,

f2 =
az + by2 + cy − c

3y −
3az
5

c
3yz +

3a
5 z2 − 2a2

5 yz − 2ab
5 y3 − 2ac

5 y2
,

f3 =
2ay
5 − z

c
3yz +

3a
5 z2 − 2a2

5 yz − 2ab
5 y3 − 2ac

5 y2
.

(23)

Then, we can obtain a first integral of (14),

Ω = x− 5

6a
ln(

3az2

5
+ 2cyz − 2aby3

5
− 2acy2

5
).

It can be rewritten as

Ω2 = e−
6ax
5 (

3az2

5
+ 2cyz − 2aby3

5
− 2acy2

5
) = I2, (24)

where I2 is an arbitrary constant.

Here, the obtained first integrals (20) and (24) are identical to first integrals in corresponding

parametric condition in [20].

4 Application to traveling wave solutions of the certain PDEs

The standard form of the Burgers-KdV equation is

ut + uux + βuxx + suxxx = 0, (25)

where β and s are real constants with βs ̸= 0. In [21], author surveys some recent advances in the

study of traveling wave solutions to (25), a class of traveling solitray wave solutions in terms of elliptic

7

UNDER PEER REVIEWUNDER PEER REVIEW



functions with arbitrary velocity is obtained by using the first integral method( is first presented by

Feng in 2003) as well as the method of compatible vector fields. The relevant research results of (25)

can be referred to [21, 22] and the references therein.

The nonlinear reaction-diffusion equation is

∂u

∂t
=

∂2u

∂x2
+ µ+ u− βu2, µ, β ∈ R. (26)

When µ = 0, it is the so-called Fisher equation suggested by Fisher[23]. In [20], Feng applied the

Divisor Theorem for two variables in the complex domain, to find a first integral of an equivalent

autonomous system. Then, a class of traveling wave solutions is obtained accordingly. In [24], the

traveling wave solutions of a similar equation to the nonlinear reaction-diffusion equation(26) were

systematically studied.

In [25], the two-dimensional Burgers-Korteweg-de Vries equation

(ut + uux + βuxx + suxxx)x + γuyy = 0, (27)

where β, s and γ are real constants, is considered using the first integral method. The introduction

of the two-dimensional Burgers-Korteweg-de Vries equation can be referred to [26] and the references

therein.

Assume that equation (25) and (26) have traveling wave solutions of the form u = u(ξ), ξ = x−vt.

After substitution and performing one integration accordingly, one can have

u′′ = au′ + bu2 + ru+ d. (28)

For (25), a = −β

s
, b = − 1

2s
, r =

v

s
, d =

k

s
and k is an arbitrary integration constant in (28). For

(26), a = −v, b = β, r = −1, d = −µ in (28).

Assume equation (27) has the solution in the form u = u(ξ), ξ = hx+ ly − vt. After substituting

the formula to (27), one can have

sh4u(4) + βh3u′′′ + αh2(uu′)′ + γl2u′′ − vhu′′ = 0.

Integrating the above equation twice with respect to ξ, then we can have (28), where d =
k

sh4
, k is

second integration constant and the first one is set to zero, and a = − β

sh
, b = − 1

2sh2
, r =

vh− γl2

sh4
.

Under the transformation y = u +
−r ±

√
r2 − 4bd

2b
, (28) can be changed to (1), where c =

±
√
r2 − 4bd.

In this section, we will consider the traveling wave solutions of equation (25), (26) and (27) based

on the results of the first integral of (1). We can use first integrals Ω1,Ω2 to derive traveling wave

solutions of equation (25), (26) and (27) under corresponding parametric conditions. Comparison

with the existing results will also be provided at the end of this section.

4.1 The nonexistence of traveling wave solutions of PDEs

Based on Theorem 1 and Theorem 2, it is not difficult to obtain the following results for the certain

partial differential equatioins.

Theorem 4. 1) c =
√
r2 − 4bd and

a2 − a
√
a2 + 4c

2c
is not a rational number.

2) c = −
√
r2 − 4bd and a2 + 4c > 0.
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3) a2 + 4c < 0.

If one of the above conditions is satisfied, then (25), (26) and (27) have no traveling wave solutions

in a neighbourhood of (u, u′) = (
r −

√
r2 − 4bd

2b
, 0).

