1	CEREBRAL CORTICAL DAMAGE IN ADULT WISTAR RATS FOLLOWING
2	ALUMINIUM CHLORIDE ADMNISTRATION
3	
4	
5	ABSTRACT
6	This study investigated the histomorphological effect of aluminium chloride on the cerebral
7	cortex. Aluminium chloride as one of the toxic metal have been known to be the major
8	environmental pollutant across the world which has led to the discovery of diverse
9	Neurodegeneration diseases (ND) associated with metallic intoxication. It is present in many
10	pharmaceutical drugs, food products and also used in treatment of drinking water being
11	involved in skeletal, hematological and neurological diseases.
12	Thirty two adult wistar of both sexes weighing between 143g-189g were randomly grouped
13	into grouped into four groups, group A,B,C and D each group containing 8 rats. Group A rats
14	which was the control and was maintained on standard feed (grower mesh) and water for 21
15	days, group B rats were treated with 0.2g of aluminium chloride for 21days, group C rats
16	were treated with 0.4g of aluminum chloride for 21days, group D rats were treated with 0.6g
17	of aluminium chloride for 21 days. The aluminium chloride solution was administered orally
18	on daily basis.
19	The weight of the wistar rats was recorded on weekly basis (before and at the end of each
20	week of administration). On the 22 nd day the wistar rats in group A, B, C and D were
21	sacrificed by cervical dislocation, blood was collected through cardiac puncture, the brain
22	was removed and weighed immediately using sensitive balance, part of the brain of all wistar
23	rats in each group was collected and homogenized for biochemical analysis, it was then fixed
24	in 10% formol saline, the tissue was processed and sectioned at 5 μ m and stained with
25	hematoxylin and eosin for histological study.
26	Results showed that the mean body weights of the wistar rats significantly increased in the
27	treated groups when compared with the control group. The mean brain weights of the
28	aluminium- treated groups showed a significant decreased when compared to the control
29	group. In the biochemical analysis there was statistically significant increase in the level of
30	MDA in the aluminium-treated group, and a significant decrease in the level of SDH and

SOD in the aluminium treated group. Histological study of brain (cerebral cortex) revealed that the cerebral cortical layers of the aluminium treated groups appeared distorted and degenerated, in a dose dependent manner. The study concluded that aluminium chloride has a neurotoxic effect on the cerebral cortex of adult wistar rats which invariably may alter somecerebral functions.

Key word: Aluminium chloride, cerebral cortex, histomorphogy neurodenegeration, SOD,
MDA.

38

39 INTRODUCTION

Increasing concern has been raised to the effect that the human organism is constantly and inevitably exposed to aluminium, a ubiquitous metal which is known to be the third most abundant element in the Earth's crust, representing 8% of total components[1]. Report has shown that aluminium is a toxicant substance that is implicated in dialysis encephalopathy [2] osteomalacia [3], non-iron responsible anemia [4], and also associated with many other diseases including Alzheimer's disease[5] (<u>Gupta *et al.* 2005</u>), Parkinson's disease[6] and amyotrophic lateral sclerosis[7].

Previous investigation has indicated that aluminium entry into the brain primarily occurs 47 through the blood-brain barrier (BBB). Additionally, the mechanism(s) responsible for 48 aluminium transport across the BBB is not fully understood, it has been reported from other 49 50 studies that aluminium can penetrate into the brain as a complex with transferrin by a 51 receptor-mediated endocytosis[8] and bound to citrate via a specific transporter, the system 52 Xc^{-} (l-glutamate/l-cysteine exchanger) being the most recently accepted principles[9]. The apparently long half-life of aluminium in brain tissue has been advanced to explain its 53 54 possible accumulation in the brain [10-11], which coupled with the long life of neurons may 55 be responsible for the elevated levels of aluminium found in the brain of some patients 56 suffering PD [6] and Alzheimer's disease [12].

57 Report from previous studies has shown Increasing evidence which demonstrated that
58 oxidative stress is the primary and leading cause of pathogenesis in metabolic, inflammatory,

partial ischemia and denatured cranial nerve disease [13]. It has been documented that the 59 60 brain tissues are highly vulnerable and susceptible to oxidative damage, probably due to high oxygen consumption rate (20%), the availability of abundant polyunsaturated fatty acids in 61 62 cell membranes, high iron (Fe) content coupled with low anti-oxidative enzyme 63 activities[14]. Additionally, reactive oxygen species may also cause cellular damage, by 64 oxidizing amino acid residues on proteins, resulting ultimately in protein carbonyls [15] Findings from Several studies have demonstrated that oxidative stress induced by aluminium 65 66 leads to modification of the peroxidation of lipids and the activities of anti-oxidative enzymes. Julka and Gill [16]. However, reactive oxygen species can be beneficial, as they are 67 used by the immune system as a way to attack and kill pathogens [17]. Short-term oxidative 68 stress may also be important in prevention of aging by induction of a process named 69 70 mitohormesis[18]. Chemically, oxidative stress is associated with increased production of oxidizing species or a significant decrease in the effectiveness of antioxidant defenses, such 71 as glutathione[19]. 72