Theorem 5. 1) c = −
√
r2 − 4bd and

−a2 + a
√
a2 − 4c

2c
is not a rational number.

2) c =
√
r2 − 4bd and a2 − 4c > 0.

3) a2 − 4c < 0.

If one of the above conditions is satisfied, then (25), (26) and (27) have no traveling wave solutions

in a neighbourhood of (u, u′) = (−c

b
+

r −
√
r2 − 4bd

2b
, 0).

4.2 Traveling wave solutions of PDEs under the condition 6a2 = 25c

From the first integral (20), we can deduce traveling wave solutions of the above PDEs.

Case 1. I1 = 0.

Inserting z = y′ into (20), one has

2cyy′ +
2c2y′

b
− 3ay′2

5
+

2aby3

5
+

4acy2

5
+

2ac2y

5b
= 0.

In consideration of the condition 6a2 = 25c and solving the above equation, we can obtain

y′ =
5[2c(c+ by)± 2(c+ by)

√
c(c+ by)]

6ab
. (29)

Making a substitution Y =
√
c+ by, an exact solution to (29) can be deduced,

y =
c

b
[c21(

e
5c
6a ξ

1∓ c1e
5c
6a ξ

)2 − 1],

where c1 is an arbitrary constant. Using the identity

1

1 + e−2x
=

1

2
(1 + tanhx)

and choosing c1 = ∓1, one can get the exact solution to (29)

y =
c

b
[
1

4
(1 + tanh

5c

12a
ξ)2 − 1].

Utilizing the identity sech2t+ tanh2 t = 1, the above solution can be expressed as follows,

y = − c

4b
sech2 5c

12a
ξ +

c

2b
tanh

5c

12a
ξ − c

2b
. (30)

Owning to (30), one can get the traveling wave solution to (25) under the condition 6a2 = 25c as

follows,

u =
3β2

25α
sech2[

β(x− vt)

10s
]− 6β2

25α
tanh[

β(x− vt)

10s
] + v,

the traveling wave solution to (26) under the condition 6a2 = 25c as follows,

u = − 3v2

50β
sech2[

v

10
(x− vt)]− 3v2

25β
tanh[

3v

10
(x− vt)]− α

2β
,
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and the solution to (27) is

u =
3β2

25s
sech2[

β

10sh
(hx+ ly − vt)] +

6β2

25s
tanh[

β

10sh
(hx+ ly − vt)] +

l2γ − vh

h2
.

Case 2. I1 < 0

Using the similar method in the literature [20], inserting z = y′ into the first integral (20), and the

first integral can be expressed as

[e
−3a
5 x(z − 5c

3a
y − 5c2

3ab
)]2 − 2b

3
[e−

2a
5 x(y +

c

b
)]3

= { d

dx
[(y +

c

b
)e−

5c
3ax]}2e− 5c

3ax − 2b

3
[e−

2a
5 x(y +

c

b
)]3

= I1.

Owing to 6a2 = 25c, one has − 5c

3a
= −2a

5
and inserts it to the above formula, one has

{ d

dx
[(y +

c

b
)e−

2a
5 x]}2e− 2a

5 x − 2b

3
[e−

2a
5 x(y +

c

b
)]3 = I1. (31)

Let Φ =
b

6
(y +

c

b
)e−

2a
5 x, q =

5

a
e

a
5 x, (31) can be rewritten as the following equation

(
dΦ

dq
)2 − 4Φ3 − I1 = 0. (32)

Its solution can be expressed in terms of the Weierstrass function ℘(q; g2, g3) with g2 = 0 and g3 = −I1.

We know that the Weierstrass function ℘(q; 0,−I1) for the standard equation (Φ′)2 − 4Φ3 − I1 = 0

can be expressed by the Jacobian elliptic cosine function[27],

Φ(q) = R+H
1 + cn(2

√
Hq + c2;

2−
√
3

4 )

1− cn(2
√
Hq + c2;

2−
√
3

4 )
,

where c2 is an arbitrary constant, R = − 3

√
I1
4

and H =
√
3R. Consequently, changing to the original

variables and using the inverse transformations of Φ and q, one can get the following formula,

y =
3c23a

2

50b
e

2ax
5 [

√
3

3
+

1 + cn(c3e
ax
5 + c2;

2−
√
3

4 )

1− cn(c3e
ax
5 + c2;

2−
√
3

4 )
]− c

b
,

where c3 is an arbitrary constant.

Accordingly, one can obtain a traveling wave solution to (25) as follows,

u(x, t) = −3c23β
2

25s
e−

2β
5s (x−vt)[

√
3

3
+

1 + cn(c3e
− β

5s (x−vt) + c2;
2−

√
3

4 )

1− cn(c3e−
β
5s (x−vt) + c2;

2−
√
3

4 )
] + v ±

√
v2 + 2k,

one can obtain a traveling wave solution to (26) as follows,

u(x, t) =
3c23v

2

50β
e−

2v
5 (x−vt)[

√
3

3
+

1 + cn(c3e
− v

5 (x−vt) + c2;
2−

√
3

4 )

1− cn(c3e−
v
5 (x−vt) + c2;

2−
√
3

4 )
] +

α−
√
α2 + 4βµ

2β

and the solution to (27) is

u(x, t) =
−3c23β

2

25s
e−

2β
5sh (hx+ly−vt)[

√
3

3
+

1 + cn(c3e
− β

5sh (hx+ly−vt) + c2;
2−

√
3

4 )

1− cn(c3e−
β

5sh (hx+ly−vt) + c2;
2−

√
3

4 )
]

±
√
(vh− γl2)2 + 2h2k

h2
.
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Case 3. I1 > 0.

It is known([27]) that ℘(q; 0,−I1) = −℘(iq; 0, I1) and cn(iq;
2−

√
3

4
)cn(q;

2 +
√
3

4
) = 1. These

relations let us apply the result of (32) for I1 > 0, and the corresponding solution can be obtained,

Φ(q) = −R+H
1 + cn(2

√
Hq + c2;

2+
√
3

4 )

1− cn(2
√
Hq + c2;

2+
√
3

4 )
,

where c2 is an arbitrary constant, R = 3

√
I1
4

and H =
√
3R. Consequently, changing to the original

variables and using the inverse transformations of Φ and q, one can get the following formula,

y =
3c23a

2

50b
e

2ax
5 [−

√
3

3
+

1 + cn(c3e
ax
5 + c2;

2+
√
3

4 )

1− cn(c3e
ax
5 + c2;

2+
√
3

4 )
]− c

b
,

where c3 is an arbitrary constant.

Similarly, one can obtain a traveling wave solution to (25) as follows,

u(x, t) = −3c23β
2

25αs
e−

2β
5s (x−vt)[−

√
3

3
+

1 + cn(c3e
− β

5s (x−vt) + c2;
2+

√
3

4 )

1− cn(c3e−
β
5s (x−vt) + c2;

2+
√
3

4 )
] +

12β2

25sα
,

one can obtain a traveling wave solution to (26) as follows,

u(x, t) =
3c23v

2

50β
e−

2v
5 (x−vt)[−

√
3

3
+

1 + cn(c3e
− v

5 (x−vt) + c2;
2+

√
3

4 )

1− cn(c3e−
v
5 (x−vt) + c2;

2+
√
3

4 )
]− 6v2

25β
,

and the solution to (27) is

u(x, t) =
−3c23β

2

25αs
e−

2β
5sh (hx+ly−vt)[−

√
3

3
+

1 + cn(c3e
− β

5sh (hx+ly−vt) + c2;
2+

√
3

4 )

1− cn(c3e−
β

5sh (hx+ly−vt) + c2;
2+

√
3

4 )
]

+
2
√
(vh− γl2)sh2 + 2αk

αh
.

4.3 Traveling wave solutions of PDEs under the condition 6a2 = −25c

Case 1. I2 = 0.

Inserting z = y′ to (24), one has

3ay′2

5
+ 2cyy′ − 2aby3

5
− 2acy2

5
= 0.