Production of reactive oxygen species is a particularly destructive aspect of oxidative stress. 73 74 Such species include free radicals and peroxides. Most long-term effects of oxidative stress 75 are caused by damage to DNA [20] (Evans, Cooke, 2004). Oxidative stress is suspected to be important in neurodegenerative diseases including Lou Gehrig's disease (aka MND or ALS), 76 77 Parkinson's disease, Alzheimer's disease, Huntington's disease, Depression, Autism and 78 Multiple sclerosis[21]. Aluminium chloride as one of the toxic metal have been known to be 79 the major environmental pollutant across the world which has lead to the discovery of diverse 80 Neurodegeneration diseases (ND) associated with metallic intoxication [22]. The causes of neurodegeneration seem to involve susceptibility genes and environmental pollutants. Toxic 81 82 metal exposure on human can cause damages to number of organ systems. The nervous

system is vulnerable target for toxicant due to specific voltage which must be maintained in 83 the cells and all the responses when voltages reach threshold level[23]. Aluminium is a 84 trivalent cation found in its ionic form in most kinds of animals and plant tissues and in 85 natural waters everywhere [24]. Aluminium (AL), is ubiquitous in the environment and its 86 extensive industrial utilization has stimulated considerable interest in the possible 87 environmental toxicity of this metal. However, little is known about possible effects of 88 89 Aluminium as a trace element in animals and human in normal conditions. It has recently become clear that when Aluminium (Al) is mobilized from soil by acid rain, it poses a hazard 90 to all exposed organism[25]. Aluminium has the capacity to be neurotoxic both in human and 91 92 animals. It is present in many pharmaceutical drugs, food products and also used in treatment of drinking water being involved in skeletal, hematological and neurological diseases. 93 94 Aluminium is widely used in antacid drugs as well as in food additives and tooth paste [26]. Aluminium compound have been used for 30 years to control phosphate level in patients 95 undergoing haemolysis, the toxic effect arising from absorption and accumulation of 96 Aluminium have well been documented and includes a progressive cerebral cortex which 97 eventually leads to dementia. Environmental pollution with different aluminium containing 98 compounds, especially those in industrial waste exposes human and animals to higher than 99

100 normal levels of Aluminkium[22].

Particulate matters distributed by cement – producing factories contain, high amount of Aluminium, and animals and populations residing in the vicinity are exposed to the pollution[27]. In the past, toxic levels of Aluminium have been associated with neurodegenerative diseases including Alzheimer's disease, Parkinsonism, Dementia complex and causes extensive damage to the nervous system. Aluminium is a risk factor in Alzheimer disease [28]. However ,epidemiological investigation revealed a link between Aluminium in drinking water and AD and a variety of human and animal studies have implicated learning 108 and memory deficits after Aluminium exposure.[10,29]. Furthermore, other researches have 109 revealed that there are possible adverse effects of aluminium on human health with no known physiological role for aluminium within the body. Aluminium neurotoxicity has been a 110 matter of serious concern to scientists in view of several investigations conducted in relation 111 112 to that. Chronic exposure of animals to aluminium is associated with behavioral, 113 neuropathological and neurochemical changes including alter behaviors, anxiety, depression, 114 weakness etc. Aluminium toxicity has been implicated in many neurodegenerative disorders such as Parkinson's disease (PD), Alzheimer's disease (AL), Parkinsonism-Dementia, 115 amyotrophic lateral sclerosis, dialysis encephalopathy etc [28,30]. A possible link between 116 Aluminium and Alzheimer's disease has been highlighted, and a variety of animals and 117 human studies have implicated learning and memory deficit after aluminium exposure [33]. 118

119

120

121

MATERIALS AND METHODS

122 This study was conducted at the animal house of Department of Human Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo state, Nigeria. The premilinary 123 studies animal acclimatization, actual animal experiment and evaluation of results, lased for a 124 125 period of three months. However, the actual administration of Aluminum chloride lasted for three weeks. The animals were housed in serene and conducive cross...ventilated room in the 126 127 Animal Holding Department, Ladoke Akintola University of Technology, Ogbomoso, Nigeria and treated in accordance with 'Guide for the care and use of Laboratory Animal' 128 129 prepared and compiled by the National Academy Of Science and published by the National 130 Institute of Health[31].

Wistar rats weighing 110-240g were used for the experiment design, a total number of
32 rats (males and females) were involved. The experimental animals were housed in

standard plastic cage, fed with rat chow, and water daily. The experimental animals were divided into four groups. After acclimatization period, rats were weighed and randomly divided into four groups comprising eight animals in each group. Animal were administered with aluminum chloride 0.2mls/kg, 0.4mls/kg and 0.6mls/kg for low dose, medium dose and high dose respectively.

GROUP A: rats were given stock diet and water, they served as control.

139 **GROUP B:** Experimental animals were given stock diet and 0.2mls of aluminum chloride

140 (low dose) orally for 3weeks

141 GROUP C: Experimental animals were given stock diet and 0.4mls of aluminum chloride

142 (medium dose) orally for 3weeks

GROUP D: Experimental animal were given stock diet and 0.6mls of aluminum chloride
(high dose) orally for 3weeks. The animals were sacrificed by cervical dislocation on the
22nd day, Blood were collected from the heart for biochemical analysis of enzymes and the
tissue (brain) for histological analysis after the Alcl₃had been administered for 21 days. The

brain from each groups were fixed separately in 10% formo-saline.

The Statistical analysis of the results in this study was carried out and tested for significance using student T-test. Data were expressed as means \pm SEMs of the three independent experiment and also by using 2-ways ANOVA of the graph prism 5 for window version 5.02 trial (1992-2009). If the p value is greater than 0.05 (P>0.05) this means that the effect is not significant, if the P value less than 0.05 (P<0.05) this means the effect was significant.

154

147

155

RESULTS

157

158 159

Table 1: Showing The Mean± Sem Of Brain Weight Of Adult Wistar Rats After Administration Of Aluminium Chloride

GROUPS	$MEAN \pm SEM \text{ OF BRAIN}$	RELATIVE BRAIN
	WEIGHT	WEIGHT %
GROUP A (CONTROL)	1.95 ± 0.035	1.03%
GROUP B LOW DOSE	1.55 ± 0.068	0.97%
(0.2g/kg)		1.2.
GROUP C MEDIUM	1.48 ±0.091	0.93%
DOSE (0.4g/kg)		
GROUP D HIGH DOSE	1.55 ±0.096	1.02%
(0.6g/kg)		

160

From table 1, the weight analysis for brain shows an insignificant difference (P>0.05) in weight, comparing control group to group B, also there was an insignificant difference (P>0.05) in weight of brain when group C and D were compared with the control Group A. Group D which received the highest dose has the highest brain weight compared with other aluminium-treated groups, after the Group A which is the control, followed by group B which received the low dose and group C which received the medium dose. Which shows that the effects of aluminum is not dose dependent on the brain weight.

170 Fig.1:Bar Chart Showing Brain Weights of Wistar Rats

171

The graph showing the effect of aluminum chloride on the brain weight, general decrease in

brain weight occur in all the group when compared with the control.

174 The graph also shows that Rats in Group B shows a decrease in brain weight compared to

brain weight of group A (control), brain weight of rats in group C show a decrease in weight

176 compared to group A also group D shows a decrease in brain weight compared to group A.

177 However the graph also shows that there was a decrease in group C compared to group B and

178 D and decrease in group D compared to group B

180 BOCHEMICAL ANALYSIS

181	Table 2: Effect	Of Alumnium	Chloride (On The Activities	Of Sod, M	da And Al	p In The B	rain
-----	-----------------	-------------	------------	-------------------	-----------	-----------	------------	------

14010 21 211000 0111	u		01 00 a, 11 aa 1 11 a 1	
	GROUP A	GROUP B	GROUP C	GROUP D
	±	±	±	±
	S.E.M (n=5)	S.E.M (n=5)	S.E.M (n=5)	S.E.M (n=5)
SOD	78.34 ± 7.81	33.07 ± 1.37*	60.42 ±4.48*	$45.63 \pm 9.96*$
(ηmol/gtIssue)				
MDA	33.06 ± 1.37	$39.74 \pm 2.06*$	60.42 ± 4.48 *	$51.42 \pm 9.65*$
(ηmol/gtIssue)				\sim
SDH	2.91 ± 0.24	2.23 ± 0.44	$1.37 \pm 0.15*$	$1.17 \pm 0.11*$
(µmol/gtissue)			111	

182 Data were represented as Mean \pm SEM * P<0.5 statistically different from the control;

183 SOD: Superoxide dismutase

184 MDA: Malondialdehyde

SDH: Succinate Dehydrogenase

- 186 Table 2 reveal rapid decrease in the activity of SOD in the aluminium-treated rats when
- 187 compared with the control, it decreased significant (P<0.05) from 78.34 ± 33.0 to $33.07 \pm$
- 188 1.37 in group B, 60.42 ± 4.48 in Group C and 45.63 ± 9.96 in group D.
- 189 The level of MDA (malondialdehyde) increased significantly (P < 0.05) in the treated groups
- 190 compared with the control. It increased from 33.06 ± 1.37 in group A to 39.74 ± 2.06 in
- 191 group B, 60.42 ± 4.48 in group C and 51.42 ± 9.65 in group D.
- 192 There was a decrease in the level of SDH among the aluminium-treated group compared with
- the control, it decreased from 2.91 ± 0.24 in group A to 2.23 ± 0.44 in group B, 1.37 ± 0.15 in
- 194 group C and 1.17 ± 0.11 in group D.

- 197 Fig 2: Histogram of Changes in SOD, MDA and SDH Per Group
- 198 Graph of effect of aluminum chloride on the brain
- 199 Decrease in the level of **SOD**
- 200 Increase in the level of MDA
- 201 Decrease in the level of **SDH**

208 HISTOLOGICAL OBSERVATION (Photomicrograph of the Histology)

221 X 400

222 GROUP A: CONTROL GROUP

Plate A: Photomicrograph control group showing a normal histological feature of the
cerebral cortex, characterized by large pyramidal cell (black arrow), with long axons (white
lines) that extends well from the delineated soma of the pyramidal neurons, normal molecular
layers (yellow arrow) and external granular layer (red arrow) also appear normal. (H & E
X100 X400)

X400

Plate B: Photomicrography of group B administered 0.2mls/kg of Aluminium chloride, showing slightly mild generative changes in the pyramidal cell, which appear slightly distorted with loss of their process (black arrow), mild generative changes occur in the cytoplasm and condensed nuclei is seen (red arrow). Morphology (molecular layer) is similar to that of group A. (H & E X100 X400)

Plate C: Photomicrograph of group B, administered 0.4mls/kg of Aluminium chloride
showing loss of pyramidJal cells due to degeneration, leading to plenty of perineural spaces
(red arrow), molecular layers appear unorganized with lots of spaces (black arrow), cell
distortion was very obvious (blue arrow). (H & E X100 X400)

276 GROUP D: EXPOSED TO 0.6MLS OF ALUMINUM CHLORIDE

Plate D: photomicrograph of group D administered 0.6 mls/kg of aluminium chloride
showing severe degeneration in fragmented cytoplasm, condensed nuclei within soma (black
arrow), very large and numerous Perineural space can surrounding degenerating neurons (red
arrow), neurofibril tangle (brown arrow), spaces within the pyramidal cells and granular
layer (blue arrow). (H & E X100 X400).

282

284 HISTOLOGICAL FINDINGS

GROUP A (CONTROL): the histological examinations show a normal cerebral cortex histological morphology, the cells are normal as it could be seen in the photomicrograph (plate A). The cells are well arranged with normal nucleus, pyramidal cells and organized molecular layers there is no sign of degenerations or distorted cells.

GROUP B (LOW DOSE): this group received 0.2mls of aluminium chloride.The histological examination shows slightly distorted cell with loss of their process, mild generative changes occur in the cytoplasm and condensed nuclei is seen. Morphology (molecular layer) is similar to that of group A.