In consideration of the condition 6a2 = −25c and solving the above equation, we can obtain

y′ =
−5cy ± 5y

√
−bcy

3a
. (33)

Making a substitution Y =
√
−bcy, an exact solution to (33) can be deduced,

y = − 1

bc
(

c

1− c1e
5c
6a ξ

)2,

where c1 is arbitrary constant. Using the identity

1

1 + e−2x
=

1

2
(1 + tanhx)

and choosing c1 = −1, one can get the exact solution to (33)

y =
c

4b
[1 + tanh(− 5c

12a
ξ)]2. (34)
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Utilizing the identity sech2t+ tanh2 t = 1, the above solution can be expressed as follows,

y = − c

4b
sech2 5c

12a
ξ − c

2b
tanh

5c

12a
ξ +

c

2b
. (35)

Owning to (35), one can get the traveling wave solution to (25) under the condition 6a2 = −25c

as follows,

u = − 3β2

25sα
sech2[

β

10s
(x− vt)]− 6β2

25sα
tanh[

β

10s
(x− vt)] +

6β2

25sα
,

the traveling wave solution to (26) under the condition 6a2 = −25c as follows,

u =
3v2

50β
sech2[

v

10
(x− vt)] +

3v2

25β
tanh[

v

10
(x− vt)]− 3v2

25β

and the solution to (27) is

u =

√
(vh− γl2)sh2 + 2αk

2αh
sech2[

−5
√
(vh− γh2)sh2 + 2αk

12βh2
(hx+ ly − vt)]

+

√
(vh− γl2)sh2 + 2αk

αh
tanh[

−5
√
(vh− γl2)sh2 + 2αk

12βh2
(hx+ ly − vt)]

−
√

(vh− γl2)sh2 + 2αk

αh
.

Case 2. I2 < 0

Similarly, using z = y′, the first integral (24) can be expressed as

[e
−3a
5 x(z +

5c

3a
y)]2 − 2b

3a
(e−

2a
5 xy)3 = I2.

Owing to 6a2 = −25c, one has
5c

3a
= −2a

5
and inserts it to the above formula, one has

[
d

dx
(ye−

2a
5 x)]2e−

2a
5 x − 2b

3a
(ye−

2a
5 x)3 = I2. (36)

Let Φ =
b

6a
ye−

2a
5 x, q =

5

a
e

a
5 x, (36) can be rewritten as the following equation

(
dΦ

dq
)2 − 4Φ3 − I2 = 0. (37)

Similarly, its solution can be expressed in terms of the Weierstrass function ℘(q; g2, g3) with g2 = 0

and g3 = −I2. We know that the Weierstrass function ℘(q; 0,−I2) for the standard equation (Φ′)2 −
4Φ3 − I2 = 0 can be expressed by the Jacobian elliptic cosine function[27],

Φ(q) = R+H
1 + cn(2

√
Hq + c2;

2−
√
3

4 )

1− cn(2
√
Hq + c2;

2−
√
3

4 )
,

where c2 is an arbitrary constant, R = − 3

√
I2
4

and H =
√
3R. Consequently, changing to the original

variables and using the inverse transformations of Φ and q, one can get the following formula,

y =
3c23a

3

50b
e

2ax
5 [

√
3

3
+

1 + cn(c3e
ax
5 + c2;

2−
√
3

4 )

1− cn(c3e
ax
5 + c2;

2−
√
3

4 )
],

where c3 is an arbitrary constant.

Accordingly, one can obtain a traveling wave solution to (25) as follows,

u(x, t) = − 3c23β
3

25αs2
e−

2β
5s (x−vt)[

√
3

3
+

1 + cn(c3e
− β

5s (x−vt) + c2;
2−

√
3

4 )

1− cn(c3e−
β
5s (x−vt) + c2;

2−
√
3

4 )
],
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one can obtain a traveling wave solution to (26) as follows,

u(x, t) =
3c23v

2

50β2
e−

2v
5 (x−vt)[

√
3

3
+

1 + cn(c3e
− v

5 (x−vt) + c2;
2−

√
3

4 )

1− cn(c3e−
v
5 (x−vt) + c2;

2−
√
3

4 )
],

and the solution to (27) is

u(x, t) =
−3c23β

2

25αs
e−

2β
5sh (hx+ly−vt)[

√
3

3
+

1 + cn(c3e
− β

5sh (hx+ly−vt) + c2;
2−

√
3

4 )

1− cn(c3e−
β

5sh (hx+ly−vt) + c2;
2−

√
3

4 )
].

Case 3. I2 > 0.

Similarly, let us apply the result of (37) for I2 > 0, and the corresponding solution can be obtained,

Φ(q) = −R+H
1 + cn(2

√
Hq + c2;

2+
√
3

4 )

1− cn(2
√
Hq + c2;

2+
√
3

4 )
,

where c2 is an arbitrary constant, R = 3

√
I2
4

and H =
√
3R. Consequently, changing to the original

variables and using the inverse transformations of Φ and q, one can get the following formula,

y =
3c23a

3

50b
e

2ax
5 [−

√
3

3
+

1 + cn(c3e
ax
5 + c2;

2+
√
3

4 )

1− cn(c3e
ax
5 + c2;

2+
√
3

4 )
],

where c3 is an arbitrary constant.

One can obtain a traveling wave solution to (25) as follows,

u(x, t) = − 3c23β
3

25αs2
e−

2β
5s (x−vt)[−

√
3

3
+

1 + cn(c3e
− β

5s (x−vt) + c2;
2+

√
3

4 )

1− cn(c3e−
β
5s (x−vt) + c2;

2+
√
3

4 )
],

one can obtain a traveling wave solution to (26) as follows,

u(x, t) =
3c23v

2

50β2
e−

2v
5 (x−vt)[−

√
3

3
+

1 + cn(c3e
− v

5 (x−vt) + c2;
2+

√
3

4 )

1− cn(c3e−
v
5 (x−vt) + c2;

2+
√
3

4 )
]

and the solution to (27) is

u(x, t) =
−3c23β

2

25αs
e−

2β
5sh (hx+ly−vt)[−

√
3

3
+

1 + cn(c3e
− β

5sh (hx+ly−vt) + c2;
2+

√
3

4 )

1− cn(c3e−
β

5sh (hx+ly−vt) + c2;
2+

√
3

4 )
].

In the section, we deduce the traveling wave solutions of (25), (26) and (27) under parameters

conditions 6a2 = 25c and 6a2 = −25c accordingly. The first integrals of (14) and first integrals in

[20](formula (19) and (20)) are identical as the parameters conditions are changed accordingly. In

[21], the author studied the Burgers-Korteweg-de vries equation using the first integral method, and

got the traveling wave solution of the equation only in the case I1 = 0 and the case I2 = 0. Almendral

and Sanjuan [28] investigated the invariance and integrability properties of the Helmholtz oscillator,

and they used the Lie group theory of differential equations to find a first integral only under the

parametric restraint 6a2 = 25c, which is identical to our formula (20). In [20], authors proposed

an effective method(first integral method) to obtain traveling wave solutions of a reaction-diffusion

equation (26), which are identical to the above obtained traveling wave solutions of (26) under the

condition 6a2 = ±25c. To our knowledge, the traveling wave solutions of (25) and (27) obtained under

the condition I1 ̸= 0 or I2 ̸= 0 are not found in the existing literature.
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5 Conclusions

In this paper, we first present the condition of nonexistence of the first integrals of a class of ordinary

differential equations and the method for getting first integrals of the equations using Lie symmetry.

Then, we obtain the conditions of the nonexistence of traveling wave solutions of certain partial

differential equations, and we also apply the above first integrals to search for traveling wave solutions

of the partial differential equations, which can be converted to the following form through the traveling

wave transformation

u′′(ξ) = au′(ξ) +R(u), (38)

where R(u) = bu2+ru+d, a ̸= 0, b, r, d are real. We proposed an effective method to deal with (38)

using Lie symmetries admitted by (38). Through constructing an algebra equations system based on

the generators of Lie symmetries admitted by (38), we obtained first integrals of an explicit form to an

equivalent autonomous system under concert parametric conditions. Then using first integrals, a class

of traveling wave solution were accordingly derived by solving this first order differential equation. The

method in the paper to obtaining first integrals need not let R(u) in (38) be a polynomial with real

coefficients, it can be an arbitrary element function. The technique described herein can be applied

to other partial differential equations in other subjects, in which (38) may be any order nonlinear

ordinary differential equations and R(u) can be any element functions.
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