GROUP C (MEDIUM DOSE): this group received 0.4mls of aluminium chloride. The histological examination as it could be seen in the photomicrography shows loss of pyramidal cells due to degeneration, leading to plenty of perineural spaces, molecular layers appear unorganized with lots of spaces, cell distortion was very obvious, compare with plate A and plate B.

GROUP D (HIGH DOSE): this group received 0.6mls of aluminium chloride. The histological examinations shows a severe degeneration in fragmented cytoplasm, condensed nuclei within soma, very large and numerous Perineural space can surrounding degenerating neurons, neurofibril tangle, spaces within the pyramidal cells and granular layer, axon and dendrite are scarcely appreciable around neurons.

303

DISCUSSION

304 Findings from previous studies have indicated that the cortex is region known to be

305 particularly susceptible in Alzheimer's disease and performs an important role in learning

and memory functions[33] Reports from Several studies have suggested a general decline

in learning abilities which are mediated by aluminium toxicity [34]^a Results from the present

e study, demonstrated a significant increase (P<0.05) in <u>lipid peroxidation</u> following

309 aluminium exposure in treated adult wistar rats, measured in terms of TBARS levels in the 310 rat brain. Similarly, other investigators have also reported a significant increase (P < 0.05) in 311 whole brain thiobarbituric acid reactive substances after treatment with aluminium salts. 312 Additionally, it has been reported from previous investigations, that aluminium is a 313 non redox metal whose accumulation in the brain has been implicated in various neurodegenerative diseases [35,3]. Several hypotheses from various investigators have been 314 315 written to explain the potentials ability of aluminium to promote biological oxidations [37]. 316 Thus, it has been shown to facilitate iron induced lipid peroxidation [38], non iron induced lipid peroxidation[39]. non iron mediated oxidation of NADH [40] and non iron mediated 317 formation of the hydroxyl radical[41]. Additionally, aluminium also appears to inhibit several 318 antioxidant enzymes in different parts of the brain[42]. The significant variations and 319 320 reductions in antioxidant enzyme activities in this study is adequately supported by findings 321 from previous reports. Furthermore, The result of variations in antioxidant status is consistent with similar behavioural patterns of a significant decrease in the enzyme activity 322 323 of most antioxidant systems, and agree with previous studies [43,44,42,45] (Dua and Gill 324 2001; Abubakar et al. 2004a; Nehru and Anand 2005; Jyoti et al. 2007). Findings from 325 previous studies on adult animals have shown that Aluminium induced the production of 326 ROS and caused oxidative damage in the brain [46]. Additionally, reactive oxygen species can 327 also cause cellular damage, by oxidizing amino acid residues on proteins, forming protein 328 carbonyls, Similarly, it has been reported that aluminum (Al) is a relatively low redox 329 mineral, which has the potential to indu ce oxidative damage through multiple mechanisms. 330 It has the tendency to bind negatively charged brain phospholipids, which possess 331 polyunsaturated fatty acids and are readily attacked by reactive oxygen species (ROS) such as O₂, H₂O₂, OH, and OH [46]. Furthermore, it has been suggested that oxidative stress 332 caused by high Al content is greater than the protection provided by the anti-oxidizing 333

system; subsequently leading to high possibility of oxidative damage to brain tissue[47]. It 334 335 has been reported that Al concentration in the brain tissue increased with increasing Al intake, but not in a dose-dependent manner and consequently oxidative damage occurred in 336 specific brain areas of adult rats [48]. Aluminium has been shown by studies to be bound by 337 the Fe^{3+} carrying protein transferrin thus reducing invariably the binding of Fe^{2+} . Moreover, it 338 has been observed that the increase in free intracellular Fe^{2+} causes the peroxidation of 339 340 membrane lipids and thus causes membrane damage [49]. Similarly, Aluminium (Al) is a widely known to be a neurotoxin that inhibits more than 200 biologically important functions 341 342 in organisms[49] 1 343

This project studied the histomorphological effects of aluminium chloride on the cerebral cortex, result of weight analysis showed a significant increase in the final total body weight of animal in group B there treated with 0.2gof aluminium chloride (15.71%) initially but reduced in the bod weight when compared with the control group (26.43%).

348 Rats induced with Aluminium chloride in various groups has been reported to have their brain weight decrease compared to the control group although not dose dependent, in some 349 research it was report that Aluminium chloride increase the brain weight of a wistar rats after 350 351 the animals were induced for 30 days[49]. Microscopic examination of the cerebral cortex In the group B (induced 0.2 mls Alcl₃) only slight and mild distortions were observed in the 352 architecture of the brain, the architecture of the brain in group C and D animals that were 353 354 treated on higher dose (0.4 mls and 0.6mls respectively), a more prominent and significant 355 damage was observed in the brain, it was also observed that animals in various groups 356 demonstrated a dose dependent damage in the cerebral cortex of aluminium-treated rats as 357 observed in this study. The histological alterations and distortions in the histo-architecture of 358 the cortical layers in the treated rats and these findings are consistent with and corroborate the

reports of previous studies [50, 51,52] The alteration in the histological layers may have been the reason behind the reduction in weight of the brain across the aluminium treated group, which correlate with [53],

362 The finding from this study supports the hypothesis that Aluminium has potential role in neurodegenerations[54] [Gupta *et al...*,). The results of biochemical parameters 363 364 investigated showed elevated level of MDA activity in the aluminium treated groups (group 365 B,C and D) when compared with the control group(group A), in group C treated with 0.4g of aluminium chloride has the highest elevated level of MDA (60.42 ± 4.40), followed by rat in 366 group D treated with 0.6g of aluminium chloride (51.4 ± 9.05) and group B treated with 0.2g 367 368 of aluminium chloride when compared with the control group (group A) which has the MDA 369 level of (33.06), lipid peroxidation generates MDA which is major indicator for oxidative 370 damage initiated by reactive oxygen species (ROS) and causes impairment in cell membrane 371 function[55]. The increase in lipid peroxidation observed in this study may be attributed to the direct effect of increase in generation of reactive oxygen species (ROS) resulting from 372 373 aluminum chloride administration similar observation here earlier been reported in studies involving the brain [56]. Several studies have implicated oxidative stress in the pathogenesis 374 of a number of disorders and the severity of damage is generally associated with an increase 375 or decrease of one or more free radical scavenging enzymes [57]. 376

The increased lipid peroxidation in aluminum- treated rats in this study, may be due to an inhibition of SOD activity in the brain. The result is a substantial increase in the rate of phospho<u>lipid peroxidation</u> in brain cells, leading to membrane damage and neuron death. The activity of SOD decreased significantly in the treated group when compound with the control. Group B treated with 0.2g of aluminium chloride has the most decreased level of SOD (33.06 \pm 1.37) and group D (45.63+ 9.96) followed by Group C (60.42+ 4.48), the decreased in the activity of these enzyme could be a result from their inactivation by reactive oxygen species

384	resulting in a significantly decreased activity, similarly, a decreased activity of this enzyme is
385	also an indication of the increased level of lipid peroxidation caused by the effect of
386	aluminum chloride. The activities as SDH also decreased across the aluminium-treated Group
387	when compared with the control group (group A) which may have been due to the toxicity of
388	aluminium chloride leading to changes in metabolism of non-essential animal acid, which
389	could lead to decrease function of mitochondrial cell respiration and energy generation which
390	correlate with the findings of research carried out by previous investigator [53]. This project
391	has presented consisted information from all result including the histological and biochemical
392	analysis confirming the damaging effect of Aluminium on the cerebral cortex.
393	The study concluded that exposure to aluminium chloride could lead to
394	neurodegenerative induced oxidative cerebral cortical damage in wistat rats as observed in
395	this study which invariably may result in compromise of cerebral functions.
396	
397	$\sim \times \times$
398	REFERENCES
399	1. Martin, R. B. Chemistry of aluminum in the central nervous system, in Mineral and
400	Metal Neurotoxicology (Yasui, M., Strong, M., Ota, K. and Verity, M. A.,
401	eds)1997, 80; 75-80. CRC Press, Boca Raton, Florida.
402	2. Alfrey, A., LeGendre, G. and Kaehny, W. (1976) The dialysis encephalopathy
403	syndrome: possible aluminum intoxication. N. Engl. J. Med. 294, 184-188
404	3. Parkinson, I. S., Feest, T. G., Kerr, D. N. S., Ward, M. K. and Fawcett, P. Fracturing
405	dialysis osteodystrophy and dialysis encephalopathy: An epidemiological survey.
406	<i>Lancet 1979;</i> 313, 406–409.
407	4. Elliott, H. L., Dryburgh, F., Fell, G. S., Sabet, S. and Macdougall, A. I.Aluminum
408	toxicity during regular haemodialysis. Br. Med. J. 1978, 1; 1101–1103.
409	5. Gupta, V. B., Anitha, S., Hegde, M. L., Zecca, L., Garruto, R. M., Ravid, R., Shankar,
410	S. K., Stein, R., Shanmugavelu, P. and Jagannatha Rao, K. S. Aluminium in
411	Alzheimer's disease: are we still at a crossroad? Cell. Mol. Life Sci 2005; 62, 143–
412	158.
413	6. Yasu, M., Kıhıra, T. and Ota, K. Calcium, magnesium and aluminum concentrations
414	in Parkinson's disease. <i>Neurotoxicology</i> 1992; 13, 593–600.

415	7.	Kurland, L. T Amylotrophic lateral sclerosis and Parkinson's disease complex on
416		Guam linked to an environmental neurotoxin. Trends Neurosci 1988; 5, 1151-1158.
417	8.	Roskams, A. J. and Connor, J. R. Aluminum access to the brain: a role for transferrin
418		and its receptor. Proc. Natl Acad. Sci. USA 87 1990; 9024-9027.
419	9.	Nagasawa, K., Ito, S., Kakuda, T., Nagai, K., Tamai, I., Tsuji, A. and Fujimoto, S.
420		Transport mechanism for aluminium citrate at the blood-brain barrier: kinetic
421		evidence implies involvement of system Xc ⁻ in immortalized rat brain endothelial
422		cells. Toxicol. Lett. 2005; 155, 289-296.
423	10	Yokel, R. A., Rhineheimer, S. S., Sharma, P., Elmore, D. and McNamara, P. J. Entry,
424		half-life, and desferrioxamine-accelerated clearance of brain aluminum after a single
425		²⁶ Al exposure. <i>Toxicol. Sci 2001;</i> 64, 77–82.
426	11	Sánchez-Iglesias, S., Soto-Otero, R., Iglesias-González, J., Barciela-Alonso, M. C.,
427		Bermejo-Barrera, P. and Méndez-Álvarez, E. Analysis of brain regional distribution
428		of aluminium in rats via oral and intraperitoneal administration. J. Trace Elem. Med.
429		<i>Biol 2007b</i> . 21: 31– 34.
430	12	Perl, D. P. and Brody, A. R. Alzheimer's disease: X-ray spectrometric evidence of
431		aluminum accumulation in neurofibrillary tangle-bearing neurons <i>Science</i> 1980: 208
432		297– 299
433		
434	13	Love S. Jenner P. Oxidative stress in neurological disease. Brain Pathol 1999.9.55-
435	10	56
436		
437	14	Youdim MB. Iron in the brain: implications for Parkinson's and Alzheimer's
438		diseases. Mt Sinai J Med. 1988: 55(1):97–101.
439	15	Chevion M. Berenshtein E. Stadtman ER. Human studies related to protein oxidation:
440	-	protein carbonyl content as a marker of damage. Free Radic Res. 2000:33: 99–108.
441		
	16	Julka, D. and Gill, K. D. Effect of aluminum on regional brain antioxidant defense
442	16	Julka, D. and Gill, K. D. Effect of aluminum on regional brain antioxidant defense status in Wistar rats. <i>Res. Exp. Med 1996</i> . 196; 187–194.
442 443	16 17	 Julka, D. and Gill, K. D. Effect of aluminum on regional brain antioxidant defense status in Wistar rats. <i>Res. Exp. Med 1996</i>. 196; 187–194. Segal, AW. "How neutrophils kill microbes" .Annu Rev Immunol 2005; 23 (5):
442 443	16 17	Julka, D. and Gill, K. D. Effect of aluminum on regional brain antioxidant defense status in Wistar rats. <i>Res. Exp. Med 1996</i> . 196; 187–194. Segal, AW. "How neutrophils kill microbes" .Annu Rev Immunol 2005;. 23 (5):
442 443 444	16 17	 Julka, D. and Gill, K. D. Effect of aluminum on regional brain antioxidant defense status in Wistar rats. <i>Res. Exp. Med 1996.</i> 196; 187–194. Segal, AW. "How neutrophils kill microbes" .Annu Rev Immunol 2005;. 23 (5): 197–22
442 443 444	16 17	 Julka, D. and Gill, K. D. Effect of aluminum on regional brain antioxidant defense status in Wistar rats. <i>Res. Exp. Med 1996</i>. 196; 187–194. Segal, AW. "How neutrophils kill microbes" .Annu Rev Immunol 2005;. 23 (5): 197–22
442 443 444 445 446	16 17 18	 Julka, D. and Gill, K. D. Effect of aluminum on regional brain antioxidant defense status in Wistar rats. <i>Res. Exp. Med 1996.</i> 196; 187–194. Segal, AW . "How neutrophils kill microbes" .Annu Rev Immunol 2005;. 23 (5): 197–22 Gems D, Partridge L . "Stress-response hormesis and aging: "that which does not kill us makes us stronger" (PDF). Cell Metab 2008: 7 (3): 200–3
442 443 444 445 446 447	16 17 18	 Julka, D. and Gill, K. D. Effect of aluminum on regional brain antioxidant defense status in Wistar rats. <i>Res. Exp. Med 1996</i>. 196; 187–194. Segal, AW . "How neutrophils kill microbes" .Annu Rev Immunol 2005;. 23 (5): 197–22 Gems D, Partridge L . "Stress-response hormesis and aging: "that which does not kill us makes us stronger" " (PDF). Cell Metab 2008;. 7 (3): 200–3
442 443 444 445 446 447 448	16 17 18 19	 Julka, D. and Gill, K. D. Effect of aluminum on regional brain antioxidant defense status in Wistar rats. <i>Res. Exp. Med 1996.</i> 196; 187–194. Segal, AW . "How neutrophils kill microbes" .Annu Rev Immunol 2005;. 23 (5): 197–22 Gems D, Partridge L . "Stress-response hormesis and aging: "that which does not kill us makes us stronger" " (PDF). Cell Metab 2008;. 7 (3): 200–3 . Schafer FQ, Buettner GR. "Redox environment of the cell as viewed through the
442 443 444 445 446 447 448 449	16 17 18 19	 Julka, D. and Gill, K. D. Effect of aluminum on regional brain antioxidant defense status in Wistar rats. <i>Res. Exp. Med 1996</i>. 196; 187–194. Segal, AW . "How neutrophils kill microbes" .Annu Rev Immunol 2005;. 23 (5): 197–22 Gems D, Partridge L . "Stress-response hormesis and aging: "that which does not kill us makes us stronger" (PDF). Cell Metab 2008;. 7 (3): 200–3 Schafer FQ, Buettner GR. "Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple". Free Radic. Biol.
442 443 444 445 446 447 448 449 450	16 17 18 19	 Julka, D. and Gill, K. D. Effect of aluminum on regional brain antioxidant defense status in Wistar rats. <i>Res. Exp. Med 1996</i>. 196; 187–194. Segal, AW . "How neutrophils kill microbes" .Annu Rev Immunol 2005;. 23 (5): 197–22 Gems D, Partridge L . "Stress-response hormesis and aging: "that which does not kill us makes us stronger" " (PDF). Cell Metab 2008;. 7 (3): 200–3 . Schafer FQ, Buettner GR. "Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple". Free Radic. Biol. Med.2001; 30 (11): 1191–212
442 443 444 445 446 447 448 449 450 451	16 17 18 19 20	 Julka, D. and Gill, K. D. Effect of aluminum on regional brain antioxidant defense status in Wistar rats. <i>Res. Exp. Med 1996.</i> 196; 187–194. Segal, AW. "How neutrophils kill microbes" .Annu Rev Immunol 2005;. 23 (5): 197–22 Gems D, Partridge L. "Stress-response hormesis and aging: "that which does not kill us makes us stronger" (PDF). Cell Metab 2008;. 7 (3): 200–3 . Schafer FQ, Buettner GR. "Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple". Free Radic. Biol. Med.2001; 30 (11): 1191–212 Evans MD, Cooke MS "Factors contributing to the outcome of oxidative damage to
442 443 444 445 446 447 448 449 450 451 452	16 17 18 19 20	Julka, D. and Gill, K. D. Effect of aluminum on regional brain antioxidant defense status in Wistar rats. <i>Res. Exp. Med 1996.</i> 196; 187–194. Segal, AW . "How neutrophils kill microbes" .Annu Rev Immunol 2005;. 23 (5): 197–22 Gems D, Partridge L . "Stress-response hormesis and aging: "that which does not kill us makes us stronger" " (PDF). Cell Metab 2008;. 7 (3): 200–3 Schafer FQ, Buettner GR. "Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple". Free Radic. Biol. Med.2001; 30 (11): 1191–212 Evans MD, Cooke MS "Factors contributing to the outcome of oxidative damage to nucleic acids" BioEssays 2004: 26 (5): 533–42
442 443 444 445 446 447 448 449 450 451 452	16 17 18 19 20	Julka, D. and Gill, K. D. Effect of aluminum on regional brain antioxidant defense status in Wistar rats. <i>Res. Exp. Med 1996.</i> 196; 187–194. Segal, AW . "How neutrophils kill microbes" .Annu Rev Immunol 2005;. 23 (5): 197–22 Gems D, Partridge L . "Stress-response hormesis and aging: "that which does not kill us makes us stronger" " (PDF). Cell Metab 2008;. 7 (3): 200–3 Schafer FQ, Buettner GR. "Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple". Free Radic. Biol. Med.2001; 30 (11): 1191–212 Evans MD, Cooke MS "Factors contributing to the outcome of oxidative damage to nucleic acids".BioEssays 2004; . 26 (5): 533–42.
442 443 444 445 446 447 448 449 450 451 452 453	 16 17 18 19 20 21 	 Julka, D. and Gill, K. D. Effect of aluminum on regional brain antioxidant defense status in Wistar rats. <i>Res. Exp. Med 1996.</i> 196; 187–194. Segal, AW . "How neutrophils kill microbes" .Annu Rev Immunol 2005;. 23 (5): 197–22 Gems D, Partridge L . "Stress-response hormesis and aging: "that which does not kill us makes us stronger" " (PDF). Cell Metab 2008;. 7 (3): 200–3 . Schafer FQ, Buettner GR. "Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple". Free Radic. Biol. Med.2001; 30 (11): 1191–212 Evans MD, Cooke MS "Factors contributing to the outcome of oxidative damage to nucleic acids".BioEssays 2004; . 26 (5): 533–42. Patel VP, Chu CT. "Nuclear transport, oxidative stress, and neurodegeneration" .Int J

455 456 457	22. Kloppel, H., Fliedner, A. and Kordel, W. Behaviour and endotoxicology aluminium in soil and water. Review of the scientific literature. <i>Chemosphere</i> 19 25: 353-363	of 997;
457 458	55. 555-505.	
459	23 Buraimoh A A Oio S A Hambolu I O & Adebisi S S Effects of Aluminiu	m
460	Chloride Exposure on the Histology of the Cerebral Cortex of Adult Wistar Rats	
461	Iournal of Biology and Life Science@Macrothink Institute 2012 3: [1] 2157-60	076
462		70.
463	24. Jiang, H.X., Chen, L.S., Zheng, J.G., Han, S., Tang, N. and Smith, B.R. Alumini	ium
464	induced effects on Photosystem II photochemistry in citrus leaves assessed by	the
465	chlorophyll a fluorescence transient. Tree of Physiology 2008, 28 (12):1863-71.	
466		
467	25. Birchall, J.D., Chappell, J.S. and Philipps, M.J. Acute toxicity of Aluminium to f	ısh
468	eliminated in silicon-rich waters. <i>Nature</i> 2008; 361:31–39.	
409 470	26 Abbasali K M Zhila T and Farshad N Developmental Toxicity of alumin	inm
471	from High Doses of AlCl3 in Mice. The Journal of Applied Research 2005, 5: 5	575-
472	579.	
473	27. Shehla, K.F., Prabhavathi, P.A., Padmavathi, P. and Reddy, P.P. Analysis	of
474	chromosomal aberrations in men occupationally exposed to cement dust. Muta	tion
475	<i>Research</i> . 2001, 490: 179-186.	,
476	28. Campbell, A., The potential role of aluminium in Alzheimer's disease. <i>Cellular</i>	and
477	Molecular Biology 2002, 40,721-730, 29 Evley C. The aluminium amuloid cascade hypothesis and Alzheimer's disease	
478	aluminium and B-amyloid Alzheimer's disease 2005 38:225-234 DOI: 10.1007/	0_
479	38723226511)-
400	30 Buraimah A A Oio S A Hambolu IO and Adebisi S S Effects of Oral	
401	Administration of Aluminium Chloride on the Histology of the Hippocompus of	
402	Wister Pote, Current Research Journal of Biological Sciences 2011, 3(5): 500, 515	c
405 101	21 Niu O Vang V Zhang O Niu P He S Di Gioacchino M and Roscolo P	•
404 105	"The relationship between Bel 2 game expression and learning & memory impairm	ont
405	in abrania Aluminium exposed rate. <i>Journal of Piological Chamistry</i> 2007, 12[2]	
400	162 160	,
487	105-109 22 National Bassarch Council Nacm: A Tree for Solving Clobal Problems National	
488	32. National Research Council. Neem. A free for Solving Global Problems. National	
489	Academy Press, washington, DC.1992	
490	55. Kankoler, M., Superoxide dismutase and glutathione peroxidase activities in bovin	ie 52.
491	placenta: Spectrophotometric and electrophoretic analysis. Rev. Med. Vet 2002, 1:	55:
492	121-124.	
493	34. Kondo, I., A.G. Reaume, I.I. Huang, E. Carlson and K. Murakami <i>et al.</i> , 1997.	
494	Reduction of CuZn-superoxide dismutase activity exacerbates neuronal cell injury	
495	and edema formation after transient focal cerebral ischemia. J. Neurosci., 17: 4180	-
496	4189.	
497	35. Yokel, R. A. The toxicology of aluminium in the brain: a review. <i>Neurotoxicology</i>	
498	2000, 21;813–828.	

499	36.	Zatta, P., Lucchini, R., Van Rensburg, S. J. and Taylor, A. The role of metals in
500		neurodegenerative processes: aluminum, manganese, and zinc. Brain Res. Bull 2003,.
501		62, 15–28
502	37.	Exley, C. The pro-oxidant activity of aluminium. Free Radic. Biol. Med. 2004, 36;
503		380–387.
504	38.	. Gutteridge, J. M. C., Quinlan, G. J., Clark, I. and Halliwell, B. Aluminium salts
505		accelerate peroxidation of membrane lipids stimulated by iron salts. <i>Biochem</i> .
506		Biophys. Acta 1985, 835; 441–447.
507	39.	. Verstraeten, S. V. and Oteiza, P. I. Effects of Al ³⁺ and related metals on membrane
508		phase state and hydration: correlation with lipid oxidation. Arch. Biochem.
509		<i>Biophys.2000</i> , 375; 340–346.
510	40.	Kong, S., Liochev, S. and Fridovich, I. Aluminum(III) facilitates the oxidation of
511		NADH by the superoxide anion. Free Radic. Biol. Med. 1992, 13, 79-81.
512	41.	Méndez-Álvarez, E., Soto-Otero, R., Hermida-Ameijeiras, A., López-Real, A. M. and
513		Labandeira-García, J. L. Effects of aluminum and zinc on the oxidative stress caused
514		by 6-hydroxydopamine autoxidation: relevance for the pathogenesis of Parkinson's
515		disease. Biochim. Biophys. Acta 2002; 1586, 155–168.
516	42.	Nehru, B. and Anand, P. Oxidative damage following chronic aluminium exposure in
517		adult and pup rat brains. J. Trace Elem. Med. Biol. 2005, 19; 203-208.
518	43.	Dua, R. and Gill, K. D. Aluminium phosphide exposure: implications on rat brain
519		lipid peroxidation and antioxidant defence system. Pharmacol. Toxicol., 2001;89,
520		315-319.
521	44.	Abubakar, M. G., Taylor, A. and Ferns, G. A. The effects of aluminium and
522		selenium supplementation on brain and liver antioxidant status in the rat. Afr. J.
523		<i>Biotech 2004,. 3; 88–93.</i>
524	45.	Jyoti, A., Sethi, P. and Sharma, D. Bacopa monniera prevents from aluminium
525		neurotoxicity in the cerebral cortex of rat brain. J. Ethnopharmacol. 2007, 111; 56-
526		62.
527	46.	Verstraeten SV, Nogueira LV, Schreier S, Oteiza PI. Effect of trivalent metal ions on
528		phase separation and membrane lipid packing: role in lipid peroxidation. Arch
529		Biochem Biophys. 1997;338(1):121-127. doi: 10.1006/abbi.1996.9810
530	47.	Chia-Yi, Y, Yih-Jing,L. and Guoo-Syng,W.H. Aluminum overload increases
531		oxidative stress in four functional brain areas of neonatal brain. J Biomed Sci 2012;
532		19. (1): 51
533	48.	Esparza JL, Gomez M, Rosa Nogues M, Paternain JL, Mallol J, Domingo JL.
534		Melatonin reduces oxidative stress and increases gene expression in the cerebral
535		cortex and cerebellum of aluminum-exposed rats. J Pineal Res. 2005;39(2):129–136.
536		doi: 10.1111/j.1600-079X.2005.00
537	49.	Imene, B., Omar, K., Nouria, H., Hadi A.B., Kaddour, T., Mansoria, B., Abdelkader A
538		and Mehmet O. Aluminium-Induced Behavioral Changes and Oxidative Stress in
539		Developing Rat Brain and the Possible Ameliorating Role of Omega-6/Omega-3
540		Ratio. J Bio Sci 17 (3): 106-117, 2017

541	50. Abdel Moneim AE. Evaluating the potential role of pomegranate peel in aluminum-
542	induced oxidative stress and histopathological alterations in brain of female rats. Biol.
543	Trace Elem. Res. 2012;150:328–336.
544	51. Ebtesam M., Manal F.E and Ahmed E. A. The protective properties of melatonin
545	against aluminium-induced neuronal injury Int J Exp Pathol 2015; 96(3): 196-202
546	
547	52. Bhadauria M. Combined treatment of HEDTA and propolis prevents aluminum
548	induced toxicity in rats. Food Chem. Toxicol. 2012;50:2487–2495.
549	
550	53. Lipman J.J., ColowickS.P., Lawrence P.L., and Abumard N.N. Aluminium induced
551	encephalopathy in the rat 1988, Life Sci, 42; 463-875
552	54. Gupta, V.B., Anitha, G., Hegda, M.L., Zecca, L., Garruto, R.M., Ravid, R., Shankar,
553	S.K., Stein, R., Hanmugavelu, P. and Jagannatha Rao, K.S. Aluminium in
554	Alzheimer's disease: are we still at a crossroad? Cellular Molecular Life Science,
555	2005, 62: 143-158.
556	55. Halliwell B and J. M. C. Gutteridge, Free Radicals in Biology and Medicine, Oxford
557	University Press, Oxford, UK, 2rd edition, 1989.
558	56. Buraimoh, A.A., Ojo, S.A., Hambolu, J.O. and Adebisi, S.S. Effects of Oral
559	Administration of Aluminium Chloride on the Histology of the Hippocampus of
560	Wistar Rats. Current Research Journal of Biological Sciences, 2011, 3(5): 509-515.
561	ISSN: 2041-0778.
562	57. 60Savory, J., M.M. Herman and O. Ghribi, Intracellular mechanisms underlying
563	aluminum-induced apoptosis in rabbit brain. J. Inorg. Biochem. 2003, 97: 151-154.
564	
565	58. Panda, S.K., Y. Yamamoto, H. Kondo and H. Matsumoto. Mitochondrial alterations
566	related to programmed cell death in tobacco cells under aluminium stress. C. R. Biol
567	2008., 331: 597-610
568	
569	
570	
571	
	VID.

~